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Abstract

-

An algorithm is presented which accurately identifies multi-input-multi-output systems characterized
by vibrating structures. More specifically, an identification technique is integrated with an optimal
estimator in order to develop an algorithm which is robust with respect to measurement and process
noise. The unique functional form of the integrated approach utilizes systems described by second-order
models. Therefore, theoretical mass, damping, and stiffness matrices, associated with lumped parameter
models, are tailored with experimental time-domain data for system estimation and identification. This
leads to an algorithm that is computational efficient, producing realizations of complex multiple degree-
of-freedom systems. The combined estimation/_identiﬁcation algorithm is used to identify the properties
of an actual flexible truss from experimental data. Comparison of experimental frequency-domain data
to the predicted model characteristics indicates that the integrated algorithm produces near minimal

realizations coupled with accurate modal properties.

Introduction

Combining 'theoretical models with experimental data is an important aspect for both system
identification and estimation. More specifically, estimation techniques utilize past observations to
estimate response characteristics which generally minimize the expectation of the square of the error
between the actual measufements and the estimated signal. Common linear estimatioﬁ algorithms
include, the Weiner filter (Weiner, 1949), maximum likelihood techniques (Iiff et al, 1984), and least
square techniques (Bode and Shannon, 1950). The Kalman filter \(Kalman, 1960) expands the Weiner
problem by incorporating state-space formulations in the filter design. This algorithm, along with its
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derivatives, not only filters noisy measurements, but provides state estimates of the physical system.
Also, the Kalman filter algorithm can be expanded for systems described by linear second-order matrix
equations (Hashemipour and Laub, 1988). This is extrermely useful in the study of vibrational problems

such as large space structures.

Time domain techniques are useful in identifying the modal properties of a flexible structure.

. Realized state-space models can be used for various control designs such as, LQR, LQG, and/or
Hy, algorithms. A few identification algorithms of particular interest include, AutoRegressive Moving
Average (ARMA) models (Astrom and Eykhoff, 1971), Least Square algorithms (Smith, 1981), the
Impulse Response technique (Yeh and Yang, 1987), the Polyreference method (Leuridan and Vold,
1983), and Ibrahim’s Time Domain (Ibrahim and Mikulcik, 1977) technique. The Eigensystem
Realization Algorithm (Juang and Pappa, 1985) expands upon these algorithms by utilizing singular
value decompositions in order to better identify physical modes from time domain measurements. In
most circumstances, the identification of SISO models from experirﬁen_tal data can easily be obtained.
However, since transmission zeros impose strict mathematical constraints on system matrices, minimal
realizations of MIMO systems are usually difficult to obtain experimentally. Possible sources of
error include: sensor and instrumentation noise, slight nonlinearities inherent in the structure, and/or
background vibration. Therefore, for system identification of flexible structures, multiple experiments
are usually performed in order to improve mathematical models. However, this requires extensive

computational time and effort..

4

In recent years several techniques have been developed which expand upon analytical models to
conform with experimental data. In particular, finite-element models of a given structure are compared
with experimentally measured data in order to \update second-order models (see, e.g. “Heylen, 1990,”
and “Minas and Inman, 1990”). The experimental data is usually in the form of modal data, such as
natural frequencies, damping ratios, and modes shapes. In almost all circumstances the modal data is
incomplete since measurements are usually taken along a limited number of selected locations. This
increases the complexity of updating analytical models, since finite-element models are generally of

larger order than the experimentally measured modes (Heylen, 1990). In the case of MIMO models,
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the complexity of finite-element updating increases since accurate (symmetric) positive definite stiffness
and positive semi-definite damping matrices are usually not guaranteed to have the same physical
significance as the original modeling (Minas and Inman, 1990). Also, several iterations of the modified

system matrices are usually required in order to achieve satisfactory results.

The identification algorithm developed in this paper identifies accurate (near minimal) state-space
realizations of a structure from only one set of experimental data. This algorithm combines an optimal
state estimation routine, known as the Minimum Model Error (MME) estimator (Mook and Junkins,
1988), with the Eigensystem Realization Algorithm (ERA) in order to provide robust features for MIMO
identification. The advantages of the MME estimator are: (i) the model error is assumed unknown and
is estimated as part of the solution; (ii) the model error may take any form including nonlinear; and (iii)
the algorithm is robust in the presence of high measurement noise. Therefore, accurate state estimates

can be obtained and used during the identification process.

The combined MME/ERA identification algorithm has been successfully applied to numerous
applications (see, e.g. ‘“Roemer and Mook, 1990” and “Mook and Lew, 1988”). Recent work by
Roemer and Mook (1992) utilized this algorithm to identify the modal properties of damped structures
using measurements with a high noise content. However, only modal properties (natural frequencies and
damping ratios) of SISO systems were considered. Also, only smoothing of output measurements was
applied.  No state estimation information was used during the identification process. The implementation
in this paper is to expand the MME/ERA algorithm by utilizing the second-order model form together
with state estimate information. The benefits of second-order models over first-order forms include: an
increase in the computational efficiency, physical insight of modal properties are retained, and more
accurate model realizations of actual systems are possible. Also, transforming second-order models to
first-order form destroys the sparsity of the structural mass, damping, and stiffness matrices (Juang and
Phan, 1992). By utilizing second-order models in the MME estimator, the inherent minimal MIMO
form is retained during the identification process. Therefore, finite-element models combined with

experimental data can be used as a basis for accurate (near minimal) realizations.
The organization of this paper proceeds as follows. First, the model form of a linear damped
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multiple-degree-of-freedom system is presented. Then, the closed-form solution of the MME estimator
is shown for linear time-invariant models. The result involves the solution of a standard Riccati equation
and two sets of lineér differential equations. The MME estimator is next derived for systems described
by second-order models. The MME estimator is the combined with an expanded version of the ERA
in order identify models accurately. Finally, the combined algorithm is used to experimentally develop

a realization of an actual flexible structure. Results are shown and compared with experimental data.

Analytical Model

The structure of the physical system is assumed to be modeled by a linear proportional damped
multiple-degree-of-freedom system. For vibration analysis of flexible structures two set of linear,

constant coefficient, ordinary differential equations are used:

M§(t) + Dg(t) + K g(t) = Bu(t) (12)

y = Hig(t) + Hzg(t) (1b)

where ¢ is an (n x 1) displacement vector, M, D, and K, are mass, damping, and stiffness matrices,
respectively, and H; and H; are (g X n) output matrices. The mass and stiffness matrices are assumed to
be symmetric, positive definite matrices, and the damping matrix is assumed to be symmetric, positive
semi-definite (Inman, 1989). The analytical mass, and stiffness matrices can be obtained by a finite-
element analysis of the structure. The damping matrix is assumed to be proportional to the mass
and stiffness matrices. Also, acceleration measurement output can be solved in terms displacement,
velocity, and control force (i.e., direct transmission).

Since proportional damping is assumed, i.e. KM 1D = DM~1K, the system in Equation (1) can
be decoupled by the modal matrix (S,,) of K, normalized with \respect to the mass matrix (Inman,

1989):

74(t) + 26iwir(t) + wiry(t) = SEBu(t) @
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where r = S;,;lg, and w; and (; are the undamped modal frequencies and modal damping ratios at
the i component, respectively. Therefore, the mass, damping, and stiffness matrices from Equation (1)

can be converted to diagonal modal (decoupled) matrices:

MA = Inxn (33.)
’ C) = diag[w?] (3b)
D) = diag[2(w;] (3c)

The state-space representation of Equation (1) is given by:

q Onxn Inxn q Onxp
HY 1]+l

g -M7'K -M7'D]|q M~'B
y=[H Hz][g_] | (4b)

g ,

The state-space approach is useful for control and estimation applications. However, transforming
to first-order form increases the dimension of the problem. The next section utilizes the qualities of

second-order modeling in order to simplify the estimation and identification process.

Minimum Model Error Estimator

’

In this section, the MME algorithm is briefly reviewed for the case of linear time-invariant state-
space models. See Mook and Junkins (1988) for a more detailed derivation of the algorithm. The
MME algorithm assumes that the state estimates are given by a nominal (pre-specified) model and an
un-modeled error vector, shown as:

2(t) = Ap £(8) + Bpu(t) + d(¢)

&)
§(t) = Cn &(t) + Dpu(t)

where A.,, Bp, Crm, Dy, are time-invariant nominal state matrices from the finite-element model, u(t)
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is a (p x 1) known forcing input, d(t) is an (2n x 1) un-modeled (to-be-determined) model error vector,
2(t) is the (2n x 1) state estimate vector, and §(t) is the (¢ x 1) estimated output. State-observable

discrete measurements are assumed for Equation (5) in the following form:
F(t) = grlz(tr),tx) + 15 (6)

where 7(tx) is an (g x 1) measurement vector at time ¢, gx is an accurate model of the measurement
process, and v represents measurement noise. The measurement noise process is assumed to be a
zero-mean, Gaussian distributed process of known covariance, R.

In the MME, the optimal state estimates are determined on the basis that the measurement-minus-
estimate error covariance matrix must match the measurement-minus-truth error covariance matrix. This

condition is referred to as the “covariance constraint”, approximated by:
_ " - . T
{[t) - 9 [it0) — 58"} ~ R @

Therefore, the output is required to fit the actual measurements with approximately the same error

covariance as the actual measurements fit the truth.

A cost functional, consisting of the weighted sum square of the measurement-minus-estimate

-
residuals plus the weighted sum square of the model correction term, is next minimized:

1ot
7= {late) - ae0)]) R [ite) - 5t }
= 1 ®
+ / d(r) Wd(r)dr
to
where kiot is the total number of measurement points, and W is a weight matrix determined by satisfying
the covariance constraint. If the measurement residual covariance is larger than R, then the measurement

estimate is not close to the actual system measurements. Therefore, W should be decreased in order to



less penalize the model correction (d(t)). However, if the estimate covariance is to low, then W should
be increased in order to allow more model correction. The model error corrects the finite-element model
in order to estimate the output using experimental measurements. Therefore, the model error term tends
to update the states from the finite-element model in order to conform to actual system responses.
The necessary conditions for the minimization of J, with respect to the model correction term d(t),

leads to the following Two-Point-Boundary-Value-Problem TPBVP (see Mook and Junkins, 1988):

8(t) = Am () + B u(t) + d(t) ©2)
A(t) = AT A1) (9b)
d(t) = —5 W™ M) ©0)
A(tY) = A(ty) +200R [g(tk) - 9(t)] (9d)

where A(t) is a vector of co-states (Lagrange- multipliers). Also, the co-state equation is updated at
each measurement interval. The boundary conditions are selected such that either ) (tb‘ ) = 0 or z(tg) is
specified for the initial time and either A (¢}) = 0 or 2(t;) is specified at the final time. The solution
of the TPBVP involves the determination of a linear Riccati equation and a linear differential equation.

Riccati solutions are useful in determining optimal trajectories for the design of linear control systems
with quadratic cost functionals~ The application of this method is expanded in order to derive matrix
Riccati solutions for the MME algorithm, which includes discrete updates in the co-state equation. The

co-state equation is a linear function with respect to the state estimates, given as:
A(t) = P(£) &(t) + h() (10)

where P(t) is an (2n x 2n) homogeneous matrix and h(t) is an (2n x 1) linear inhomogeneous vector.

By differentiating Equation (10) with respect to time and substituting into Equation (9a-c), the following

two equations are developed:



B(t) = —P(t) Am + 5 P() WL P(2) — 4T, P(2) (11a)

i(t) = B- P,W— AZ,;] h(t) = Pys B u(t) (11b)

The new update equations are also derived by substituting Equation (10) into the update co-state
equation in Equaiion (9d). Realizing that the coefficient for the state trajectory must vanish yields

the two update equations:

P(t;) = P(tf) +2CE R Cn (12a)

8(t7) = h(t}) +208 B (D u(te) — 3(22)] (125)

with boundary conditions of P (t'f*) =0,k (t'f‘“) = 0 and z(¢o) specified. The discrete update equation
for the Riccati type solution in Equation (11a) has a constant update at each measurement time. However,
the solution does indeed reach steady-state vaiues for time-invariant state-space model matrices. An
approximation to the steady-state homogeneous Riccati is obtained by converting the continuous/discrete
update form, given by Equations (11a) and (12a), into a completely continuous-time Riccati equation

with the inclusion of sampling rate, given by:

”

1 /

This approximation is fairly accurate if the sampling rate is much faster than the highest frequency
present in the system dynamics (i.e., at least twice the Nyquist frequency). The solution of the steady-
state Riccati gain in Equation (13) is well known (Vaughan, 1970) and is determined from an eigenvector

analysis of the Hamiltonian matrix:

. - (4w

= (14)
(—2CLZ R Cn/At) AT



The eigenvectors of this Hamiltonian matrix are then partitioned with respect to the (2n) stable and

(2n) unstable eigenvalues.

Vin Vi
V = (15)
Vor Vo

where V4; and Vs; correspond to the stable eigenvalues, and Vi, and V53 correspond to the unstable
eigenvalues. The steady-state solution is given using the eigenvectors corresponding to the stable

eigenvalues:

P,y = Vi1 V7' (16)

The solution for the optimal state estimates is first derived by integrating the inhomogeneous
linear differential equation in Equation (11b) i)ackwards, accounting for the discrete updates at each
measurement point, given by Equation (12b). The Riccati trajectories are then stored and the optimal

state equations are integrated forward:

a() = LA,,. _ %W‘IP”] a(t) - %W"lﬁ(t) + B u(t) an

14

Therefore, once the steady-state homogeneous Riccati equation is solved, the solution to the standard
MME problem involves solving (4n) ordinary linear differential equations, given by Equation (17) and

by Equation (11b), with discrete updates shown by Equation (12b).

The MME estimator is able to provide state estimates of a system using first-order form models.
However, using the properties of second-order dynamic models simplifies the estimation process. This
is accomplished by using the modal form system shown in Equation (3). Substituting the modal matrices

into Equation (13) and partitioning the Riccati matrix yields the following:
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Py Pr3 Onxn Inxn ] 1[1’11 P12] [Onxn Onxn] [Pu P12]
Py Ppl|-(M'K) —(M™'D) 2{P13 Pu|lOnxn WP Py

+[onxn —(M"K)HPH Plz]”[Hf}R_l[Hl Hz]/Atz[om o]

Inxn —(M—ID) Py Py Hg‘ Onxn  Onxn

(18)

Since velocity states of the model matrix (A,,) are perfect derivatives of position states, the weighting
matrix (W) is partitioned to a right lower-half dominant matrix (W). Therefore, the upper left (n X n)
elements of the weighting matrix are zero. Also, only diagonal weighting matrices are considered (i.e.
no cross-correlation weighting of states is assumed). Therefore, the weighing matrix is reduced to an
(n x n) matrix. Expanding Equations (17) and (18) yields the following two Riccati equations and

model equation:

—P1y (M7 K) - 0.5P, WPy — (M™YK) Pz + 2H] R Hy /At = O (192)

~Pp(M71D) — 0.5PnW 1Py — (M71D) Pyz +2(Pra + Hf R Hp/At) = 0pxn (19b)

M+ [D+0.5(MW™Px)| i+ [K+05( MW Pyu)|g= —05M W 'hy + Bu  (200)

- g = Hig+ Hag (20b)

where h, is the n lower-half vector of b (ie., h = [hy bk, 1T Therefore, only two (n x n) algebraic
i{iccati equations are required for the MME estimation algoﬁthm using second-order models. This
greatly increases the computational efficiency for modeling high-order systems, as compared to using a
first-order state-space form. Also, the output estimates, given by Eqilation (20b), are linear combinations
of the state estimates, given by Equation (20a). Therefore, the output estimates of the MME algorithm

help ensure that a minimal (or near minimal) MIMO system realization of a complex structure is

obtained during the identification process.
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Modified Eigensystem Realization Algorithm

The ERA method is a modal synthesis technique based on the concept of singular value decomposi-
tion (see “Juang and Pappa, 1985” for more details). This procedure is capable of accurately identifying
the model properties of systems involving perfect or low-noise measurements. In this section the ERA
is expanded to include the state and output estimates given by the MME estimator.

Consider the ’discrete-time linear dynamic equation:

z(k +1) = Az(k) + B u(k)

21
y(k) = C z(k)

where z is a (2nx 1) state vector, u is a (px1) ihput vector, y is a (gx1) output vector; and A,
B, and C are (2nx2n), (2nxp) and (gx2n) constant matrices, respectively. A solution to Equation

(21) is given by the Markov parameters from a unit impulse response:

Y(k) = CA*1B X(k) = A¥'B (22)

The first step in the modified ERA is to form an (rxs) block Hankel matrix composed of the impulse

response data from the MME algorithm:

[Z(1) ... Z(s)
HO0)=] = . : : (23a)
| Z(r) ... Z(r+s-—1)
c (23b)
- -
i
CA :
= A] (B AB ... A*1B}1=V,W, (23c)
.
[

where r and s are arbitrary integers satisfying the inequalities rq > 2n and sp > 2n, and

L(i=12,...,7r—1)andm; (j=1,2,...,s—1) are arbitrary integers. The matrix Z consists of
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the estimated output and estimated states given by the MME estimator, ie. z =g & ]T. Therefore,
state information as well as output estimates are also used during the identification process. The state
information used in the ERA allows for an accurate MIMO realization with fewer experimental test
runs of the actual structure.

The singular value decomposition of H may be expressed as H = PD,Q. The ERA then forms

the discrete-time,.-reduced-order model realization of dimension 2n in the following form:

A= D7 PTH(1)Q.D;/?
B =D}?QTE, (24)

_ T 1/2
C = E]P,Dy

where P, and @, are formed from the first 2n columns of P and @ from the singular value
decomposition, and D, is the diagonal matrix of singular values. Eg’ is [I,,0], and Eg‘ is [I4,0],
where I, and I, are identity matrices of order p and g, respectively, and 0 is the zero matrix. Also,
H(1) is formed using the next time-step in Equation (23a).

The modal damping ratios and damped natural frequencies are calculated by observing the real and
imaginary parts of the eigenvalues, after a transformation from the z-plane to the s—plane is completed
(Juang and Pappa, 1985). The physical mode shapes are determined using the realized eigenvectors ($)
of the ERA state matrices. The physical mode shapes are given by ¥ = C/,, & . Physical state matrices

can be determined by using this mode shape matrix and the continuous eigenvalue matrix:

e o .. g q°!
1
o 0o . 0 |
An=T[A]T! B,=0| ‘ _ ¥'B (25)
Lo 0 e

where A is the continuous eigenvalue matrix, derived from a discrete to continuous eigenvalue transfor-
mation of the ERA state matrix. Therefore, an identification of system parameters is possible by using

the physical state matrices shown in Equation (25).
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Experimental Implementation

In this section, the combined MME/ERA algorithm is used to develop a MIMO realization of an
actual testbed structure, shown in Figure 1. The structure consists of 39 elements connected at 18
nodes. All but two of the structural members are made from thin-walled circular aluminum tubing with
an outer diameter of 0.25" and a wall thickness of 0.05". Each member is pinned and bolted into the
nodes to eliminate looseness in the joints. Also, the frame is configured in a planar fashion so that
the only significant deformation occurs perpendicular to the structure. Two of the structural members
are flat aluminum bars layered with piezoceramics. Either of these struts can excite the frame since a
voltage applied across the piezoceramics produces a moment on the frame. The strut on the bottom
of the frame has four ceramics glued to it and serves as the control actuator. The other flat strut is
configured with the same number of piezoceramics and acts as a disturbance source. Each of these
active members has a thickness of 0.25” and a width of 1.0625". The piezoceramics are Model G-1195
from Piezo Electric Products with dimensions 2.5" x 0.75" x 0.01". The sensor is a Philtec (model
88NE3) optical displacement sensor placed near node 15 or 18 at the free end of the frame. This sensor
is non-colocated with both the control actuator and the disturbance source. Frequency analysis and data
acquisition are performed using a Tektronix 2630 Fourier Analyzer. A more detailed description of the
experimental hardware and setup can be found in Leo and Inman (1992).

Figure 1 Flexible Frame Testbed

Lo

Combined Realization Algorithm

A block diagram illustrating the steps of the robust realization algorithm is shown in Figure 2.
First, the finite-element model is used as the assumed model in the MME estimator. Next, the MME
estimation problem is solved. The parameters of the optimal weighting matrix are determined by using a
simple gradient optimization routine with a quadratic form of the co;fariancc constraint as a cost function.
The continuous estimated state histories produced from the MME are then re-sampled. Finally, these
estimated time histories are processed in order to realize an accurate model of the system parameters,

using the modified version of the ERA. These steps may be repeated if necessary in order to further
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smooth the measurements and improve the identification process. However, accurate identification

results for this testbed required only one iteration through the MME estimation process.

Figure 2 Block Diagram of the Combined Realization Algorithm

An estimate of the noise variance from the measured data is first required in order to implement the
MME estimator. The estimate is obtained by investigating the nature and magnitude of the random
disturbances detécted by the optical displacement sensor, while the structure is at rest. Possible
disturbances include ground motions, and/or instrumentation noise. A study by Roemer and Mook
(1992) indicates that if the measurement error variance is assumed to be lower than the true measurement
error variance, then the estimate will never be worse than the measurements themselves. Therefore,
a conservative estimate is to predict a measurement noise variance slightly lower than the “actual”

covariance.

A plot of a typical output response of the structure to a random input is shown in Figure 3.
The random input is applied approximately at the two second time point. The noise levels (depicted
between 0 and 2 seconds) account for a substantial portion of the output time history. This makes the
identification of an accurate model from raw measurements extremely difficult. According to the Central
Limit Theorem (Freund and Walpole, 1987), the noise characteristics of large measurement sequences
are approximately Gaussian. Therefore, from Figure 3, a predicted noise variance of approximately
1 x 10~5 (volts) is used. Results from several other test runs indicate that this variance is conservative
over all measurement output nedes. Therefore, noise variances for different magnitude inputs (such as

impulse responses) are normalized with respect to this predicted variance.

Figure 3 Output Response of Node 18 to a Random Input

The combined MME/ERA algorithm enables the realization of a MIMO model in the presence of
significant model error, process noise, and measurement noise. In order to obtain impulse response
data, the test structure is excited using a random input with a ban\dwidth of 0-50 Hz. An inverse and
regular Fourier transformation is applied on this data to obtain the impulse response time histories. Also,
only one set of data for each input is taken for the identification. Therefore, extensive and repetitive

computational analysis is attenuated by using the combined MME/ERA method, since averaging of
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multiple sets of data is not needed. This is an important aspect due to the difficulty of obtaining
multiple sets of experimental data for orbiting space structures.

The finite-element model provides a fairly accurate representation of the frame at the lower modes
as compared to averaged frequency Fourier responses (see Figures 4 and 5). However, the higher modes
are not modeled accurately. The ERA method is effective for developing accurate state-space models
when noise levels are low in nature. However, difficulties arise when higher noise levels are present
in the output measurements. These effects can make a minimal state-space model of a MIMO system
extremely difficult to obtain. For the identification of the testbed the ERA is able to identify the natural
frequencies and damping ratios fairly accurately at the lower modes using an average of three different
time histories (see Table 1). However, one of the identified higher modes is unstable when using raw
measurements. Also, the eigenvalues of the identified model varied as much as 10% when using data
measured at node 15 as compared to data form node 18. Therefore, a near minimal MIMO realization

of the testbed is not attainable using raw measurements implemented into the ERA.

Table 1 Poles of the Identified Model

ERA MME/ERA Freq. Resp.
Mode fw(Hz) | ( (%) |wlH2) | ((B) | wHz) | (%)

1 1.91 0.50 1.91 0.46 1.91 0.38
2 423 0.29 4.00 0.25 3.96 0.21
3 10.00 0.26 10.14 0.21 10.07 0.21
4 15.77 0.19 15.80 0.20 15.57 0.15
5 17.38 10.0 23.10 0.13 23.14 0.11
6 25.02 0.18 29.67 0.17 29.50 0.16
7 29.37 0.59 37.06 0.13 37.09 | 0.11
8 38.56 -0.01 48.36 0.45 47.34 0.39
9 42.55 0.12 49.00 0.36 49.10 0.33

10 52.50 0.01 54.55 0.25 [ 54.35 0.26
11 55.37 0.22 56.08 0.27 56.20 0.25
lights | 60.00 0.00 60.00 0.00 60.00 0.00
real 0.43 100 0.20 100 0.06 100
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Figure 4 Experimental, Analytical, and Identified Magnitude Plots (1st input)

Figure 5 Experimental, Analytical, and Identified Magnitude Plots (2nd input)

By combining the ERA with the MME estimator, which utilizes the minimal state-space MIMO
finite-element model, improved modal identification is achieved with near minimal MIMO realizations.
Plots of the esﬁrl';ated and measured output of node 18, excited from each of the input struts, are shown
in Figures 6 and 7. From these plots, the MME algorithm is able to accurately estimate the measured
data. Similar results are also obtained for estimates of output sequences at node 15. Also, plots of
the first two state estimates given by the MME algorithm are shown in Figures 8 and 9. Since the
finite-element modél is converted to modal form, the state estimates depict the corrected (updated)
modes of the structure. All of the state estimates and output estimates are used in the ERA in order

to develop a MIMO realization.

Magnitude Bode plots of the MME/ERA identification results are compared to experimental fre-
quency response characteristics in Figures 4 anc'l 5. The MME/ERA produced a near minimal realization
(24™ order) for the first eleven modes. A complete minimal realization is not possible since an extra
mode, occurring at node 15 only, is measured between the fifth and sixth mode (see bottom graphs
of Figures 4 and 5). These MIMO modeling errors could be produced by nonlinear effects acting
on the test structure. However, the MIMO model produced by the integrated MME/ERA algorithm
is extremely accurate with goo?l agreement to experimental frequency response results (see Table 1).
Also, the modal amplitude coherence (MAC) factors (Juang and Pappa, 1985) are also impréved using
the integrated algorithm. MAC factors estimate the degree of excitation, with 1 indicating full modal
identification. From Table 2, the integrated algorithm shows improvements in nearly all MAC factors

in the first eleven modes. Therefore, the integrated algorithm provides enhanced modal identification

coupled with near minimal realizations of the complex MIMO structure.
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Table 2 Modal Amplitude Coherence Factors

MAC
Mode ERA MME/ERA
0.9767 0.9987
2 0.9564 0.9943
3 0.9673 0.9954
’ 4 0.9325 0.9934
5 0.8835 0.9976
6 0.9123 0.9899
7 0.7546 0.9976
8 0.0143 0.9643
9 0.2456 0.9788
10 0.6643 0.9934
11 0.6783 0.9945
lights 1.00 1.00
real 0.8653 0.9967 -

Figure 6 Estimated and Measured Output of Node 18 (1st input)
Figure 7 Estimated and Measured Output of Node 18 (2nd input)
Figure 8 Estimated State Time History of Mode 1 from MME (Ist input)

Figure 9 Estimated State Time History of Mode 2 from MME (1Ist input)

Lol

In this paper, a robust integrated estimation/identification algorithm was developed for accurate
modal realizations. This algorithm combined the Minirrium Model Error estimator, using second-order
analytical models, with the Eigensystem realization algorithm in order incorporate state and output
estimates for the identification of system models. The unique use of second-order finite-element models
enabled the MME algorithm to estimate output sequences that are a linear function of the state estimates.
Also, since state estimates are integrated into the identification algorithm, averaging of multiple test runs

was not required. Therefore, complex multi-input-multi-output systems can be accurately identified. The

Conclusions
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integrated algorithm was used to develop a realization of an actual test structure from experimental data.
Band-limited random noise inputs where used to excite the first eleven modes of the structure. Results
indicated that the utilization of raw measurements produced inaccurate modal identification of higher
modes using'ERA. Also, a near minimal realization of the MIMO was not possible. However, the
integrated algorithm accurately identified all modes and produced a near minimal MIMO realization

of the test structure.
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