Geometric Integration: Difference between revisions

From ANCS Wiki

Jump to: navigation, search
Line 7: Line 7:
One prevailing field in which this research is very pertinent is [[Space_Situational_Awareness|Space Situational Awareness]] (SSA). The U.S. Air Force is collecting data in order to catalogue Earth orbiting satellites, objects and debris. Accurate tracking of all Earth-orbiting objects is important since their presence can be extremely hazardous to current space missions as well as disruptive for any future mission. This danger can either be passive in the case of debris or active intentional threats. However, the data necessary to estimate the attitude of such objects is sparse as a result of the number of sensors available and the large number of objects in orbit. In particular, for objects in low-Earth orbit (LEO), observation windows may last only a few minutes and opportunities to obtain data are infrequent. As a result, an object's attitude may often need to be propagated very accurately over long time intervals before an update is possible.
One prevailing field in which this research is very pertinent is [[Space_Situational_Awareness|Space Situational Awareness]] (SSA). The U.S. Air Force is collecting data in order to catalogue Earth orbiting satellites, objects and debris. Accurate tracking of all Earth-orbiting objects is important since their presence can be extremely hazardous to current space missions as well as disruptive for any future mission. This danger can either be passive in the case of debris or active intentional threats. However, the data necessary to estimate the attitude of such objects is sparse as a result of the number of sensors available and the large number of objects in orbit. In particular, for objects in low-Earth orbit (LEO), observation windows may last only a few minutes and opportunities to obtain data are infrequent. As a result, an object's attitude may often need to be propagated very accurately over long time intervals before an update is possible.


[[File:step_size.png|400px|Caption Truncation and Roundoff Error Tradeoff]]
[[File:step_size.png|400px|Alt=Error Tradeoff|Caption Truncation and Roundoff Error Tradeoff]]


==Approach==
==Approach==

Revision as of 17:05, 13 November 2012

What is Geometric Integration?

Motivation

One prevailing field in which this research is very pertinent is Space Situational Awareness (SSA). The U.S. Air Force is collecting data in order to catalogue Earth orbiting satellites, objects and debris. Accurate tracking of all Earth-orbiting objects is important since their presence can be extremely hazardous to current space missions as well as disruptive for any future mission. This danger can either be passive in the case of debris or active intentional threats. However, the data necessary to estimate the attitude of such objects is sparse as a result of the number of sensors available and the large number of objects in orbit. In particular, for objects in low-Earth orbit (LEO), observation windows may last only a few minutes and opportunities to obtain data are infrequent. As a result, an object's attitude may often need to be propagated very accurately over long time intervals before an update is possible.

Caption Truncation and Roundoff Error Tradeoff

Approach

Findings

Applications


  • Shape Estimation