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Abstract 
In this paper, a new algorithm is developed for attitude estimation using Global Positioning 

System (GPS) signals.  The new algorithm is based on a predictive filtering scheme designed for 
spacecraft without rate measuring devices.  The major advantage of this new algorithm over 
traditional Kalman filter approaches is that the model error is not assumed to represented by an 
unbiased Gaussian noise process with known covariance, but instead is determined during the 
estimation process.  This is achieved by simultaneously solving system optimality conditions and an 
output error constraint.  This approach is well suited for GPS attitude estimation since some error 
sources that contribute to attitude inaccuracy, such as signal multipath, are known to be non-
Gaussian processes.  Also, the predictive filter scheme can use either GPS signals or vector 
observations or a combination of both for attitude estimation, so that performance characteristics can 
be maintained during periods of GPS attitude sensor outage.  The performance of the new algorithm 
is tested using flight data from the REX-II spacecraft.  Results are shown using the predictive filter 
to estimate the attitude from both GPS signals and magnetometer measurements, and comparing that 
solution to a magnetometer-only based solution.  Results using the new estimation algorithm 
indicate that GPS-based solutions are verified to within 2 degrees using the magnetometer cross-
check for the REX-II spacecraft.  GPS attitude accuracy of better than 1 degree is expected per axis, 
but cannot be reliably proven due to inaccuracies in the magnetic field model. 

 
Introduction 

The concept of using phase difference measurements from GPS receivers for three-axis attitude 
determination has been successfully proven on many systems in the past [1-3].  However, to this 
date only a handful of these experiments have been tested on spacecraft.  One of the first space-
based applications was flown on the RADCAL (RADar CALibration) spacecraft [4], which 
demonstrated GPS attitude determination using post-processed measurements.  To obtain maximum 
GPS visibility, and to reduce signal interference due to multipath reflection, GPS patch antennas 
were placed on the top surface of the spacecraft bus.  Although the antenna baselines were short for 
attitude determination, attitude accuracy of about 2 degrees per axis 3σ was achieved for a 0.67 
meter antenna separation.  Another experiment, Crista-SPAS [5], provided the first on-orbit 
demonstration of real-time attitude determination.  The spacecraft contained an accurate gyro 
reference, but the coordinate frame alignment was not measured relative to the GPS attitude 
reference frame, which means that discrepancies between the two reference frames might account 
for slightly different measurements from the two systems.  Over the course of the experiment the 
two sets of attitude solutions agreed to within 2 degrees, which is thought to be within the alignment 
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tolerance of the two reference frames.  The first extended real-time GPS based attitude determination 
mission was flown on the REX-II spacecraft [6], which furthermore tested actual attitude control 
using GPS measurements. 

The differential carrier phase error has a standard deviation of about 5 mm, which is a small 
fraction of the 19 cm standard wavelength [7].  However, many error sources can significantly 
contribute to attitude inaccuracy.  These include: integer ambiguity resolution of the GPS carrier, 
reflections of the GPS carrier from the environment surrounding the receiver (multipath), line bias 
errors between receivers, receiver motion due to external distortions (e.g., thermal disturbance 
effects), constellation availability, tropospheric refraction, and cross-talk errors.  The most 
significant error source and most difficult to overcome is multipath [3].  In fact, multipath effects 
can be a major driving source for the location of the GPS antennas on a vehicle.  Many techniques 
have been presented to resolve the integer ambiguity problem [8].  An approach using an H∞-type 
filter has been shown to improve attitude determination performance with line biases [9].  Other 
error sources, such as tropospheric refraction, can be modeled out for relatively short baselines (less 
than three meters) [3]. 

Three-axis attitude solutions may be found using both deterministic (point-by-point) and 
estimator-based (i.e., propagation of a dynamic model) techniques.  The main advantage of using 
estimator-based techniques, such as the Kalman filter, is that the attitude can be found using a single 
baseline or sightline, as long as there is sufficient vehicle motion to couple errors along the 
unobservable baseline direction into two orthogonal axes [10].  Another advantage is that some error 
sources, such as line biases, can be estimated concurrently with the attitude.  Fujikawa and 
Zimbelman [10] developed a Kalman filter using GPS signals to successfully estimate the attitude of 
a spacecraft and line bias using one baseline.  The main advantage of deterministic methods is that 
an initial estimate of the attitude is not required to develop a solution.  Also, deterministic methods 
are usually computationally more efficient as compared to estimator-based techniques.  
Deterministic methods can also provide an initial estimate for a filter.  Choosing between 
deterministic and estimator-based techniques usually depends on the particular application and 
requirements. 

In this paper a new algorithm is developed which is used to estimate the attitude of a spacecraft 
using GPS phase difference measurements and a dynamic model.  The new algorithm is based on a 
predictive filtering scheme first introduced by Crassidis and Markley [11].  One of the difficulties 
demonstrated by Fujikawa and Zimbelman [10], using a six state Kalman filter for GPS attitude 
estimation, is that large attitude deviations are possible due to the effect of external torque 
disturbances.  To overcome this difficulty the state model was appended to incorporate torque 
estimation.  The algorithm developed in this paper, unlike the Kalman filter, does not assume that 
the external torque is modeled by a zero-mean Gaussian process.  Instead, it is automatically 
determined during the estimation process, without using an appended state model.  Therefore, the 
new algorithm provides a more practical method for attitude estimation. 

The organization of this paper proceeds as follows.  First, a summary of the spacecraft attitude 
kinematics, dynamics, and sensor models is shown.  Then, a brief review of the predictive filter for 
nonlinear systems is shown.  Next, a predictive filter is developed for the purpose of attitude 
estimation using GPS measurement signals and a dynamic model.  This approach estimates the 
optimal spacecraft attitude in real-time by minimizing a quadratic cost function consisting of a 
measurement residual term and a model error term.  Two algorithms are shown.  The first uses the 
GPS phase difference measurements for attitude estimation, and the second uses GPS-found 
attitudes from deterministic approaches for attitude estimation.  Finally, the predictive filter is used 
to estimate and verify the attitude of REX-II in order to demonstrate the usefulness of this algorithm.  
Case comparisons are made with respect to a magnetometer-only based solution using another 
predictive filter approach. 
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Attitude Kinematics and Dynamics 
In this section, a brief review of the kinematic and dynamic equations of motion for a three-axis 

stabilized spacecraft is shown.  The attitude is assumed to be represented by the quaternion, defined 
as 
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where �n  is a unit vector corresponding to the axis of rotation and θ  is the angle of rotation.  The 
quaternion kinematic equations of motion are derived by using the spacecraft’s angular velocity 
(ω ), given by 
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where I3 3×  is a 3 3×  identity matrix.  The 3 3×  dimensional matrices ω ×  and q13 ×  are 

referred to as cross product matrices since a b a b× = × , with 
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The quaternion obeys a single constraint, given by 

 q q q q qT T= + =13 13 4
2 1 (6) 

The dynamic equations of motion, also known as Euler’s equations, for a rotating spacecraft are 
given by [12] 



 4

 �H N H= − ×ω  (7) 

where H  is the total angular momentum, N  is the total external torque (which includes, e.g., 
control torques, aerodynamic drag torques, solar pressure torques, etc.), and J  is the inertia matrix 
of the spacecraft.  If reaction or momentum wheels are used on the spacecraft, the total angular 
momentum is given by 

 H J h= +ω  (8) 

where h  is the total angular momentum due to the wheels.  Thus, Equation (7) can be re-written as 

 �H N J H h H= − − ×−1b g  (9) 

Also, from Equations (7) and (8) the following angular velocity form of Euler’s equation can be used 

 J N h J h� �ω ω ω= − − × +b g  (10) 

which involves the derivative of the wheel angular momentum. 

 
GPS Sensor Model 

In this section, a brief background of the GPS phase difference measurement is shown.  The 
main measurement used for attitude determination is the phase difference of the GPS signal received 
from two antennas separated by a baseline.  The principle of the wavefront angle and wavelength, 
which are used to develop a phase difference, is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  GPS Wavelength and Wavefront Angle 

The phase difference measurement is obtained by 
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where bl  is the baseline length, θ  is the angle between the baseline and the line of sight to the GPS 

spacecraft, n  is the number of integer wavelengths between two receivers, ∆φ0  is the actual phase 
difference measurement, and λ  is the wavelength of the GPS signal.  The two GPS frequency 
carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz.  As of this writing, non-military applications 
generally use the L1 frequency.  Then, assuming no integer offset, we define a normalized phase 
difference measurement ∆φ  by 

 ∆
∆φ λ φ
π

≡ =
0

2 b
b A s

l

T  (12) 

where s R∈ 3  is the normalized line of sight vector to the GPS spacecraft in an inertial frame, 

b R∈ 3  is the normalized baseline vector, which is the relative position vector from one receiver to 
another, and the attitude matrix A SO∈ 3b g , the Lie group of 3 3×  orthogonal matrices with 

determinant 1 (i.e., A A IT = ×3 3  and det A = 1).  The attitude matrix is related to the quaternion by 

 A q q qTd i d i d i= −Ξ Ψ  (13) 
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and Ξ qd i  is given by Equation (4b). 

 
GPS Attitude Estimation  

In this section, a predictive filter for attitude estimation is developed using GPS measurements.  
First, a brief review of the nonlinear predictive filter is shown (see Ref. [11] for more details). 
Predictive Filtering 

In the nonlinear predictive filter it is assumed that the state and output estimates are given by a 
preliminary model and a to-be-determined model error vector, given by 

 �� � ,x t f x t t G t d tb g b gc h b g b g= +  (15a) 

 � � ,y t c x t tb g b gc h=  (15b) 

where f  is a p ×1 model vector, �x tb g  is a p ×1 state estimate vector, d tb g  is a l ×1 model error 
vector, G tb g  is a p l×  model-error distribution matrix, c  is a m×1 measurement model vector, and 
�y tb g  is a m×1 estimated output vector.  State-observable discrete measurements are assumed for 

Equation (15b) in the following form 

 ~ ,y t c x t t v tk k k kb g b gc h b g= +  (16) 
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where ~y tkb g  is a m×1 measurement vector at time tk , x tkb g  is the true state vector, and v tkb g  is a 
m×1 measurement noise vector which is assumed to be a zero-mean, Gaussian white-noise 
distributed process  with 

 E v tkb gm r = 0  (17a) 

 E v t v t Rk
T

k kkb g b g{ }' '= δ  (17b) 

where R  is a m m×  positive-definite covariance matrix. 
A loss functional consisting of the weighted sum square of the measurement-minus-estimate 

residuals plus the weighted sum square of the model correction term is minimized, given by 
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where W  is a l l×  weighting matrix.  The necessary conditions for the minimization of Equation 
(18) lead to the following model error solution 
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where � �x x tk k≡ b g , ∆t  is the measurement sampling interval, S x�b g  is a m l×  dimensional matrix, 
and Λ ∆tb g  is a m m×  diagonal matrix with elements given by 
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where pi , i m= 1 2, , ,… , is the lowest order of the derivative of c x ti �b gc h  in which any component of 

d tb g  first appears due to successive differentiation and substitution for ��x ti b g  on the right side.  The 
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The i th  row of S x�b g  is given by 
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where g j  is the j th  column of G tb g , and the Lie derivative is defined by 
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Equation (24) is in essence a generalized sensitivity matrix for nonlinear systems.  Therefore, given 
a state estimate at time tk , then Equation (19) is used to process the measurement at time tk+1 to 
find the d tkb g  to be used in t tk k, +1  to propagate the state estimate to time tk+1.  The weighting 
matrix W  serves to weight the relative importance between the propagated model and measured 
quantities.  This weight may be found by using a measurement error covariance constraint [11]. 

GPS Attitude Estimation 
The nonlinear predictive filter using phase difference measurements minimizes the following 

cost function 
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subject to 
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where � �q q tk k+ +≡1 1b g , m  is the total number of baselines, n  is the total number of available 

sightlines, and σ ij  is the standard deviation of the measurement error noise for the ijth  component.  
The filter may be initialized using a deterministic approach to find the attitude and angular 
momentum [13].  Since the phase difference measurements (∆~φij ) are used as the required tracking 
trajectories, the model of a single measurement in Equation (15b) is given by 
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Since c  depends on �q  and not explicitly on �H , the lowest order derivative of Equation (27) in 
which any component of d  first appears in �q  is two, so that pi = 2 .   Therefore, the Λ  and 
z quantities in Equations (20) and (21) are given by 

 Λ
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where the quantities Lfij

1  and Lfij

2  can be shown to be given 
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The S  matrix, which is formed using Equation (23) is given by 

 S b A q s Ji
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j= × −�d i 1  (32) 

The extension to multiple measurement sets is achieved by stacking these measurements, e.g., 

 y m m n mn
T= ∆ ∆ ∆ ∆ ∆ ∆φ φ φ φ φ φ11 1 12 2 1" " " "  (33) 

Similar stacking of the quantities z  and S  are used in the predictive filter.  Other state variables, 
such the addition to line biases, can also be added easily [10].  The major advantage of the predictive 
filter over the traditional Kalman filter is that the torque modeling error ( d ) is determined as part of 
the predictive filter’s solution, whereas the state vector in the Kalman must be augmented in order to 
estimate for unmodeled torque disturbances and errors [10]. 

Another case involves using quaternion measurements given from a deterministically found 
attitude using GPS phase difference measurements ([1], [13], [14]).  If the determined quaternions 
are used in the predictive filter, then the following cost function is minimized 
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where ~q  denotes the determined quaternion using the GPS phase difference measurements.  For this 
case, the quantities Λ , z , and S  can be shown to be given by [15] 
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The case simplifies the calculations required in the filter; however, the approach using the cost 
function in Equation (25) (i.e., using the phase difference measurements) can in theory determine the 
attitude using one baseline, while deterministic methods fail in this case.  Also, optimal 
determination of the quaternion from phase measurements requires a computationally expensive 
gradient search, and more efficient methods can be suboptimal [13].  The computation simplifies if 
the measurement error covariance ( R ) is represented as a scalar ( r ) times the identity matrix, due to 
the fact that ΞT q q� �d i = 0  and Ξ ΞT q q I� �d i d i = ×3 3 .  This leads to 
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Also, note that the inverse in Equation (36) has to be computed only once, which greatly simplifies 
the computational load.  Also, if the weighting matrix W  is set to zero, then Equation (36) invokes a 
feedback linearization of the dynamics model in Equation (26b) [15]. 

 
Attitude Estimation of REX-II 

In this section, the predictive filter is used to estimate the attitude of the REX-II spacecraft.  A 
drawing of the REX-II spacecraft is shown in Figure 2 (for a more complete description of the 
spacecraft see Ref. [6]).  The spacecraft is passively stabilized using a 6 meter boom with gravity 
gradient torques and magnetic hysteresis rods for damping.  REX-II is additionally actively 
controlled by electromagnetic coils and a pitch-axis reaction wheel, which provides a momentum 
bias.  The vehicle attitude is expressed as a 3-2-1 yaw-pitch-roll Euler sequence [16] from the 
locally level orientation, as shown in Figure 3 [6].  Also, the spacecraft contains a three-axis 
magnetometer (TAM), from which magnetic field measurements are simultaneously available with 
the GPS deterministic attitude solutions. 
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Figure 2  REX-II On-Orbit Configuration
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Figure 3  Locally Level Reference Attitude 
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The four GPS patch antennas were mounted on the top surface of the spacecraft main body in a 
coplanar, aligned configuration, as shown in Figure 4 [6].  All four antennas were keyed in the same 
direction to provide antenna phase center repeatability.  The separation is 0.67 meters along the 
diagonal, and the gravity gradient boom extends out of the center of the main body.  The M-2 and 1-
3 axes were mechanically aligned to within 0.1 degrees of the spacecraft x and y body axes, 
respectively. 
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Figure 4  Antenna Placement on Spacecraft 

 

Attitude Estimation 
In this section, the predictive filter is used to estimate the attitude accuracy of the REX-II 

spacecraft.  Since the REX-II telemetry system downloads the attitude quaternion from a 
deterministically found attitude, Equation (36) involving quaternion measurements is used.  Also, 
the problem is complicated by the fact that the telemetry system is constrained to operate with low 
bandwidth over short ground passes (10 minutes), resulting in short time spans with full data, or very 
low sampling rates that cover longer times spans.  Despite this complication, the GPS solution 
performance may still be estimated in comparison with an independent TAM-only attitude solution.  
Furthermore, the TAM/GPS tandem is expected to be common on future low-Earth orbit spacecraft, 
so it is also worthwhile to consider the potential for combining these measurements into a single, 
more accurate estimate of spacecraft attitude. 

In order to provide an accurate (as possible) analytical model, active control laws (magnetic 
moment torques and the momentum bias wheel) and passive control laws (gravity gradient torques 
and magnetic hysteresis rods) were simulated.  However, simulations showed that the fit of the data 
to experimental results is much better with the effect of the hysteresis rods omitted, than with this 
effect included [6].  This may indicate that the rods were compromised during spacecraft assembly, 
launch, or deployment such that the material is no longer effective. 

Once a fairly accurate representation of the response of the analytical model was obtained, the 
next step was to design an extended Kalman filter using this model and TAM measurements only.  
After many attempts at tuning the filter, a reasonably estimated attitude could not be found.  This 
may be due to the fact that data from a short time span (less than 1/3 of the orbit period) is only 
available at one time, and the Kalman filter may require more data to converge.  Although the 
authors do not claim that a solution may not exist using a Kalman filter, more reasonable attitude 
solutions were achieved using the predictive filter approach shown in Ref. [17].  Also, the predictive 
filter using TAM-only measurements estimated the attitude using a dynamics model with the wheel 
torque only. 

Since REX-II did not fly with gyros, and due to the data set limitations (either too short for filter 
convergence, or sampled very far apart), an accurate attitude reference that may be used as “truth” to 
the benchmark GPS accuracy is not possible.  Other effects, such as uncertainties in the magnetic 
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field model, and potential magnetic activity near the TAM, further complicate this issue.  However, 
at worst, a sanity check of the GPS attitude behavior is still feasible, since attitude accuracy between 
0.5 to 2 degrees is possible using a dynamics model and TAM measurements only as shown in Ref. 
[18]. 

The sampling rate is 20 seconds for the short-time span set, which lasted for 25 minutes.  The 
long-time span data was also considered.  This lasted for 24 hours, but was sampled at 6 minute 
intervals.  A study was performed on the long span of data to test the validity of using this data for 
attitude estimation.  This involved using a spline fit interpolation scheme to bridge the data gap.  
Unfortunately, a coning motion is evident along the y axis at a higher frequency than the 6 minute 
sample interval reveals, shown by Figure 5.  The circles show 6 minute sampling, the dotted lines 
show the spline fit, and the solid lines show the measurements from the short span TAM 
measurements.  The stability of the z and x directions is apparent, since the spline fit data virtually 
lie on the measurement data.  However, the high frequency activity is clear in the y axis, as well as 
the 0.004 gauss quantization. 
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Figure 5  TAM Data for Short Span (solid), Long Span (circles), and Spline Fit (dashed) 

 
Figure 6 shows the magnitude difference between the GPS attitude point (deterministic) 

solutions and the TAM-only predictive filter solutions.  Although only a 25 minute (1/3 orbit) span 
is available, the filter was able to converge to a solution.  A Kalman filter typically requires a full 
orbit to converge [18].  Therefore, the predictive filter provided convergence at a faster rate than an 
equivalent Kalman filter approach.  The error in the reference geomagnetic field model, used in the 
TAM-only attitude computation, could be as much as 2 degrees, so that the difference in the two 
attitudes appears to be converging to a value within that tolerance.  Further, this attitude difference 
seems to be smaller than for the simulated data [6].  The second plot in Figure 6 shows, for the same 
data span, the magnetic field measurement residual.  Here, the magnetometer measurement was 
transformed into inertial space by both the TAM-only filtered attitude (the solid line) and GPS 
attitude point solutions (the dashed line).  These values are then compared to the reference 
geomagnetic field model; where the three-axis differences are presented in Gauss.  The final 
magnetometer residual (0.013 gauss) is equivalent to about a 1.8 degree angular residual, and the 
GPS point solution at that time is about 4.8 degrees.  These residuals also appear to be within values 
predicted by the simulations [6]. 
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Figure 6  Attitude and TAM Error Residuals (see text for explanation) 

 

The final case involves the blending the GPS measurements and TAM measurements using  the 
predictive filter for a combined attitude estimate.  For this case, it was determined that the 
measurement error sources should be nearly equally weighted to achieve the lowest residuals 
between the combined estimated attitude and the TAM-only estimated attitude.  A plot of the 
magnitude residuals using this approach is shown in Figure 7.  The combined predictive filter 
attitude seems to be converging to a residual of about 2 degrees.  Although this value cannot be 
known accurately for this system, the methodology of the combined predictive filter approach seems 
to provide a reasonable method for attitude estimation. 
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Figure 7  GPS/TAM and TAM Attitude Error Residual 
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Conclusions 
In this paper, a predictive filter scheme was presented for attitude estimation using GPS sensor 

observations.  This algorithm was specifically developed for spacecraft which lack angular rate 
sensing equipment.  The new algorithm was applied to the REX-II spacecraft to investigate attitude 
accuracy.  It was shown that the predictive filter was able to converge in less than 25 minutes (1/3 of 
an orbit), and was able to estimate the attitude using wheel inputs only in the dynamic model.  This 
has clear advantages over a Kalman filter, which typically requires a compromise between 
convergence rate and steady-state performance, and usually requires more extensive modeling of 
control and disturbance torques in the dynamics model.  The magnetometer validation of the GPS 
attitude solutions agrees to within the measurement accuracy of the magnetic field attitude 
determination method (about 2 degrees).  Also, GPS solutions and magnetic field measurements 
were combined into a single estimate for the REX-II spacecraft attitude.  This combined sensor 
output estimator is considered to be more practical for sub-degree controller performance because it 
provides an acceptable attitude measurement even during periods of GPS attitude sensor outage, 
which has been shown to occur routinely with current GPS receiver hardware during normal 
spacecraft operations.  GPS attitude accuracy of better than 1 degree is expected per axis, but cannot 
be reliably proven with this sensor complement. 
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