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This paper derives an algorithm to determine the approximate attitude of a vehicle from
both vector and arc-length observations, which are the most general types of attitude observa-
tions. It is assumed that one of the vector observations is more accurate than the other vector
and arc-length observations. The solution is found by solving a quartic polynomial equation.
Then the quaternion can be determined from the polynomial solution. The attitude error-
covariance is also derived using both an attitude perturbation approach and a constrained
least squares approach. Both are shown to yield identical results. An optimality condition
is also derived that compares the derived suboptimal error-covariance with the optimal one.
Several special cases, such as a set of one direction observation and an arc-length observation,
are shown. Simulation results using a Monte Carlo analysis are shown to verify the derived
algorithm.

I. Introduction
Attitude determination can be accomplished using a number of sensors, such as star trackers, magnetometers, horizon

sensors, magnetometers, and the Global Positioning System (GPS) [1]. Even though the sensing mechanism for each is
different, most attitude observations can be expressed in vector form, with the exception of GPS observations. Vector-
form observations can be used to determine the attitude by solving Wahba’s problem [2]. A unique solution is given
when at least two non-collinear vector observations exist. If the quaternion [3] is used for the attitude parametrization
then the associated loss function in Wahba’s problem is quadratic in nature, and the attitude orthogonalization constraint
reduces down to a unit-norm vector constraint in the quaternion. Many solutions to this problem, such as Davenport’s q
Method [1] and the QUEST algorithm [4], can be used.

The loss function using only GPS observations with the quaternion parametrization is quartic in nature. If at
least three non-planar baselines or sightlines exist then the GPS observations can be expressed in vector form [5]. A
transformed loss function can be derived under these conditions, but it is still quartic in the quaternion because it is in
fact equivalent to the non-transformed loss function. A suboptimal solution is presented in [5], which reduces the quartic
loss function into a quadratic one so that any solution that solves Wahba’s problem be employed. The error-attitude
covariance is also derived, which can be compared with the maximum likelihood Cramér-Rao lower bound to see the
efficiency of the suboptimal solution. The suboptimal solution can be used as a starting point for an iterative algorithm,
such as a simple nonlinear least squares approach to determine the optimal solution.

An approximate solution using only vector observations with one dominant observation is derived in [6]. The
algorithm is very computationally efficient, and does not require iterative calculation or transcendental functions.
This paper expands upon the work shown in [6] by deriving an approximate attitude solution involving an accurate
line-of-sight (LOS) vector observation and other types of attitude observations, which may include other LOS or
arc-length observations. These types of observation represent the most general type used for most attitude determination
system. The attitude parametrization chosen in this paper is the quaternion. The suboptimal covariance is derived,
as well as a simple scalar expression that can be computed without the attitude solution to check the accuracy of the
approximate attitude solution.
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II. Algorithm Development
The generalized attitude determination problem minimizes the following loss function:

J(A) =

[
1
2

n∑
k=1

σ−2
k ‖bk − Ark ‖2

]
+


1
2

N∑
i=1

M∑
j=1

σ−2
i j (φi j − cTi Asj)2

 (1)

where A is the attitude matrix, which is a 3 × 3 proper orthogonal matrix, bk is the LOS unit vector expressed in
body-frame coordinates, rk is the LOS unit vector expressed in reference-frame coordinates, σk is the standard deviation
of the unit vector observation errors [7], and σi j is the standard deviation of the arc-length observations. These
arc-length observations, denoted by φi j , may come from GPS attitude sensors [1] or other sensors [8], where ci is
a vector expressed in body-frame coordinates, and sj is a vector expressed in reference-frame coordinates. For GPS
observations, ci is the ith baseline vector, and sj is the jth sightline vector. To date a non-iterative solution for the
optimal attitude that minimizes Eq. (1) is not available, but the optimal attitude can be found using an iterative NLS
solution.

A closed-form approximate solution for the attitude is now derived. Suppose that an accurate LOS observation is
provided by r1 and b1, whose associated standard deviation σ1 is much smaller than the other standard deviations. The
above optimal attitude determination problem can be approximated by a suboptimal problem that minimizes the loss
function

J(A) =

[
1
2

n∑
k=2

σ−2
k ‖bk − Ark ‖2

]
+


1
2

N∑
i=1

M∑
j=1

σ−2
i j (φi j − cTi Asj)2

 (2)

subject to the constraint
b1 = Ar1 (3)

Note that Eq. (3) contains no errors, which means it is assumed to be a noise-free measurement.
The suboptimal problem can be solved by a computationally efficient algorithm, which is now developed. The

attitude is subsequently parameterized by the quaternion q. The quaternion is a four-dimensional vector, defined as

q ≡

[
q1:3

q4

]
(4)

with

q1:3 ≡ [q1 q2 q3]
T = e sin(ϑ/2) (5a)

q4 = cos(ϑ/2) (5b)

where e is the unit Euler axis and ϑ is the rotation angle [3]. A quaternion parameterizing an attitude satisfies a single
constraint given by ‖q‖ = 1. In terms of the quaternion, its associated attitude matrix is given by

A(q) = ΞT (q)Ψ(q) (6)

with

Ξ(q) ≡

[
q4 I3 + [q1:3×]

−qT
1:3

]
, Ψ(q) ≡

[
q4 I3 − [q1:3×]

−qT
1:3

]
(7a)

[q1:3×] ≡


0 −q3 q2

q3 0 −q1

−q2 q1 0

 (7b)

where I3 is a 3 × 3 identity matrix and the matrix [q1:3×] is the standard cross-product matrix.
Equation (2) can be rewritten in terms of the quaternion as

J(q) = qT (K + G)q +
α

2
+

1
2

N∑
i=1

M∑
j=1

σ−2
i j

(
qTCi jq

)2
(8)
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where

K ≡ −
n∑

k=2
σ−2
k Ω(bk)Γ(rk) (9a)

G ≡
N∑
i=1

M∑
j=1

σ−2
i j φi jCi j (9b)

α ≡

[
2

n∑
k=1

σ−2
k

]
+


N∑
i=1

M∑
j=1

σ−2
i j φ

2
i j

 (9c)

Ci j ≡ Ω(ci)Γ(sj) (9d)

Ω(d) ≡

[
−[d×] d
−dT 0

]
, Γ(d) ≡

[
[d×] d
−dT 0

]
(9e)

where d is any 3 × 1 vector. Unless b1 = −r1, the most general unit quaternion satisfying Eq. (3) is given by

q = cos(ψ/2)qmin + sin(ψ/2)q180 (10)

with

qmin =
1√

2(1 + bT
1 r1)

[
b1 × r1

1 + bT
1 r1

]
(11a)

q180 =
1√

2(1 + bT
1 r1)

[
b1 + r1

0

]
(11b)

where ψ is an arbitrary parameter. When b1 = −r1, qmin and q180 are indeterminate, but this condition can be avoided
by solving for the attitude with respect to a reference coordinate frame related to the original reference frame by a 180
degree rotation about one of the coordinate axes [1, 4]. Note that, in the generalized attitude determination problem,
both the representations of rk and those of sj are transformed by reference-frame rotations.

Substituting Eq. (10) into qT (K + G)q leads to

qT (K + G)q = (µ cosψ + ν sinψ + κ)/2 (12)

where

µ ≡ qT
min(K + G)qmin − qT

180(K + G)q180 (13a)
ν ≡ 2qT

min(K + G)q180 (13b)
κ ≡ qT

min(K + G)qmin + qT
180(K + G)q180 (13c)

Substituting Eq. (10) into
(
qTCi jq

)2 gives(
qTCi jq

)2
=

(
µ̄i j cosψ + ν̄i j cosψ + κ̄i j

)2
/4 (14)

where

µ̄i j ≡ qT
minCi jqmin − qT

180Ci jq180 (15a)
ν̄i j ≡ 2qT

minCi jq180 (15b)
κ̄i j ≡ qT

minCi jqmin + qT
180Ci jq180 (15c)

Performing the multiplications in Eq. (14) yields

1
2

N∑
i=1

M∑
j=1

σ−2
i j

(
qTCi jq

)2
=

1
2

(
γ1 cos2 ψ + γ2 sin2 ψ + γ3 sinψ cosψ + γ4 cosψ + γ5 sinψ + γ6

)
(16)
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where

γ1 ≡
1
4

N∑
i=1

M∑
j=1

σ−2
i j µ̄

2
i j (17a)

γ2 ≡
1
4

N∑
i=1

M∑
j=1

σ−2
i j ν̄

2
i j (17b)

γ3 ≡
1
2

N∑
i=1

M∑
j=1

σ−2
i j µ̄i j ν̄i j (17c)

γ4 ≡
1
2

n∑
i=1

M∑
j=1

σ−2
i j µ̄i j κ̄i j (17d)

γ5 ≡
1
2

N∑
i=1

M∑
j=1

σ−2
i j ν̄i j κ̄i j (17e)

γ6 ≡
1
4

N∑
i=1

M∑
j=1

σ−2
i j κ̄

2
i j (17f)

Substituting Eqs. (12) and (16) into Eq. (8) gives

J(ψ) =
1
2

[
γ1 cos2 ψ + γ2 sin2 ψ + γ3 sinψ cosψ + (µ + γ4) cosψ + (ν + γ5) sinψ

]
+ (κ + α + γ6)/2

(18)

The necessary condition to minimize J(ψ) is given by

− (µ + γ4) sinψ + (ν + γ5) cosψ − (γ1 − γ2) sin(2ψ) + γ3 cos(2ψ) = 0 (19)

where the identities sin(2ψ) = 2 sinψ cosψ and cos(2ψ) = cos2 ψ − sin2 ψ have been used. Note that terms involving
sin(2ψ) and cos(2ψ) now appear that are not in the formulation shown in [6]. If only LOS observations exist then G = 0,
and all the γ terms are also zero. In this case, the solution reduces to the solution given by [6]. For the general case
multiple roots may exist now because of the extra terms.

An iterative approach can be used to find all the roots. But, here a different approach is derived that does not involve
an iterative solution. Define x ≡ sinψ, which gives cosψ = ±

√
1 − x2. Using these definitions, Eq. (19) can be written

as
γ3(1 − 2x2) − (µ + γ4)x = ±

√
1 − x2 [2(γ1 − γ2)x − (ν + γ5)] (20)

Squaring both sides of Eq. (20), and collecting terms gives

δ4x4 + δ3x3 + δ2x2 + δ1x + δ0 = 0 (21)

where

δ0 ≡ γ
2
3 − (ν + γ5)

2 (22a)
δ1 ≡ 2 [2(γ1 − γ2)(ν + γ5) − γ3(µ + γ4)] (22b)

δ2 ≡ (µ + γ4)
2 + (ν + γ5)

2 − 4
[
γ2

3 + (γ1 − γ2)
2] (22c)

δ3 ≡ 4 [γ3(µ + γ4) − (γ1 − γ2)(ν + γ5)] (22d)

δ4 ≡ 4
[
γ2

3 + (γ1 − γ2)
2] (22e)

There are two possibilities for x. One is that they are all real, and the other is that two are real and the other two are
complex conjugates. Descartes’ Rule of Signs can be used to determine the number of real roots. Once these roots have
been determined, sinψ, cosψ, and ψ are given by

sinψ = x (23a)
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cosψ = sign
[
γ3(1 − 2x2) − (µ + γ4)x

]
sign [2(γ1 − γ2)x − (ν + γ5)]

√
1 − x2 (23b)

ψ = ATAN2(sinψ,cosψ) (23c)

where sign(·) returns the sign of the argument, and ATAN2 is the four-quadrant inverse tangent function. The loss
function given by Eq. (18) is evaluated to find the minimizing ψ. Note that ψ itself is not actually required to compute
the loss function because Eqs. (23a) and (23b) can directly be used in Eq. (18). Finally, the minimizing quaternion is
calculated using Eq. (10), and using the identities cos(ψ/2) = ±

√
(1 + cosψ)/2 and sin(ψ/2) = ±

√
(1 − cosψ)/2. If

ψ ∈ [−π, π], then ψ/2 ∈ [−π/2, π/2], and cos(ψ/2) and sin(ψ/2) have the same sign when sinψ > 0 and the opposite
sign when sinψ < 0. Then, the minimizing quaternion is given by

q =
√

1 + cosψ
2

qmin + sign(sinψ)
√

1 − cosψ
2

q180 (24)

The minimizing quaternion can also be determined without computing transcendental functions by using Eqs. (23a) and
(23b) in Eq. (24). The algorithm (without reference frame rotations) is summarized in Algorithm 1.

Algorithm 1 Generalized Quaternion Estimation with One Dominant Vector
1: Compute matrices K , G, and Ci j and scalar α . Eqs. (9)
2: Compute µ, ν, κ . Eqs. (13c)
3: Compute γ1 through γ6 . Eqs. (15) and (17)
4: Compute δ0 through δ4 . Eqs. (22)
5: Solve for real x (= sinψ) . Eq. (21)
6: Compute all cosψ using real values of x . Eq. (23b)
7: Select the sinψ and cosψ that minimize the loss function . Eq. (18)
8: Construct qmin and q180 . Eq. (11)
9: Construct the quaternion estimate q . Eq. (24)

Now special cases of the coefficients of the quartic equation are discussed. Consider the case when three orthonormal
ci’s exist with σ−2

c j ≡ σ
−2
1j = σ

−2
2j = σ

−2
3j . Then, the double summation on the right side of Eq. (8) is given by

1
2

N∑
i=1

M∑
j=1

σ−2
i j

(
qTCi jq

)2
=

1
2

3∑
i=1

M∑
j=1

σ−2
c j sTj AT cicTi Asj

=
1
2

M∑
j=1

σ−2
c j sTj AT Asj

=
1
2

M∑
j=1

σ−2
c j

(25)

Thus, this term is now independent of the attitude matrix. Therefore, Eq. (8) is equivalent to solving Wahba’s problem
[5]. The same is true when three orthonormal sj’s exist with σ−2

is ≡ σ
−2
i1 = σ

−2
i2 = σ

−2
i3 , which leads to

1
2

N∑
i=1

M∑
j=1

σ−2
i j

(
qTCi jq

)2
=

1
2

N∑
i=1

3∑
j=1

σ−2
is cTi AsjsTj AT ci

=
1
2

N∑
i=1

σ−2
is cTi AAT ci

=
1
2

N∑
i=1

σ−2
is

(26)

This again is independent of the attitude matrix. In both cases, since the quartic terms in the loss function given by
Eq. (8) vanish, then µ̄i j = ν̄i j = κ̄i j = 0 and thus γ1 = γ2 = γ3 = γ3 = γ5 = 0. The quartic equation reduces to a
quadratic equation (µ2 + ν2)x2 − ν2 = 0.
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The attitude solution is nonunique if and only if the loss function in ψ is independent of ψ. The condition is

γ1 = γ2, γ3 = µ + γ4 = ν + γ5 = 0 (27)

In that case, the loss function becomes J(ψ) = (γ1 + κ + α + γ6)/2 and the coefficients of the quartic equation become
δ1 = δ2 = δ3 = δ4 = 0.

III. Covariance Analysis
This section derives the covariance of the attitude errors for the suboptimal algorithm. A simple expression is also

derived that can be used to check the accuracy of the suboptimal algorithm as compared to the optimal solution derived
from a maximum likelihood analysis. Two methods are used to derive the relationship between the attitude error and
the measurement noise. The first is based on a perturbation approach, while the second is based on a constrained
least-squares approach. Both will be shown to yield identical results.

Under the small-error assumption, the attitude matrix is approximated by

A = (I3 − [δϑ×])Atrue (28)

where δϑ is the vector of the attitude errors. The error-quaternion is approximated by δq = [ 12δϑ
T 1]T . The covariance

matrix associated with the attitude estimate is

Psub = E{δϑ δϑT
} (29)

Let btrue
k
= Atruerk , which is the true body-vector, and let φtruei j denote the true arc-length. The models for the body and

arc-length observations are respectively given by

bk = btrue
k + ∆bk (30a)

φi j = φ
true
i j + ∆φi j (30b)

where ∆bk is the body-vector error whose covariance is given by the QUEST Measurement Model (QMM) [7], and
∆φi j is the arc-length error whose variance is given by σ2

i j .
The optimal covariance, denoted by Popt, is given by the inverse of the combination of the Fisher information matrix

(FIM) associated with the LOS observation plus the FIM associated with other observations:

Popt = F−1 (31a)

F ≡ σ−2
1 [I3 − btrue

1 (b
true
1 )

T ] +

n∑
k=2

σ−2
k [I3 − btrue

k (b
true
k )

T ]

+

N∑
i=1

M∑
j=1

σ−2
i j [A

truesj×]cicTi [A
truesj×]T

(31b)

where σ1 is the standard deviation associated with the error in b1, and F is the FIM. Also, define

F̄ ≡ F − σ−2
1 [I3 − btrue

1 (b
true
1 )

T ] (32a)

σ−2
eff ≡ (b

true
1 )

T F̄ btrue
1 (32b)

where F̄ is the portion of the FIM associated with the remaining observations outside of btrue
1 , and σ2

eff is an effective
error-variance.

A. Perturbation Approach
For this approach, the error-quaternion is given by

δq =

[
δϑ
2
1

]
≈ δqmin +

ψ̂

2
δq180 (33)
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where

δqmin =
1√

4 + 2(btrue
1 )

T∆b1

[
−btrue

1 × ∆b1

2 + (btrue
1 )

T∆b1

]
(34a)

δq180 =
1√

4 + 2(btrue
1 )

T∆b1

[
2btrue

1 + ∆b1

0

]
(34b)

Also, the notation ψ̂ is used to denote ψ with error due to measurement noise. So, δϑ = ψ̂ btrue
1 − btrue

1 × ∆b1.
Now an expression for ψ̂ in terms of the noise is derived. The necessary condition that ψ̂ satisfies is approximated by

− (µ + γ4) ψ̂ + (ν + γ5) − (γ1 − γ2) (2ψ̂) + γ3 = 0 (35)

Then ψ̂ is given by
ψ̂ =

ν + γ3 + γ5
µ + 2γ1 + 2γ2 + γ4

(36)

After significant algebra it can be shown that

ψ̂ =
1
d


(

n∑
k=2

kT
k ∆bk

)
+

©­«
N∑
i=1

M∑
j=1

ki j∆φi j
ª®¬ + kT

1 ∆b1

 (37)

where

kk ≡ σ
−2
k btrue

k × btrue
1 (38a)

ki j ≡ σ−2
i j cTi [A

truesj×]btrue
1 (38b)

k1 ≡

{
n∑

k=2
σ−2
k [b

true
1 ×][b

true
k ×]

2btrue
1

}
+


N∑
i=1

M∑
j=1

σ−2
i j

(
cTi [A

truesj×]btrue
1

)
[btrue

1 ×][A
truesj×]ci

 (38c)

d ≡

{
−

n∑
k=2

σ−2
k (b

true
1 )

T [btrue
k ×]

2btrue
1

}
+


N∑
i=1

M∑
j=1

σ−2
i j

(
cTi [A

truesj×]btrue
1

)2 (38d)

Substituting Eq (37) into the δϑ expression gives

δϑ =

(
n∑

k=2

btrue
1 kT

k

d
∆bk

)
+

©­«
N∑
i=1

M∑
j=1

ki jbtrue
1

d
∆φi j

ª®¬ +
(
−[btrue

1 ×] +
btrue

1 kT
1

d

)
∆b1 (39)

Thus, the covariance is given by Psub = Pv + Pa + P1, where

Pv ≡

n∑
k=2

σ2
k
kT
k
kk

d2 btrue
1 (b

true
1 )

T (40a)

Pa ≡

N∑
i=1

M∑
j=1

σ2
i j k

2
i j

d2 btrue
1 (b

true
1 )

T (40b)

P1 ≡ σ
2
1

(
−[btrue

1 ×] +
btrue

1 kT
1

d

) (
−[btrue

1 ×] +
btrue

1 kT
1

d

)T
(40c)

Using the following identities:

d = (btrue
1 )

T F̄ btrue
1 = σ−2

eff (41a)

Pv + Pg = σ
2
effbtrue

1 (b
true
1 )

T (41b)

7



(
−[btrue

1 ×] +
btrue

1 kT
1

d

)
[btrue

1 ×] = I3 − σ
2
effbtrue

1 (b
true
1 )

T F̄ (41c)

then gives
Psub = σ

2
eff btrue

1 (b
true
1 )

T + σ2
1

[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
] [

I3 − σ
2
eff btrue

1 (b
true
1 )

T F̄
]T (42)

It is important to note that Eq. (42) is a general expression for any F̄. Some special cases for F̄ will be shown
later. Also, the matrix

[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
]
is a projection matrix onto the plane perpendicular to btrue

1 , so[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
]

btrue
1 = 0. In addition, substituting Eq. (32a) into Eq. (42) shows that Psub remains unchanged

using F in place of F̄.

B. Constrained Least Squares Approach
The following measurement model is assumed for the constrained least-squares problem [9]:

y1 = H1xtrue + ∆y1 (43a)
y2 = H2xtrue (43b)

where ∆y1 is the zero-mean measurement noise with the covariance matrix being the identity matrix. The optimal
estimate x minimizes the loss function

J(x) =
1
2
‖y1 − H1x‖2 (44)

subject to
y2 = H2x

The optimality condition is given by [
HT

1 H1 HT
2

H2 0

] [
x
λ

]
=

[
HT

1 y1

y2

]
(45)

where λ is the vector of Lagrange multipliers.
For this attitude determination problem, the linearized measurement model is

∆bk

σk
=
[btrue

k
×]

σk
δϑ (46a)

∆φi j

σi j
=

cTi [A
truesj×]
σi j

δϑ (46b)

To apply a constrained least-square estimation algorithm, define

x ≡ δϑ (47a)

y1 ≡

[
∆bT

2
σ2

, . . . ,
∆bT

n

σn
,
∆φ11
σ11

, . . . ,
∆φNM

σNM

]T
(47b)

H1 ≡

[
[btrue

2 ×]
T

σ2
, . . . ,

[btrue
n ×]

T

σn
,
[Atrues1×]

T c1
σ11

, . . . ,
[AtruesM×]T cN

σNM

]T
(47c)

y2 ≡ M
∆b1
σ1

(47d)

H2 ≡ M = [−h2 h1]
T (47e)

where h1 is any vector perpendicular to btrue
1 , and h2 = btrue

1 × h1. This reduced form for H2 is chosen because the full
form leads to a non-invertible matrix. It still provides the correct properties for the constraint because it can be verified
that

Mbtrue
1 = 0 (48a)

8



MMT = I2 (48b)
MTM = I3 − btrue

1 (b
true
1 )

T (48c)

and HT
1 H1 = F̄. The noise vector satisfies

E

{[
HT

1 y1

y2

]}
= 0, E


[
HT

1 y1

y2

] [
HT

1 y1

y2

]T  =
[

F̄ 03×2

02×3 σ2
1 I2

]
(49)

The optimal estimates are [
δϑ

λ

]
=

[
F̄ MT

M 02×2

]−1 [
HT

1 y1

y2

]
(50)

Note that F̄ may be singular. Let [
F̄ MT

M 02×2

]−1

=

[
B CT

C D

]
(51)

where the following quantities can be easily derived:

B =
btrue

1 (b
true
1 )

T

(btrue
1 )

T F̄ btrue
1
= σ2

effbtrue
1 (b

true
1 )

T (52a)

C =M −MF̄B (52b)
D = −MF̄CT (52c)

Note that Eq. (52a) follows fromMB = 02×3. The error is given by

δϑ =
[
B CT

] [
HT

1 y1

y2

]
(53)

which is equivalent to Eq. (39). Then the covariance is

Psub =
[
B CT

] [
F̄ 0
0 σ2

1 I2

] [
B CT

]T
= BF̄BT + σ2

1CC
T (54)

It can be shown that

BF̄BT = σ2
effbtrue

1 (b
true
1 )

T (55a)

CCT =
[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
] [

I3 − σ
2
eff btrue

1 (b
true
1 )

T F̄
]T (55b)

Hence, substituting the B and C expressions from Eq. (52) into Eq. (54) gives back exactly the same suboptimal
covariance in Eq. (42).

C. Optimality Condition
Assume Psub and F are nonsingular and σ−2

eff > 0. A condition required to make Psub F close to the identity matrix
is now derived. Carrying out the multiplication gives

Psub F = σ2
eff btrue

1 (b
true
1 )

T F + σ2
1 F

− σ2
eff σ

2
1

[
btrue

1 (b
true
1 )

T F̄F + F̄ btrue
1 (b

true
1 )

T F − σ2
eff btrue

1 (b
true
1 )

T F̄2btrue
1 (b

true
1 )

T F
] (56)

Solving Eq. (32a) for F, and substituting the resulting expression into Eq. (56) leads to

Psub F = σ2
eff btrue

1 (b
true
1 )

T F̄ − btrue
1 (b

true
1 )

T − σ2
eff btrue

1 (b
true
1 )

T F̄ [I3 − btrue
1 (b

true
1 )

T ] + I3

+ σ2
1

[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
]

F̄
[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
] (57)
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It is straightforward to show that the first three terms on the right side Eq. (57) reduce down to zero. Therefore,

Psub F = I3 + σ
2
1

[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
]

F̄
[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
]

(58)

Clearly, Psub F = I3 only when the second term vanishes, but Psub is close to the optimal covariance F−1 when a
dominant vector exists, that is, σ1 � σk and σ1 � σi j .

Taking the trace of Psub F gives

Tr(Psub F) = 3 + σ2
1 Tr

{[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄
]

F̄
}

(59)

where the idempotent property of the projection matrix has been used. Then a normalized condition to ensure that a
good solution is provided is given by

ε ≡
1
3
σ2

1Tr
{[

I3 − σ
2
eff btrue

1 (b
true
1 )

T F̄
]

F̄
}
<< 1 (60)

The trace in Eq. (60) can be shown to be greater than or equal to zero. Since σ2
eff = 1/Tr[btrue

1 (b
true
1 )

T F̄] > 0, then it is
simply required to show

Tr[btrue
1 (b

true
1 )

T F̄] Tr(F̄) − Tr[btrue
1 (b

true
1 )

T F̄2] ≥ 0 (61)

If A and B are positive semi-definite matrices, then 0 ≤ Tr(A B) ≤ Tr(A)Tr(B) [10]. Defining A ≡ btrue
1 (b

true
1 )

T F̄
and B ≡ F̄ shows that the inequality in Eq. (61) is valid. This proves ε ≥ 0. Clearly, Psub is not optimal if ε , 0 or
equivalently

ε̄ ≡
[
(btrue

1 )
T F̄ btrue

1
]
Tr(F̄) − (btrue

1 )
T F̄2 btrue

1 , 0 (62)

Note also that ε̄ = 0 is not a sufficient condition for Psub to be optimal.

D. Special Cases
As stated previously, Eq. (42) is valid for any F̄. If the QMM model with unit vectors btrue

i is used for F̄, then

F̄ =
n∑

k=2
σ2
k

[
I3 − btrue

k (b
true
k )

T
]
= −

n∑
k=2

σ2
k [b

true
k ×]

2 (63)

Then σ2
eff is given by

σ2
eff =

{
n∑

k=2
σ2
k

[
I3 − (btrue

1 )
Tbtrue

k (b
true
k )

Tbtrue
1

]}−1

=

[
n∑

k=2
σ2
k ‖b

true
1 × btrue

k ‖
2

]−1 (64)

where the identity ‖a × b‖2 = ‖a‖2‖b‖2 − (aTb)2 for any 3 × 1 vectors a and b has been used. This is equivalent to the
σ2
eff given in [6]. Define w ≡ σ2

effF̄ btrue
1 . Substituting Eq. (63) into w gives

w = −σ2
eff

n∑
k=2

σ2
k [b

true
k ×]

2 btrue
1

= σ2
eff

n∑
k=2

btrue
k × (btrue

1 × btrue
k )

(65)

This is equivalent to the w expression given in [6]. Therefore, Psub is equivalent to the expression derived in [6]. Define
ckl ≡ (btrue

k
)T (btrue

l
). Using

Tr(F̄) = 2
n∑

k=2
σ−2
k (66a)

10



(btrue
1 )

T F̄ btrue
1 =

n∑
k=2

σ−2
k (1 − c2

1k) (66b)

(btrue
1 )

T F̄2 btrue
1 =

n∑
k=2

n∑
l=2

σ−2
k σ−2

l

(
1 − c2

1k − c2
1l + c1k c1l ckl

)
(66c)

gives

ε̄ =

n∑
k=2

n∑
l=2

σ−2
k σ−2

l

(
1 − c2

1k + c2
1l − c1k c1l ckl

)
(67)

This equation can be rewritten as

ε̄ =

n∑
k=2

σ−4
k (1 − c2

k) +

n∑
k=2

n∑
l=k+1

σ−2
k σ−2

l

(
c2

1k + c2
1l − 2c1kc1lckl

)
≥

n∑
k=2

σ−4
k (1 − c2

k) +

n∑
k=2

n∑
l=k+1

σ−2
k σ−2

l (|c1k | − |c1l |)
2

(68)

Clearly, ε̄ , 0 unless all ck = 0, which in turn requires that all btrue
k

be coaligned with btrue
1 , a degenerate case with

nonunique solutions. Hence, Psub is not optimal for Wahba’s problem.
When F̄ is constructed from arc-lengths only, it takes the form

F̄ =
MN∑
p=1

σ−2
p btrue

p (btrue
p )

T (69)

where btrue
p is a unit vector, σp is the associated standard deviation, and MN is the number of arc-lengths. It can be

shown that

ε̄ =

MN∑
p

MN∑
q

σ2
pσ

2
q

(
c2

1p − c1pc1qcpq
)

(70)

When there is only one arc-length, that is, MN = 1, then ε̄ = 0. In other cases, ε̄ , 0 and Psub is not optimal.
It is now shown that Psub F = I3 when the attitude is determined from a direction and an arc-length [8]. Without

loss in generality it is assumed that this arc-length is given by φ11. The FIM for this case is simply given by

F = σ−2
1 [I3 − btrue

1 (b
true
1 )

T ] + F̄11 (71)

with
F̄11 ≡ σ

−2
11 [A

trues1×]c1cT1 [A
trues1×]

T (72)

Also, Psub is given by Eq. (42) with F̄ = F̄11. Replacing F̄ with F̄11 in second term of the right side of Eq. (58) leads to
the following requirement: [

I3 − σ
2
eff btrue

1 (b
true
1 )

T F̄11
]

F̄11
[
I3 − σ

2
eff btrue

1 (b
true
1 )

T F̄11
]
= 03 (73)

Since the projection matrix and F̄11 are both singular, then the validation of this requirement must be done using a
brute-force approach. Substituting σ2

eff ≡ [(b
true
1 )

T F̄11btrue
1 ]

−1 and Eq. (72) into Eq. (73), and after some simple algebraic
manipulations leads to the following condition:{

(btrue
1 )

T [Atrues1×]c1cT1 [A
trues1×]

Tbtrue
1

}
[Atrues1×]c1cT1 [A

trues1×]
T

= [Atrues1×]c1cT1 [A
trues1×]

Tbtrue
1 (b

true
1 )

T [Atrues1×]c1cT1 [A
trues1×]

T
(74)

The right side of Eq. (74) can be rewritten as

[Atrues1×]c1cT1 [A
trues1×]

Tbtrue
1 (b

true
1 )

T [Atrues1×]c1cT1 [A
trues1×]

T

=
{
(btrue

1 )
T [Atrues1×]c1

}2
[Atrues1×]c1cT1 [A

trues1×]
T

(75)

Since
{
(btrue

1 )
T [Atrues1×]c1

}2
= (btrue

1 )
T [Atrues1×]c1cT1 [A

trues1×]
Tbtrue then Eq. (74) is satisfied. Therefore, Psub is the

optimal covariance in this case. Conditions to obtain a deterministic attitude solution for this case are discussed in [8].
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IV. Simulation Results
A simulation is performed using the following vectors for the LOS and GPS observations with no other LOS

observations:

btrue
1 = (

√
2/2)[1 0 1]T

c1 = (
√

2/2)[0 1 1]T , c2 = [0 1 0]T , c3 = [0 0 1]T

s1 = (
√

3/3)[1 1 1]T , s2 = (
√

2/2)[0 1 1]T

Note that the baselines are co-planer, which leads to an indeterminant solution using the approximate approach in [5].
As in the simulation example shown in [6] 15,000 test cases with uniformly distributed random attitudes are generated.
The true body-vector btrue

1 is corrupted by Gaussian random noise with standard deviation of 0.01 degree per axis, which
simulates a fine Sun sensor. The true GPS observations are corrupted by Gaussian random noise with a normalized
standard deviation of 0.001, corresponding to an attitude error of about 0.5 degrees [5].

(a) Attitude errors using the approximate solution (b) Attitude errors using the optimal solution

0 5000 10000 15000

Run Number

0

0.01

0.02

0.03

0.04

0.05

(c) Trace condition

Fig. 1 GPS simulation results with fine Sun sensor.

A plot of the attitude errors using the approximate solution in Algorithm 1, along with their respective 3σ bounds,
for the 15,000 test runs is shown in Fig. 1(a). The 3σ bounds change with each run because the GPS covariance is a
function of the attitude. Clearly, the attitude errors are consistent with the 3σ bounds derived from Psub. A plot of the
attitude errors using a NLS algorithm that minimizes the optimal loss function in Eq. (1), along with their respective 3σ
bounds, for the 15,000 test runs is shown in Fig. 1(b). Clearly, the attitude errors are consistent with the 3σ bounds
derived from Popt. Comparing Fig. 1(a) to Fig. 1(b) shows that the errors are nearly identical. A plot of the trace
condition given by Eq. (60) is shown in Fig. 1(c). This indicates that the attitude solution is very close to being optimal
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Table 1 Number of real roots

Case Two Real Roots Four Real Roots
Fine Sun Sensor Case 14,547 453
Coarse Sun Sensor Case 14,562 438

for all random attitudes. Table 1 shows the number of root solutions for the polynomial in Eq. (21) that give two real
roots and four real roots for this case. A large number of cases involve only two roots.

(a) Attitude errors using the approximate solution (b) Attitude errors using the optimal solution

0 5000 10000 15000

Run Number

0

1

2

3

4

5

(c) Trace condition

Fig. 2 GPS Simulation results with coarse Sun sensor.

The simulation is rerun where the true body-vector btrue
1 is corrupted by Gaussian random noise with standard

deviation of 0.1 degree per axis, which simulates a coarser Sun sensor. The standard deviation of the GPS observations
is the same as before. A plot of the attitude errors using the approximate solution in Algorithm 1, along with their
respective 3σ bounds, for the 15,000 test runs is shown in Fig. 2(a). Clearly, the attitude errors are again consistent with
the 3σ bounds derived from Psub. But the errors are much larger than the previous case, as seen by comparing Fig. 1(a)
with Fig. 2(a). This intuitively is correct because a coarse Sun sensor is used in place of a fine Sun sensor in this case. A
plot of the attitude errors using a NLS algorithm that minimizes the optimal loss function in Eq. (1), along with their
respective 3σ bounds, for the 15,000 test runs is shown in Fig. 2(b). Clearly, the attitude errors are consistent with the
3σ bounds derived from Popt. The errors are larger than those shown in Fig. 1(b) because of the use of a coarse Sun
sensor in this case. Comparing Fig. 2(a) to Fig. 2(b) shows that the errors are larger using the approximate solution than
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using a NLS solution that minimizes Eq. (1), with the exception of the pitch errors in some runs. The sub-optimality for
the coarse Sun sensor case is confirmed by the trace condition shown in Fig. 2(c). This is now much larger than 1,
which indicates that the suboptimal covariance is not close to the optimal one. The suboptimal solution can be used as a
starting guess for the NLS squares algorithm to determine the optimal one, which is how the optimal solution has been
determined. Table 1 shows the number of root solutions for the polynomial in Eq. (21) that give two real roots and four
real roots for this case. Once again, a large number of cases involve only two roots.

V. Conclusions
This paper presented a generalized attitude determination algorithm when one dominant vector observation is

provided. The algorithm involves solving a quartic polynomial, which is known to have closed-form solutions. It is
also a non-iterative algorithm, and no transcendental functions are required by using the polynomial solution variable.
A simple scalar expression was derived using the suboptimal covariance that can be computed without determining
the attitude. This scalar quantity can be used to check the accuracy of the derived attitude solution with respect to the
optimal solution. When the case of only vector observations exists, then the approximate attitude solution simplifies
greatly to a previously derived solution involving this case. For the case of one vector observation and one arc-length,
then the approximate attitude solution was shown to be equivalent to the optimal attitude solution. Simulation results
show that a good approximate attitude solution can be provided using the derived algorithm for a realistic scenario
involving one fine Sun sensor observation and several Global Positioning System (GPS) arc-length observations. The
approximate attitude solution was shown to be worse than the optimal solution when a coarse Sun sensor was used in
place of the fine Sun sensor. An iterative nonlinear least-squares (NLS) algorithm needs to be employed to determine
the optimal attitude, which may converge to a local minimum depending on the initial guess. Using the approximate
solution for the initial guess in the NLS algorithm converged to the optimal solution for every case in the simulated
trails, which demonstrates the usefulness of the approximate solution even when it does not approximate the optimal
solution well.
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