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This paper presents the general total least-squares formulation for the problem of attitude
determination from vector observations. Except for a special case, the total least-squares atti-
tude estimation problem cannot be converted to Wahba’s problem. Two iterative solutions are
presented that determine both the attitude matrix and the unit or non-unit vector observations.
The associated covariance matrices are also derived under the small error assumption.

I. Introduction
Most methods for attitude determination from vector observations are exact or approximate solutions of Wahba’s

problem, which is to find the least-squares estimate of the attitude matrix A that minimizes the loss function [1]

L(A) =
1
2

n∑
i=1

wi ‖b̃i − Ar̃i ‖2, n ≥ 2 (1)

subject to the constraint that A is a three-dimensional proper orthogonal matrix

AAT = AT A = I3×3, det A = 1 (2)

where b̃i are n vectors observed in the body frame, r̃i are the corresponding vectors in the reference frame, and wi are
non-negative scalar weights accounting for the total measurement errors of the b̃i and r̃i pairs. The vectors and the
attitude matrix satisfy

b̃i ≈ Ar̃i (3)

The approximation is due to measurement errors. In satellite attitude determination applications, b̃i and r̃i are usually unit
vectors representing line-of-sight directions. In other applications, for example, ground vehicle attitude determination
by measuring the local magnetic field vector and local gravity vector, the vectors are not necessarily unit vectors. The
loss function has an equivalent form

L(A) =
1
2

n∑
i=1

wi

(
b̃T
i b̃i + r̃Ti r̃i

)
−

n∑
i=1

wib̃T
i Ar̃i (4)

Because L(A) appears linearly in A, Wahba’s problem can be solved in closed form using an eigenvalue decomposition
or a singular value decomposition [2, 3]. Many other solutions can be found in [3] and the references therein.

Another equivalent form of the loss function is

L(A) = ‖A − B‖2F (5)

with B =
∑n

i=1 wib̃i r̃Ti and ‖·‖F denotes the Frobenius norm. This means that Wahba’s problem is equivalent to the
orthogonal Procrustes problem [4].

Wahba’s problem can also be related to a pose (position and attitude) determination problem [5], where the attitude
matrix A and position vector p are simultaneously determined from the vector measurement pairs b̃i and r̃i , i = 1, . . . ,n.
The geometry may be assumed to be

b̃i ≈ A(r̃i − p) (6)
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The approximation is caused by measurement errors. In a LIDAR-based vehicle navigation problem, for example, r̃i
may represent the locations of the feature points in the reference frame and b̃i the positions of the feature points relative
to the vehicle in the body frame. The loss function for the least-squares pose estimation problem is

L(A,p) =
1
2

n∑
i=1

wi ‖b̃i − A(r̃i − p)‖2 (7)

In terms of the optimal attitude matrix Â, the optimal position estimate p̂ is

p̂ = ÂT b̄ − r̄ (8)

with

b̄ =
∑n

i=1 wib̃i∑n
i=1 wi

, r̄ =
∑n

i=1 wi r̃i∑n
i=1 wi

(9)

Substituting Eq. (8) into Eq. (7) gives the loss function of the attitude matrix

L(A) =
1
2

n∑
i=1

wi ‖
(
b̃i − b̄

)
− A (r̃i − r̄)‖2 (10)

The pose estimation problem now reduces to a Wahba’s problem with non-unit vectors (b̃i − b̄) and (r̃i − r̄).
Although proposed as a least-squares attitude estimation problem, Wahba’s problem can be interpreted as a special

total least-squares problem. The total least-squares estimate is usually more accurate and less biased than the least-squares
estimate [6]. The loss function of the total least-squares problem is [7]

L(A,r1, . . . ,rn) =
1
2

n∑
i=1

wbi ‖b̃i − Ari ‖2 +
1
2

n∑
i=1

wri ‖r̃i − ri ‖2 (11)

where two sets of scalars wbi and wri are used to weight the measurement errors in the body frame and the reference
frame, respectively. The objective of this total least-squares problem is to find the optimal estimates Â and r̂i that
minimize L(A,r1, . . . ,rn). The optimal vector estimates r̂i and b̂i = Âr̂i are not required to be unit vectors. The attitude
part of the problem is a Wahba’s problem because the optimal attitude estimate Â minimizes [7]

L(A) =
1
2

n∑
i=1

1
w−1
bi
+ w−1

ri

‖b̃i − Ar̃i ‖2

=
1
2

n∑
i=1

wbi wri

wbi + wri

‖b̃i − Ar̃i ‖2
(12)

where the effective scalar weight for each pair of vector measurements is 1/(w−1
bi
+ w−1

ri
). It is also known that the total

least-squares estimation problem subject to a unitary constraint is identical to the orthogonal Procrustes problem [8].
This paper formulates, analyzes, and solves two general total least-squares problems for attitude determination

without the restriction that the weights in the loss function are scalars. For coarse line-of-sight vectors and non-unit
vectors such as (b̃i − b̄) and (r̃i − r̄) in pose estimation, fully populated weighting matrices can better reflect the
anisotropic measurement error properties than scalars. The two formulations differ only in whether r̂i are unit vectors.
The unity norm constraints are motivated by the requirement that the estimates of unit vectors be unit vectors. An
important result of the paper is that the total least-squares problems do not reduce to Wahba’s problem except for the
special case of [7], where the weights are scalars and the vector estimates are not subject to any norm constraint.

The remainder of the paper presents the two problem formulations, the covariance analysis, the solutions of the two
problems, and a simple numerical example with coarse line-of-sight vector measurements.

II. Problem Statement

A. Total Least-Squares Estimation
Suppose that the relationship between the parameter vector x and the output y is described by a linear model

y = Hx (13)
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where H is the coefficient matrix. Given H and the measurement ỹ of y, the weighted least-squares estimate of x is the
minimizer of the loss function

L(x) =
1
2
(ỹ − Hx)TWy(ỹ − Hx) (14)

where Wy is a weighting matrix accounting for the measurement errors in ỹ.
The total least-squares estimation problem arises when errors are present in both y and H [6]. Given themeasurements

H̃ as well as ỹ, the total least-squares estimate of x and H (or of y and H) minimizes the loss function

L(x,H) =
1
2
(ỹ − Hx)TWy(ỹ − Hx) +

1
2
vecT (H̃ − H)WHvec(H̃ − H) (15)

where vec(·) denotes a column vector formed by stacking the consecutive columns of the input matrix and WH is the
weighting matrix for the coefficient matrix. The loss function can be extended to account for the cross correlation
between the measurement errors in ỹ and H̃ [9]. The estimate of y satisfies ŷ = Ĥx̂. The total least-squares estimate x̂
minimizes a loss function of the form

L(x) =
1
2
(ỹ − Hx)TW ′y(ỹ − Hx) (16)

However, W ′y is a nonlinear function in x and not identical to Wy .
When the measurement errors obey the Gaussian distribution and the weighting matrices Wy and WH are the

inverse of the covariance matrices, the solutions to the least-squares and total least-squares problems are the maximum
likelihood estimates.

B. Linear Attitude Measurement Model
The attitude measurement model appears linearly in the attitude matrix:

bi = Ari (17)

It can be written as y = Hx, with

y =


y1
...

yn

 , H =


H1
...

Hn

 (18a)

yi = bi =


rTi 01×3 01×3

01×3 rTi 01×3

01×3 01×3 rTi



a1

a2

a3

 = Hix (18b)

and

x =


a1

a2

a3

 , A =


aT1
aT2
aT3

 (19)

In error analyses, another model of the form y = Hx is used. The small attitude error between A and a reference attitude
Ā close to A approximately satisfies a linear model

yi = bi − Āri = [Āri×] δα = Hix (20)

where
x = δα, A = (I3×3 − [δα×])Ā (21)

Here δα denotes a vector of small angles. Because many elements of H are known to be zero, the vector vec(H̃ − H) in
the loss function of the total least-squares attitude estimation problem is replaced by [rT1 , . . . ,r

T
n ]

T .

C. Total Least-Squares Formulations for Attitude Determination
For sake of simplicity, the measurement errors in b̃i and r̃i are assumed to be uncorrelated. The goal is to find Â and

r̂i . The vectors in the body frame are not estimated but computed using b̂i = Âr̂i . Since Â is an attitude matrix, which
leaves the length of a vector unchanged, then ‖b̂i ‖ = ‖r̂i ‖. Two problems are formulated, different only in whether r̂i
obeys the unity norm constraint.
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Problem 1
Problem 1 is to minimize the loss function

L(A,r1, . . . ,rn) =
1
2

n∑
i=1
(b̃i − Ari)TWbi (b̃i − Ari) +

1
2

n∑
i=1
(r̃i − ri)TWri (r̃i − ri) (22)

subject to
AAT = AT A = I3×3, det A = 1 (23)

Note that r̂i and b̂i are free of constraints in Problem 1. The weighting matrices Wbi and Wri can be singular.

Problem 2
Problem 2 requires that bi , ri , b̃i , r̃i , b̂i , r̂i are all unit vectors. It minimizes the same loss function as Problem 1

L(A,r1, . . . ,rn) =
1
2

n∑
i=1
(b̃i − Ari)TWbi (b̃i − Ari) +

1
2

n∑
i=1
(r̃i − ri)TWri (r̃i − ri) (24)

but has more constraints

AAT = AT A = I3×3, det A = 1 (25a)
rTi ri = 1 (25b)

A third problem can be formulated where only some of the vectors are unit vectors. It can be solved the same way
Problem 2 is solved.

III. Covariance Analysis
The covariance matrices of the estimates are derived for both problem formulations using a first-order perturbation

approach. Under the small error assumption, the quadratic equality constraints in the attitude matrix and the unit vectors
are eliminated or replaced with linear equality constraints.

The true and estimated quantities satisfy

bi = Ari (26a)
b̂i = Âr̂i (26b)

The measurement models are

b̃i = bi + ∆bi (27a)
r̃i = ri + ∆ri (27b)

where ∆bi and ∆ri are zero-mean, additive measurement errors with the associated covariances given by

E{∆bi∆bT
i } = Rbi (28a)

E{∆ri∆rTi } = Rri (28b)

It is further assumed that ∆bi and ∆ri are uncorrelated. The estimation errors are denoted by δα, δri , and δbi:

Â ≈ (I3×3 − [δα×])A (29a)
r̂i = ri + δri (29b)
b̂i = bi + δbi (29c)

Equation (29a) is valid under the small attitude error assumption. The measurement error ∆bi is linear in δα and δri to
first order:

∆bi ≈ [bi×]δα + Aδri (30)

The unity norm constraint is approximated by
rTi δri ≈ 0 (31)
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A. Problem 1
With the attitude matrix replaced by the attitude error, Problem 1 becomes an unconstrained minimization problem.

Approximately, the estimation errors δα and δri minimize the following loss function

L(δα,δr1, . . . ,δrn) =
1
2

n∑
i=1
(∆bi−[bi×]δα−Aδri)TWbi (∆bi−[bi×]δα−Aδri)+

1
2

n∑
i=1
(∆ri−δri)TWri (∆ri−δri) (32)

The optimality conditions can be written as
M∆x = N∆y (33)

where

∆x =


δα

δr1
...

δrn


, ∆y , ∆y(∆b1,∆r1, . . . ,∆bn,∆rn) =



∆b1

∆r1
...

∆bn

∆rn


(34a)

M , M(A,b1, . . . ,bn) =


−

∑n
i=1[bi×]Wbi [bi×] −[b1×]Wb1 A · · · −[bn×]Wbn A
ATWb1 [b1×] ATWb1 A +Wr1 03×3(n−2) 03×3

... 03(n−2)×3
. . . 03(n−2)×3

ATWbn [bn×] 03×3 03×3(n−2) ATWbn A +Wrn


(34b)

(34c)

N , N(A,b1, . . . ,bn) =


−[b1×]Wb1 03×3 · · · −[bn×]Wbn 03×3

ATWb1 Wr1 03×6(n−2) 03×6

03(n−2)×6
. . . 03(n−2)×6

03×6 03×6(n−2) ATWbn Wrn


(34d)

Solving Eq. (33) gives
∆x = M−1N∆y (35)

Hence, the covariance matrix is given by

P∆x = E{∆x∆xT } = M−1NRNT M−1 (36)

where
R = blkdiag(Rb1,Rr1, . . . ,Rbn ,Rrn ) (37)

The covariance expression is valid for any weights and any measurement error covariances.

Special Cases
If the weighting matrices are chosen as the inverse of the measurement error covariance matrices

Wbi = R−1
bi
, Wri = R−1

ri
(38)

then it can be shown that the covariance takes a simple form

P∆x = M−1 (39)
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The attitude error covariance is given by

Pδα =

(
n∑
i=1
−[bi×]Wbi [bi×] + [bi×]Wbi A(ATWbi A +Wri )

−1 ATWbi [bi×]

)−1

= −

n∑
i=1
[bi×]

(
W−1

bi
+ AW−1

ri
AT

)−1
[bi×]

= −

n∑
i=1
[bi×]

(
Rbi + ARri AT

)−1
[bi×]

(40)

If the measurement error covariances are a scalar times the identity matrix

Wbi = R−1
bi
=

1
σ2
bi

I3×3, Wri = R−1
ri
=

1
σ2
ri

I3×3 (41)

then the attitude error covariance reduces to

Pδα = −

n∑
i=1

1
σ2
bi
+ σ2

ri

[bi×]
2 (42)

which has the same form as in Wahba’s problem [10].

B. Problem 2
Under the small error approximation, the estimation errors minimize the loss function

L(δα,δr1, . . . ,δrn) =
1
2

n∑
i=1
(∆bi−[bi×]δα−Aδri)TWbi (∆bi−[bi×]δα−Aδri)+

1
2

n∑
i=1
(∆ri−δri)TWri (∆ri−δri) (43)

subject to the linear equality constraints
rTi δri = 0 (44)

The augmented loss function with the Lagrange multipliers λi is given by

La(δα,δr1, . . . ,δrn) = L(δα,δr1, . . . ,δrn) +
n∑
i=1

λirTi δri (45)

and the optimality conditions are
Ma∆xa = Na∆y (46)

with

∆xa =


∆x
λ1
...

λn


(47a)

(47b)

Ma , Ma(A,b1, . . . ,bn) =

[
M CT

C 0n×n

]
(47c)

C =

0n×3

rT1 01×3(n−2) 01×3

0(n−2)×3
. . . 0(n−2)×3

01×3 01×3(n−2) rTn

 (47d)
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Na , Na(A,b1, . . . ,bn) =

[
N

0n×6n

]
(47e)

So, the error vector and the associated covariance matrix are respectively given by

∆xa = (Ma)−1Na∆y (48)

and
P∆xa = E{∆xa (∆xa)T } = (Ma)−1NaR(Na)T (Ma)−1 (49)

Note that the covariances of δri are singular because of the equality constraints.

Special Cases
If Wbi = R−1

bi
and Wri = R−1

ri
, then the covariance matrix becomes

P∆xa =

[
M CT

C 0n×n

]−1 [
M 03(n+1)×n

0n×(3(n+1) 0n×n

] [
M CT

C 0n×n

]−1

(50)

If
Wbi = R−1

bi
=

1
σ2
bi

I3×3, Wri = R−1
ri
=

1
σ2
ri

I3×3 (51)

then it can be shown that the attitude error covariance is

Pδα = −

n∑
i=1

1
σ2
bi
+ σ2

ri

[bi×]
2 (52)

So, in the special case of scalar weights, Problems 1 and 2 have the same attitude error covariance (to first order only).

IV. Algorithm Development
In both Problem 1 and Problem 2, the optimal vector estimates r̂i , r̂i(Â, b̃i, r̃i) have an closed-form expression in

terms of the optimal Â. The resultant loss function for the attitude matrix is

L(A) , L
(
A, r̂1(A, b̃1, r̃1), . . . , r̂n(A, b̃n, r̃n)

)
=

1
2

n∑
i=1
(b̃i − Ar̂i)TWbi (b̃i − Ar̂i) +

1
2

n∑
i=1
(r̃i − r̂i)TWri (r̃i − r̂i)

(53)

It will be shown that except for Problem 1 with scalar weights, the loss function is not equivalent to that of Wahba’s
problem. Deriving the gradient and/or Hessian of L(A) required by an gradient based algorithm is complicated,
especially for Problem 2. Problems 1 and 2 are therefore solved iteratively based on the linear error models in the
covariance analysis section.

A. Solution of Problem 1
The solution r̂i(Â, b̃i, r̃i) is given by

r̂i = (ÂTWbi Â +Wri )
−1

(
ÂTWbi b̃i +Wri r̃i

)
(54)

Note that r̂i is nonparallel to (ÂTWbi b̃i +Wri r̃i) in general. Substituting Eq. (54) into Eq. (22) gives

L(A) =
1
2

n∑
i=1
(b̃i − Ar̃i)T

(
W−1

bi
+ AW−1

ri
AT

)−1
(b̃i − Ar̃i) (55)

An iterative algorithm is used to solve Problem 1:
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1) Solve Wahba’s problem with the following loss function for the initial estimate Â(0)

L(A) =
1
2

n∑
i=1

1

tr
(
W−1

bi
+W−1

ri

) ‖b̃i − Ar̃i ‖2 (56)

(Replace matrix inversion with pseudo-matrix inversion if the weighting matrices are singular.)
2) Compute r̂(k)i from Â(k) using Eq. (54)
3) Compute b̂(k)i = Â(k) r̂(k)i

4) Compute ∆b(k)i and ∆r(k)i

∆b(k)i = b̃i − b̂(k)i , ∆r(k)i = r̃i − r̂(k)i (57)

5) Construct M (k), N (k), and ∆y(k) using Â(k), b̂(k)i , ∆b(k)i , and ∆r(k)i

6) Compute ∆x(k) using Eq. (35)
7) Retrieve δα(k) from ∆x(k)
8) Increase k by one and compute Â(k+1)

Â(k+1) = exp([−δα(k)×]) Â(k) (58)

9) Repeat steps 2 through 8 until ∆x(k) is sufficiently small
The final estimates are given by Â(k) and r̂(k)i .

B. Solution of Problem 2
Solving Problem 2 for the optimal r̂i under the quadratic equality constraints gives

r̂i = (ÂTWbi Â +Wri + λi I3×3)
−1

(
ÂTWbi b̃i +Wri r̃i

)
(59)

where the Lagrange multipliers λi are such that the norm of r̂i is one:(
ÂTWbi b̃i +Wri r̃i

)T
(ÂTWbi Â +Wri + λi I3×3)

−2
(
ÂTWbi b̃i +Wri r̃i

)
= 1 (60)

Note that the Lagrange multipliers obtained by solving Eq. (46) only satisfy the above equation approximately. In
general, r̂i is nonparallel to (ÂTWbi b̃i +Wri r̃i). The L(A) has an even more complex form in Problem 2 than Problem 1.

An iterative algorithm is used to solve Problem 2:
1) Solve Wahba’s problem with the following loss function for the initial estimate Â(0)

L(A) =
1
2

n∑
i=1

1

tr
(
W−1

bi
+W−1

ri

) ‖b̃i − Ar̃i ‖2 (61)

(Replace matrix inversion with pseudo matrix inversion if the weighting matrices are singular.)
2) Solve Eq. (60) for λ(k)

3) Compute r̂(k)i from Â(k) and λ(k) using Eq. (59)
4) Compute b̂(k)i = Â(k) r̂(k)i

5) Compute ∆b(k)i and ∆r(k)i

∆b(k)i = b̃i − b̂(k)i , ∆r(k)i = r̃i − r̂(k)i (62)

6) Construct Ma(k), Na(k), and ∆y(k) using Â(k), b̂(k)i , ∆b(k)i , and ∆r(k)i

7) Compute ∆xa(k) using Eq. (48)
8) Retrieve δα(k) from ∆xa(k)
9) Increase k by one and compute Â(k+1)

Â(k+1) = exp([−δα(k)×]) Â(k) (63)

10) Repeat steps 2 through 9 until ∆x(k) is sufficiently small
The final estimates are given by Â(k) and r̂(k)i .
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C. Scalar Weights
If all the weights are scalars,

Wbi = wbi I3×3, Wri = wri I3×3 (64)
Problem 1 is equivalent to Wahba’s problem because the loss function becomes

L(A) =
1
2

n∑
i=1

1
w−1
bi
+ w−1

ri

‖b̃i − Ar̃i ‖2 (65)

It can be solved without iteration. In this case, the corrections ∆x(k) in step 6) of the solution vanish.
The optimal estimates for r̂i are given by

r̂i =
wbi ÂT b̃i + wri r̃i

wbi + wri

(66)

If ÂT b̃i and r̃i are nonparallel unit vectors, r̂i are not unit vectors.
Problem 2 is not equivalent to Wahba’s problem. The Lagrange multipliers and r̂i are given by

λi = ‖wbi ÂT b̃i + wri r̃i ‖ − (wbi + wri ) (67a)

r̂i =
wbi ÂT b̃i + wri r̃i
‖wbi ÂT b̃i + wri r̃i ‖

(67b)

Equation (67b) can be written as
r̂i = w̃bi ÂT b̃i + w̃ri r̃i (68)

with
w̃bi =

wbi

‖wbi ÂT b̃i + wri r̃i ‖
, w̃ri =

wri

‖wri ÂT b̃i + wri r̃i ‖
(69)

Note that w̃bi and w̃ri are attitude dependent and w̃bi + w̃ri , 1 unless ÂT b̃i and r̃i are identical unit vectors. Hence,
the loss function given by

L(A) =
1
2

n∑
i=1

wbi ‖(1 − w̃bi )b̃i − w̃ri Ar̃i ‖2 +
1
2

n∑
i=1

wri ‖w̃bi b̃i − (1 − w̃ri )Ar̃i ‖2 (70)

cannot reduce to that of Wahba’s problem.
On the other hand, if the measurement and attitude estimation errors are small, then ÂT b̃i ≈ r̃i because ATbi = ri .

In this case,
w̃bi ≈

wbi

wbi + wri

, w̃ri ≈
wri

wbi + wri

(71)

and

L(A) ≈
1
2

n∑
i=1

1
w−1
bi
+ w−1

ri

‖b̃i − Ar̃i ‖2 (72)

V. Numerical Example
An example of attitude determination from two coarse line-of-sight measurements is used to compare Problem 1

and Problem 2 when all the weights are scalars. The true attitude matrix is A = I3×3. The true vectors in the reference
and body frames are

b1 = r1 =


1
0
0

 , b2 = r2 =


0
1
0

 (73)

The measurements (unit vectors) are

b̃1 =


0.9940
0.0868
−0.0664

 , r̃1 =


0.9906
−0.1197
−0.0666

 , b̃2 =


0.1186
0.9886
0.0924

 , r̃2 =


−0.1232
0.9923
0.0126

 (74)
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The angular measurement errors are

b̃T
1 b1 = 6.2755°, r̃T1 r1 = 7.8747°, b̃T

2 b2 = 8.6481°, r̃T2 r2 = 7.1164° (75)

The scalar weights are chosen as

wb1 =
1
(2°)2

, wr1 =
1
(2°)2

, wb2 =
1
(3°)2

, wr2 =
1
(3°)2

(76)

The solution of Problem 1 is

Â =


0.9979 −0.0647 0.0085
0.0652 0.9927 −0.1019
−0.0018 0.1022 0.9948

 (77)

The solution of Problem 2 is

Â =


0.9980 −0.0629 0.0085
0.0635 0.9928 −0.1018
−0.0020 0.1021 0.9948

 (78)

The difference between the two attitude estimates is 0.1017°, small compared with the estimation errors of approximately
7°, but the two solutions are clearly not identical.

A Monte Carlo analysis is done to assess how well the computed 3σ bounds using the unconstrained covariance in
Eq. (39) and the constrained covariance in Eq. (50) bound the actual respective errors. The true vectors in the reference
and body frames for this analysis are

b1 = r1 =

√
2

2


1
1
0

 , b2 = r2 =

√
2

2


0
1
1

 (79)

Noise is generated using a zero-mean Gaussian noise process with standard deviations of 2 degrees for both b1 and
r1, and standard deviations of 3 degrees for both b2 and r2. Five thousand Monte Carlo runs are executed. Plots of
the attitude errors along with their respective 3σ bounds for the unconstrained and constrained solutions are shown in
Figs. 1(a) and 1(b). The 3σ bounds are equivalent in this case because the weighting matrices are isotropic. But, the
actual errors are not the same, which reinforces the previous example results. Figures 1(c) and 1(d) show the errors in
the r1 estimates along with their respective 3σ bounds for the unconstrained and constrained solutions. All the errors
are well bounded by their respective 3σ bounds. Comparing Figs. 1(c) and 1(d) shows that the bounds and errors for the
constrained solution are smaller than the unconstrained solution. This shows that forcing the constraint in the solution
produces more accurate results.

VI. Conclusions
Most methods for attitude determination from vector observations are solutions of Wahba’s problem, a least-squares

estimation problem with a scalar weight for each pair of vectors. This paper proposes to solve the attitude estimation
problem as a total least-squares problem. Two total least-squares problems are formulated without the restriction that the
vector weights are scalars and solved using an iterative procedure. When all the weights are scalars, the total least-squares
problem does not reduce to Wahba’s problem if the estimated vectors need to obey the unity norm constraint.
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