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Surface material identification of resident space objects is demonstrated using polarized
monochromatic light curves. The specular reflection of unpolarized light off a flat surface cre-
ates a reflection that is partially polarized. This polarization depends on the index of refraction
and the extinction coefficient of the reflecting material. Thus, the degree of polarization con-
tains information about the surfacematerial that is not contained in the unpolarized light curve.
A polarized bidirectional reflectance distribution function is developed to generate polarized
light curves. Surface material observability is analyzed. Multiple-model adaptive estimation
is used to identify the surface material from a bank of candidate materials when specular
reflection occurs. Results indicate that the polarized light curves can accurately determine
material properties os a resident space object.

I. Introduction
A key area to improved space situational awareness (SSA) is being able to characterize attributes of resident space

objects (RSOs) beyond just an object’s orbit and ballistic coefficient. Of specific interest are the object’s shape, attitude
and surface properties, including surface materials. All of these attributes can influence an object’s orbit through the
effects of drag or solar radiation pressure. For large objects in low-Earth orbit (LEO), methods such as resolved imaging
or radar cross-sectioning can be used to provide information about an object’s shape or attitude. However, objects in
higher orbits, such as geosynchronous orbit (GEO), are too distant for these methods to be effective.

Light curves, or the temporal history of an object’s brightness, have been used to estimate an object’s shape and
attitude. Attitude has been shown to be observable from light curves [1]. This work also demonstrates the observability
of surface reflectance parameters, but is limited to properties of the reflectance models and not surface materials.
Attitude estimation has been demonstrated from light curve data, assuming that shape and surface reflectance properties
are well-known [2]. Shape estimation has been demonstrated in conjunction with attitude estimation by employing
multiple-model adaptive estimation (MMAE) [3]. Shape, attitude profile and surface reflectance parameter estimation
have been demonstrated using a multiple-hypothesis approach [4]. This approach simply uses three common attitude
profiles, and surface parameters are estimated as part of each hypothesis, not as filtered states. Simultaneous orbit,
attitude and surface parameter estimation from angles and light curve data has been demonstrated, however, it is seen
that it is often difficult to simultaneously estimate surface parameters, as the filters suffer from information dilution [5].
Simultaneous orbit, attitude, area and mass estimation from angles and light curve data has also been demonstrated [6].
In this work, the coupled albedo-area was estimated from photometric data and the area-to-mass ratio from astrometric
data. This allowed for the object’s mass to be determined. Knowledge of an object’s surface materials not only allows
for better categorization of an object, but can also allow for more accurate surface reflectance determination. Since
surface reflectance depends on the material, knowledge of the surface materials can provide more information about
their reflectance. This could lead to better modeling of solar radiation pressure, which would increase the accuracy of
orbit propagation, especially for GEO objects. Multispectral light curves are one method by which surface material
abundances can be estimated [7]. In this paper, polarized light curves will be shown to be useful for surface material
estimation.

Light curves are typically modeled using a bidirectional reflectance distribution function (BRDF). To date, none of
the aforementioned estimation efforts have considered the polarization of the light, and except for [7] and [4], have used
only monochromatic light curves. Reference [8] models polarized light curves in three bands for a spacecraft and debris
object in LEO. However, no attempts to estimate object attributes are performed in this work.

Polarized light curves are of interest for SSA applications because specular reflections of unpolarized light off
a surface are polarized, and this polarization depends on the reflecting material’s index of refraction and extinction
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coefficient [9]. Thus, the polarization of the light curve contains information about the object’s surface materials. This
provides more information over simply using the unpolarized light curve, in both the monochromatic and multispectral
case. It is shown in this paper that a monochromatic polarized light curve can be used for surface material estimation,
which is not possible with an unpolarized monochromatic light curve. When combined with multispectral imaging, this
technique could become more powerful and further increase the observability of surface materials.

In this paper, a polarized bidirectional reflectance distribution function (pBRDF) is described. Then, light curves
are simulated from the pBRDF. The direct observability of material properties is evaluated. While it is shown that
direct observability of material properties does not exist, an MMAE approach is demonstrated to effectively estimate the
surface material of a simulated space object.

II. Bidirectional Reflectance Distribution Functions
In this section, an overview of BRDF models will be given. First, an unpolarized, scalar BRDF model will be

described. Then, an overview of the Stokes vector and Mueller matrix representations will be given, and the scalar
BRDF model will be extended to a polarized model.

A. Unpolarized BRDF Model
The BRDF model described in this section is that of [10], which is also described in [1]. The apparent magnitude,

mapp, is computed using the BRDF model and a shape model. The reflection geometry for a single facet is shown
in Fig. 1. Each facet has a set of three basis vectors (uB

n , uB
u , uB

v ). The unit vector uB
n points in the direction of the
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Fig. 1 Facet reflection geometry.

outward normal of the facet, and the vectors uB
u and uB

v are in the plane of the facet. In this analysis, the object is
assumed to be a rigid body so that the unit vectors uB

n , uB
u and uB

v do not change since they are expressed in the body
frame. The vector uI

h
is the normalized half vector between uI

sun, the unit vector to the Sun, and uI
obs, the unit vector

to the observer. The observation vector is usually given in body coordinates with uB
obs = A(q)uI

obs, where A(q) is the
inertial-to-body attitude matrix, expressed using quaternions [11].

The BRDF at any point on the surface is a function of two directions, the direction from which the light source
originates and the direction from which the scattered light leaves the surface. The BRDF is decomposed into a specular
component and a diffuse component. The two terms sum to give the total BRDF:

ρtotal,i = ρspec,i + ρdiff,i (1)

The diffuse component represents light that is scattered equally in all directions (Lambertian) and the specular component
represents light that is concentrated about some direction (mirror-like). Reference [10] develops a model for continuous
arbitrary surfaces but simplifies it for flat surfaces. This simplified model is employed in this work as the shape models
are considered to consist of a finite number of flat facets. Therefore the total observed brightness of an object becomes
the sum of the contribution from each facet.
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Under the flat facet assumption, the specular term of the BRDF becomes

ρspec, i =

√
(nu + 1) (nv + 1)

8π

(
uI
n, i · u

I
h

)


nu(uI
h
· uI

u, i)
2 + nv(uI

h
· uI

v, i)
2(

1 −
[
uI
n,i · uh, j

]2
) 

uI
n, i · u

I
sun + uI

n, i · u
I
obs − (u

I
n, i · u

I
sun)(u

I
n, i · u

I
obs)

Freflect, i (2)

where the Fresnel reflectance is given by

Freflect,i = Rspec,i + (1 − Rspec,i)(1 − uI
sun · u

I
h,i)

5 (3)

If the surface was perfectly smooth, all of the Fresnel reflectance would be directed along the reflectance angle, expressed
in body coordinates as

uB
reflect = uB

sun − 2(uB
sun · u

B
n )u

B
n (4)

where uB
sun is the Sun vector in body coordinates. However, real materials have some level of surface roughness, which

results in many small surface normals that are oriented in different directions. Therefore, the specular reflectance can be
thought of as a cone distributed around the specular reflection direction given in Eq. (4), with the distribution (in the
local u and v directions) defined by the terms nu and nv . The diffuse term of the BRDF is given by

ρdiff,i =

(
28Rdiff,i

23π

)
(1 − Rspec,i)

1 −
(
1 −

uI
n,i · u

I
sun

2

)5
1 −

(
1 −

uI
n,i · u

I
obs

2

)5 (5)

The apparent magnitude of the object is the result of sunlight reflecting off of its surfaces along the line-of-sight to an
observer. First, the fraction of visible sunlight that strikes an object is computed by

Fsun,i = Csun,visρtotal,i(u
I
n,i · u

I
sun) (6)

where Csun,vis = 455 W/m2 is the power per square meter impinging on a given object due to visible light striking the
surface. If either the angle between the surface normal and the observer’s direction or the angle between the surface
normal and the Sun direction is greater than π/2 then there is no light reflected toward the observer. If this is the case
then the fraction of visible light is set to Fsun,i = 0.

The fraction of sunlight that strikes a surface that is reflected is given by

Fobs,i =
Fsun,i Afacet,i(u

I
n,i · u

I
obs)

d2 (7)

where d is the distance from the observer to the object and Afacet,i is the area of the facet. The reflected light is now used
to compute the apparent brightness magnitude, which is measured by an observer through

mapp = −26.7 − 2.5log10

����� N∑
i=1

Fobs,i

Csun,vis

����� (8)

where −26.7 is the apparent magnitude of the Sun, and N is the total number of facets. It is important to note that mapp
is defined across a certain wavelength range − in this case, the entire visible spectrum. If a multispectral BRDF were
to be considered, mapp,λ would be defined for each band λ, and Csun,vis,λ would then be the Watts per square meter of
sunlight in the wavelength range for that band. A vector of measurements for each wavelength range λ would then be
available, as opposed to a single scalar.

B. Polarized Light Representations
While the scalar mapp gives the total intensity of the reflected light, it does not contain information about the light’s

polarization. However, the Fresnel reflectance of unpolarized light (such as sunlight) will be polarized so long as the
vectors uI

h
and uI

n are not aligned. One common example of this phenomenon can be observed by looking at the
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surface of a body of water or a metal roof while wearing polarized sunglasses. Since many surfaces of space objects are
relatively flat, they will produce polarized Fresnel reflectance components. Measures of this polarization will provide
additional information beyond the scalar magnitude.

Polarized light is most often described using the Stokes vector notation. The Stokes vector is composed of the
Stokes parameters, which are defined in terms of the polarization ellipse. Elliptical polarization is the most general form
of polarized light. It can be resolved into two linearly polarized waves offset by π/2 radians (phase quadrature). The
projection of these waves on a plane perpendicular to the light’s direction of travel will form an ellipse. Figure 2 shows
the polarization ellipse. The polarization ellipse can be expressed mathematically as [9]

ψ

0

ε0x

ε0y

Fig. 2 Polarization ellipse.

ε2
x

ε2
0x
+
ε2
y

ε2
0y
+
−2εxεy
ε0xε0y

cosφ = sin2φ (9)

The polarization angle, denoted as ψ in Fig. 2, is computed as [9]

tan2ψ =
2ε0xε0ycosφ
ε2
0x − ε

2
0y

(10)

Stokes showed that if the time averages of εx and εy are taken, that Eq. (9) becomes

(ε2
0x + ε

2
0y)

2 = (ε2
0x − ε

2
0y)

2 + (2ε0xε0ycosφ)2 + (2ε0xε0ysinφ)2 (11)

From this, the Stokes parameters are defined as [9]

S0 = ε
2
0x + ε

2
0y (12a)

S1 = ε
2
0x − ε

2
0y (12b)

S2 = 2ε0xε0ycosφ (12c)
S3 = 2ε0xε0ysinφ (12d)

It is important to note that these parameters are real quantities that have units of intensity or energy in a beam. S0
describes the total energy in a beam, S1 describes the amount of linear horizontal or vertical polarization, S2 describes
the amount of ±45◦ linear polarization, and S3 describes the amount of right- or left-handed circular polarization [9].
Note that Eq. (11) describes fully polarized light, and thus if the light is partially polarized, this will increase the S0 term
such that S2

0 > S2
1 + S2

2 + S2
3 . Thus, for describing the generalized case of partially polarized light, the Stokes parameters

are not redundant. The Stokes vector S is formed from the Stokes parameters:

S =


S0

S1

S2

S3


(13)
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Note that if ε2
0 ≡ ε

2
0x + ε

2
0y, then S0 = ε

2
0 , and the Stokes vector can be written as

S = ε2
0 Ŝ (14)

where

Ŝ ≡


1

S1/S0

S2/S0

S3/S0


(15)

Here, Ŝ contains the polarization state of the light beam without containing its total intensity. It is also common to
refer to this quantity as the Stokes vector [9]. In this paper, the terms S and Ŝ will be used to avoid confusion. The
Ŝ vector can be used to describe a number of important polarization states. Randomly polarized (or “unpolarized")
light has Ŝ = [1 0 0 0]T . Linear horizontal polarization has Ŝ = [1 1 0 0]T and linear vertical polarization has
Ŝ = [1 −1 0 0]T . Linear +45◦ polarization has Ŝ = [1 0 1 0]T and linear −45◦ polarization has Ŝ = [1 0 −1 0]T .
Right-handed circular polarization has Ŝ = [1 0 0 1]T and left-handed circular polarization has Ŝ = [1 0 0 −1]T .

C. Modeling Polarized Reflections
Given the Stokes vector representation of polarized light, a method by which to compute the polarized reflection of

a light beam must be implemented. The Mueller matrix, M , allows the Stokes vector of an incoming light beam, Sin, to
the Stokes vector of a transmitted or reflected light beam, Sout:

Sout = MSin (16)

Mueller matrices can be defined for either transmission through a medium or reflection off a surface. The Mueller
matrix for polarimetric Fresnel reflection is given by [9]

MR =
1
2


Rs + Rp Rs − R2

p 0 0
Rs − Rp Rs + Rp 0 0

0 0 2Re(rsr∗p) 2Im(rsr∗p)
0 0 −2Im(rsr∗p) 2Re(rsr∗p)


(17)

where rs =
√

Rs, rp =
√

Rp, Re and Im refer to the real imaginary parts and the superscript ∗ denotes the complex
conjugate. Rs is the Fresnel reflectance coefficient for radiation perpendicular to the plane of incident flux and Rp is the
Fresnel reflectance coefficient for radiation parallel to the plane of incident flux.

Since sunlight is randomly polarized, it has a Stokes vector of Sin = [1 0 0 0]T . Thus, the Stokes vector of the
Fresnel reflection is

SF =


Rs + Rp

Rs − Rp

0
0


(18)

From this, it is seen that Fresnel reflectance of randomly polarized light has linear horizontal or vertical polarization, but
no ±45◦ or circular polarization. Thus, in the case of reflected sunlight, the measurements are the S0 and S1 components
of the reflected light. Note that S0 is the total intensity, as is used in unpolarized light curve analysis. Polarimetric
observations add a second measurement, the S1 component.

D. Polarized BRDF Model
The BRDF model presented in the earlier section is now extended to the polarized case. The polarized s- and

p-components of the Fresnel reflection must be computed. Rs and Rp can be computed as [9]

Rs =

���� (n2 − sin2θi)
1/2 − cosθi

(n2 − sin2θi)1/2 + cosθi

����2 (19a)

5



Rp =

����n2cosθi − (n2 − sin2θi)
1/2

n2cosθi + (n2 − sin2θi)1/2

����2 (19b)

where n ≡ n2/n1 is the relative index of refraction of the reflected medium to the medium of the incident beam and θi is
the angle of incidence. Note that specular reflection is reflected along the angle θr = θi in the plane of incidence. If the
surface is modeled as a distribution of microfacets, only the microfacets that are oriented such that un = uh will have
specular reflection visible by the observer. The terms in Eq. (2) that multiply Freflect define the distribution of facets
oriented in this direction. Thus, it is seen that the degree of polarization is independent from the orientation of the facet.
For given locations of the observer, reflecting body, and light source, the angle θi is replaced by θ, or the angle between
the object-Sun and object-observer vectors. If it is assumed that the reflecting material is in a vacuum, n1 = 0 and thus
n = n2. This formulation is valid for complex indices of refraction [8] of the form

n = m + ik (20)

where m is the index of refraction and k is the extinction coefficient. For dielectric materials, k = 0 and thus n is real.
For conductors (such as metals), k is nonzero, and thus n is complex. Equation (19) can be expanded to [12]

Rs =
a2 + b2 − 2acosθ + cos2θ

a2 + b2 + 2acosθ + cos2θ
(21a)

Rp = Rs
a2 + b2 − 2asinθtanθ + sin2θtan2θ

a2 + b2 + 2asinθtanθ + sin2θtan2θ
(21b)

where
a2 =

1
2

{√
(m2 − k2 − sin2θ)2 + 4m2k2 + m2 − k2 − sin2θ

}
(22a)

b2 =
1
2

{√
(m2 − k2 − sin2θ)2 + 4m2k2 − (m2 − k2 − sin2θ

}
(22b)

Rs and Rp are the components of the Fresnel reflection in the planes perpendicular and parallel to the plane of the
incident flux, respectively. The unpolarized Fresnel reflectance is simply the average Freflect = 1/2(Rs + Rp). This
formulation could be used in place of Eq. (3) if m and k are known for the material. However, m and k will vary with
wavelength, and these values must be known for each wavelength being considered, e.g. mλ and kλ. In practice, these
are often unknown and only a single value at the middle of the visible spectrum is known for each material. However,
the surface reflectance at normal, Rspec, has been measured for many materials at many wavelengths, which prompts the
approximation used in Eq. (3) [13].

To extend the BRDF model to model polarization, the Freflect,i term becomes a vector with s- and p-components. If
only linear vertical/horizontal polarization is considered, this vector has size 2 × 1. As this term is carried through the
model, the terms ρspec,i , ρtotal,i , Fsun,i , Fobs,i and mapp also become vectors. In the polarized form, Eq. (3) will become

Freflect,i =

[
Rs

Rp

]
(23)

Equation (2) will now result in ρspec,i being a vector. The diffuse reflection is assumed to be randomly polarized, so it is
assumed to have an equal impact on each component. Therefore, Eq. (1) becomes

ρtotal,i =

[
ρspec,s,i + ρdiff,i/2
ρspec,p,i + ρdiff,i/2

]
(24)

The rest of the BRDF model can be proceeded through as written, replacing the scalars with the vector forms as
necessary. Once Fobs,i is computed, the Stokes vector can then be computed as

S =

[
Fobs,s + Fobs,p

Fobs,s − Fobs,p

]
(25)
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III. Surface Material Estimation

A. Surface Material Observability
Two parameters, the index of refraction m and the extinction coefficient k, define the surface materials. Since the

polarized measurement provides two measurements, it is desired to check whether m and k are directly observable from
the polarized measurements. The partials of a and b in Eq. (22) with respect to m and k are

∂a
∂m
=

m
[
p−1(m2 + k2 − sin2θ) + 1

]
4
√

p + m2 − k2 − sin2θ
(26a)

∂a
∂k
=

k
[
p−1(n2 + k2 − sin2θ) − 1

]
4
√

p + m2 − k2 − sin2θ
(26b)

∂b
∂m
=

m
[
p−1(m2 + k2 − sin2θ) − 1

]
4
√

p + m2 − k2 − sin2θ
(26c)

∂b
∂k
=

k
[
p−1(n2 + k2 − sin2θ) + 1

]
4
√

p + n2 − k2 − sin2θ
(26d)

where
p =

√
(n2 − k2 − sin2θ)2 + 4n2k2) (27)

The partials of Rs and Rp with respect to a and b are

∂Rs

∂a
=

4cosθ(a2 − b2 − cos2θ)

(a2 + b2 + 2acosθ + cos2θ)2
(28a)

∂Rs

∂b
=

8abcosθ
(a2 + b2 + 2acosθ + cos2θ)2

(28b)

∂Rp

∂a
= Rs

4sinθtanθ(a2 − b2 − sin2θtan2θ)

(a2 + b2 + 2asinθtanθ + sin2θtan2θ)2
−
∂Rs

∂a
4asinθtanθ

a2 + b2 + 2asinθtanθ + sin2θtan2θ
(28c)

∂Rp

∂b
= Rs

8absinθtanθ
(a2 + b2 + 2asinθtanθ + sin2θtan2θ)2

−
∂Rs

∂b
4asinθtanθ

a2 + b2 + 2asinθtanθ + sin2θtan2θ
(28d)

If m and k were observable from the Stokes vector, they must be observable from the Fresnel reflectance Freflect. In this
case, choosing Freflect as the measurement from which to assess the observability allows the contributions of the facet
orientations to be ignored. Then, the partials of the measurement with respect to m and k are given by the matrix

H =


∂Rs

∂a
∂a
∂m
+
∂Rs

∂b
∂b
∂m

∂Rs

∂a
∂a
∂k
+
∂Rs

∂b
∂b
∂k

∂Rp

∂a
∂a
∂m
+
∂Rp

∂b
∂b
∂m

∂Rp

∂a
∂a
∂k
+
∂Rp

∂b
∂b
∂k


(29)

It is found that rank(HT H) = 1, so there does not exist direct observability of m and k. Therefore, m and k cannot be
directly estimated in a filter. However, the inclusion of the S1 Stokes parameter still provides information about m and
k. This information is quantified as log(det(HT H)) as in [1] and plotted against the angle θ in Fig. 3. It is noted that
the valleys at ±π/2 and 0 are actually asymptotic and would appear to approach negative infinity if θ were plotted
with infinite resolution. This is because light reflected at θ = 0 has no change to its polarization, and light reflected at
θ = ±π/2 undergoes a π/2 rotation of the polarization. Since the incident light is unpolarized sunlight, both of these
cases have S1 = 0 and no information about m or k is contributed. It is seen that as the grazing incidence θ = ±π is
approached, the information gain increases.
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Fig. 3 Magnitude of information of m and k contributed by Stokes vector.

B. System Dynamics Model
A number of parameterizations exist to specify attitude, including Euler angles, quaternions, and Rodrigues

parameters. Attitude dynamics in this paper use the quaternion, which is based on the Euler angle/axis parameterization.
The quaternion is defined as q ≡ [%T q4]

T with % = ê sin(ν/2), and q4 = cos(ν/2), where ê and ν are the Euler axis of
rotation and rotation angle, respectively. The quaternion must satisfy a unit norm constraint qT q = 1. The attitude
matrix is given by

A(q) = ΞT (q)Ψ(q) (30)

where

Ξ(q) ≡

[
q4I3×3 + [%×]

−%T

]
(31a)

Ψ(q) ≡

[
q4I3×3 − [%×]

−%T

]
(31b)

with [g×] defined as the skew-symmetric cross product matrix such that [g×]b = g × b. The rotational dynamics are
given by the coupled first-order differential equations:

ÛqBI =
1
2
Ξ

(
qBI

)
ωB
B/I (32a)

ÛωB
B/I = J−1

RSO

(
TB
ext −

[
ωB

B/I×

]
JRSOωB

B/I

)
(32b)

where ωB
B/I

is the angular velocity of the RSO with respect to the inertial frame, expressed in body coordinates, JRSO is
the inertia matrix of the RSO, and Text is the net external torque action on the RSO, expressed in body coordinates.

C. Unscented Filtering Using Light Curve Data
An Unscented Kalman Filter (UKF) is used to estimate the rotational states as well as the projected area of the

RSO from light curve data. The global parameterization of the attitude in the UKF is the quaternion, whereas a
minimal parameterization involving the generalized Rodrigues parameters (GRPs) is used to define the local error
[14]. Quaternions are the global parameterization of choice because their kinematics are free of singularities. The
representation of the attitude error as a GRP is useful for the propagation and update steps of the attitude covariance
because the structure of the UKF can be used direcly. A complete explanation of the quaternion and its mapping to
GRPs is provided in [14].

Given a system model with initial state and covariance values, the UKF propagates the state vector and the
error-covariance matrix recursively. At discrete observation times, the UKF updates the state and covariance matrix
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conditioned on the information gained by the latest measurement. Discrete measurements are assumed to have the
following form:

ỹk = h (xk, tk) + vk (33)

where ỹk is a measurement vector and vk is the measurement noise, which is assumed to be a zero-mean Gaussian
random variable with covariance Rkδjk .

The UKF operates under the principle that (i) it is easier to propagate samples from a pdf through a general
nonlinear function than to propagate the pdf itself and (ii) Gaussian distributions can be represented by a finite set of
deterministically selected samples known as sigma points. Given an L × L error-covariance matrix Pk , the 2L + 1 sigma
points are constructed by

σk ← 2L columns from ±
√
(L + λ)Pk (34a)

χk(0) = µk (34b)
χk(i) = σk(i) + µk (34c)

where
√

M is shorthand notation for a matrix Z such that M = Z ZT and µk is the mean of the distribution. Given
that these points are selected to represent the distribution of the state vector, each sigma point is given a weight that
preserves the information contained in the initial distribution:

Wmean
0 =

λ

L + λ
(35a)

Wcov
0 =

λ

L + λ
+ (1 − α2 + β) (35b)

Wmean
i = Wcov

i =
1

2(L + λ)
, i = 1, 2, . . . , 2L (35c)

where λ = α2(L + κ) − L is a composite scaling parameter. The constant α controls the spread of the sigma point
distribution and should be a small number 0 < α ≤ 1, κ provides an extra degree of freedom that is used to fine-tune the
higher-order moments, and β is used to incorporate prior knowledge of the distribution by weighting the mean sigma
point in the covariance calculation. Typically β = 2 and κ = 3 − L are good starting guesses for tuning the filter.

The reduced state vector for the joint attitude and area estimation problem is given by

x̂k =


δ p̂k

ω̂k

Â

 (36)

where δ p̂ is the error GRP state associated with the quaternion q̂BI and ·̂ is used to denote an estimate. Here it is noted
that the subscript B/I and superscript B in ωB

B/I
are omitted in this and the following sections for clarity. The initial

estimate x̂0 is the mean sigma point and is denoted χ0(0). The error GRP state of the initial estimate is set to zero,
while the rest of the states are initialized by their respective initial estimates.

The attitude state errors are represented as error GRPs resulting in a minimum parameter representation for the
attitude state error [15]. To within first order, the state error covariance of the attitude is invariant whether the errors are
parameterized using quaternions or GRPs.. Therefore the attitude state error-covariance can be directly decomposed
into error GRP sigma points for use in the UKF. The sigma points corresponding to the error GRPs are first converted
into error quaternions so that the quaternion sigma points can be computed. The error quaternion, denoted by δq−

k
(i),

associated with the ith error GRP sigma point is computed by[15]

δ%−k (i) = f −1
[
a + δq−4k (i)

]
χδp
k
(i) (37a)

δq−4k (i) =
−a| |χδp

k
(i)| |2 + f

√
f 2 + (1 − a2)| |χδp

k
(i)| |2

f 2 + | |χδp
k
(i)| |2

(37b)

δq−k (i) =

[
δ%−

k
(i)

δq−4k (i)

]
(37c)
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where a is a parameter from 0 to 1 and f is a scale factor, which is often set to f = 2(a + 1) so that the attitude error
covariance is that of the small roll, pitch and yaw angle errors. Here it is noted that the subscript I and superscript B in
qBI and its estimates are omitted in this and the following sections for clarity. The ith quaternion sigma point is given by
a rotation of δq−

k
(i) about the a priori estimate:

q̂−k (i) = δq
−
k (i) ⊗ q̂−k (0) (38)

where
q′ ⊗ q ≡

[
Ψ(q′) q′

]
q (39)

The sigma points are propagated through the system dynamics:

Ûχ(i) = f (χ(i), q̂(i)) (40)

where
Ûχ(i) = f (χ(i), q̂(i)) (41)

where

f (χ, q̂) =


1
2
Ξ(q̂)ω̂

J−1
RSO

(
T̂B
ext − [ω̂×] JRSOω̂

)
0

 (42)

After propagation, the sigma points for the error GRP states are computed with the propagated attitude sigma points.
The estimated mean sigma point quaternion, q̂−

k+1(0), is stored, and error quaternions corresponding to each propagated
quaternion sigma point are computed as:

δ q̂−k+1(i) = q̂−k+1(i) ⊗
[
q̂−k+1(0)

]−1 (43)

where the notation for the conjugate quaternion is defined as:

q−1 ≡

[
−%

q4

]
(44)

Using the result of Eq. (43), the error GRP sigma points are computed as

δp−k+1(i) = f
δ%̂−k+1(i)

a + δq̂−4k+1
(i)

(45)

After setting the error GRP for the mean sigma point to zero, the propagated sigma points are reconstructed. The
propagated mean and covariance are calculated as a weighted sum of the sigma points as

x̂−k+1 =

2L∑
i=0

Wmean
i χk+1(i) (46a)

P−k+1 =

2L∑
i=0

Wcov
i [χk+1(i) − x̂−k+1] [χk+1(i) − x̂−k+1]

T +Qk+1 (46b)

where Qk+1 is the discrete-time process noise covariance.
The measurements are taken to be the Stokes vector, which is limited to the nonzero (S0 and S1) parameters, hence

ỹk =

[
Ŝ0

Ŝ1

]
(47)

10



( )tu

Posterior

pdf

UKF 1

UKF 2

UKF M

Unknown System
Real System

MMAE Filter

( )
 
k

2

( )
 
k

1

( )
 
M

k

( )ˆ !
k
x

1

( )ˆ !
k
x

2

( )ˆ ! M
k
x

( )

k
e
1

( )

k
e
2

( )M

k
e

( )

k
S
1

( )

k
S
2

( )M

k
S

ˆ !
k
x

 
k
y

Fig. 4 MMAE process.

D. Material Estimation using Multiple-Model Adaptive Estimation
Although the parameters n and k cannot be estimated directly in a filter, an MMAE approach using a bank of

materials can be used to identify the material. In this approach, the UKFs described in the previous section are used to
estimate the attitude and the area of the object.

MMAE is a recursive algorithm that uses a bank of estimators, each dependent on a particular hypothesis, to
determina an estimate based upon an unknown physical process under consideration. In particular, the hypotheses can
correspond to different mathematical models of the same physical process or of the same model but dependent upon
different constants or model parameters. The basic framework of MMAE can be seen in Fig. 4.

A finite set of hypothesis {p(`); ` = 1, . . . , M} are used to seed the bank of estimators. The finite set of parameters
can be the results of discretizing a continuous parameters space or describe a discrete parameter space of interest. The
goal of the estimation process is to determine the conditional pdf of the `th hypothesis, p(`), given all the measurements.
Application of Bayes’ rule yields

p (p(`) |Ỹk) =
p (Ỹk |p(`)) p (p(`))

M∑
j=1

p (Ỹk |p(j)) p (p(j))

(48)

where Ỹk denotes the sequence { ỹ0, ỹ1, . . . , ỹk}. The a posteriori probabilities can be computed through[16]

p (p(`) |Ỹk) =
p ( ỹk, p(`) |Ỹk−1)

p ( ỹk |Ỹk−1)

=
p ( ỹk | x̂

−(`)
k
) p (p(`) |Ỹk−1)

M∑
j=1

[
p (Ỹk | x̂

−(j)
k
) p (p(j) |Ỹk−1)

] (49)

The conditional probabilities of the observations based on each hypothesis (likelihood), p ( ỹk | x̂
−(`)
k
), are given as

p ( ỹk | x̂
−(`)
k
) =

1

det
(
2πS(`)

k

)1/2 exp
{
−

1
2
e(`)T
k

S(`)
k

−1
e(`)
k

}
(50)

where measurement residual for the `th hypothesis is given by

e(`)
k
= ỹk − ŷ−(`)

k
(51)
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and corresponding residual covariance matrix from the UKF is

S(`)
k
= Pvv

k (52)

where Pvv
k

is the innovations covariance using the `th filter.
Note that the denominator of Eq. (49) is just a normalizing factor to ensure that p (p(`) |Ỹk) is a pdf. Equation (49)

can now be recast as a recursion formula to define the MMAE weights $(`)
k

as

$
(`)
k
= $

(`)
k−1p ( ỹk−1 | x̂

−(`)
k−1 )

$
(`)
k
←

$
(`)
k

M∑
j=1

$
(j)
k

(53)

where $(`)
k
≡ p (p(`) | ỹk). Note that only the current time likelihood function is needed to update the weights. The

weights at time t0 are initialized to $(`)0 = 1/M ∀ `. The convergence properties of MMAE are shown in Ref. 17,
which assumes ergodicity in the proof. The ergodicity assumptions can be relaxed to asymptotic stationarity and other
assumptions are even possible for non-stationary situations.

From Eq. (53) and Eq. (50) it is seen that hypotheses having lower residuals will have probabilities that will increase
with time; this will favor hypotheses that fit the observations better. Also from Eq. (50) it is seen that hypotheses which
have small values for det(S(`)

k
) will have probabilities that will grow. Assuming that all filters have same measurement

noise covariance matrix Rk , this will favor hypotheses that have smaller variance. Therefore the MMAE process will
tend to select the minimum variance hypothesis from the set of hypotheses.

E. Results
MMAE is run with a bank of materials as listed in Table 1. The true material has been simulated to be aluminum. A

Table 1 Material bank

Material m k
Aluminum 1.1987 7.0488
Gold 0.2773 2.9278
Copper 0.6366 2.7834
Nickel 1.9648 3.8352
Tin 2.1600 6.3500
Titanium 2.9300 3.9850
Glass 1.5123 0
Polymide 1.4950 0
Gallium Arsenide 3.8570 0.1980

rotational rate of ω0 = [−0.0012 0.0005 0.0008]T rad/s is simulated. The MMAE weights are initialized to be equal.
It is assumed that the total brightness S0 can be measured to one-tenth magnitude and the polarization parameter S1 can
be measured to milli-magnitude. This is based on a measurement from a polarimeter, where the accuracy of relative
measurements between adjacent pixels is greater than the absolute accuracy relative to the true intensity of the light
entering the sensor.

Figure 5 shows the MMAE weights over time. It is seen that after the first large glint event, the MMAE weight of
the correct material goes to 1. Glint events are required to correctly identify the material as they are the periods when
there is substantial specular reflection. Since only specular reflection contains meaningful polarization data, diffuse
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Fig. 5 MMAE weights for material estimation.

reflection does not aid in the material identification. Unpolarized data is not sufficient to identify the material, as even
though there is a dependency on reflectance in the overall brightness, the UKF will simply increase the area A for a
less-reflective surface. The addition of the polarization information is independent of this relationship and can be used
to correctly identify the material. Figure 6 shows the estimation of the area for the filter corresponding to aluminum, the
correct material.

IV. Conclusion
Polarized light has been demonstrated to allow for material identification of a space object from light curves. This

occurs because specular reflectance of unpolarized light is polarized. The amount of polarization in the specular
reflection is dependent on the degree of polarization, which is dependent on the index of refraction and extinction
coefficient, which are properties of the surface materials. Diffuse reflections are randomly polarized and thus do not
contribute to the polarization of the reflection. For a single-material object, material identification has been demonstrated
after one significant glint event using only a monochromatic light curve. This effectiveness of this method could be
increased when coupled with multispectral imaging. Future work involves estimating material abundances for objects
made of multiple materials and assessing the impact of this method on multispectral material identification methods.
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