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Abstract.  
In this paper, a novel technique for finding a point-

by-point (deterministic) attitude solution of a vehicle 
using Global Positioning System phase difference 
measurements is presented.  This technique transforms 
a general cost function into a more numerically 
efficient form by determining three-dimensional 
vectors in either the body or reference coordinate 
system.  Covariance relationships for the new 
algorithm, as well as methods which minimize the 
general cost function, are also derived. The equivalence 
of the general cost function and transformed cost 
function is shown for the case of orthogonal baselines 
or sightlines.  Simulation results are shown which 
demonstrate the usefulness of the new algorithm and 
covariance expressions. 

Introduction 
The utilization of phase difference measurements 

from Global Positioning System (GPS) receivers 
provides a novel approach for three-axis attitude 
determination and/or estimation.  These measurements 
have been successfully used to determine the attitude of 
both aircraft1 and spacecraft.2,3  Recently, much 
attention has been placed on spacecraft-based 
applications.  One of the first space-based GPS 
experiments for attitude determination was flown on 
the RADCAL (RADar CALibration) spacecraft.4  To 
obtain maximum GPS visibility, and to reduce signal 
interference due to multipath reflection, GPS patch 
antennas were placed on the top surface of the 
spacecraft bus.  Although the antenna baselines were 
short for attitude determination, accuracies between 0.5 
to 1.0 degrees (root-mean-square) were achieved. 
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In this paper, the problem of finding the attitude 
from GPS phase difference measurements using 
deterministic approaches is addressed.  Error sources, 
such as integer sign ambiguity,5 are not investigated.  
These errors are assumed to be accounted for before the 
attitude determination problem is solved.  The most 
common GPS attitude determination scheme minimizes 
a cost function constituting the sum weighted two-norm 
residuals between the estimated and determined phase 
difference quantities.  However, as of this writing, the 
optimal attitude solution which minimizes this general 
cost function can only be found using iterative 
techniques, such as gradient search methods.  A 
suboptimal solution involves transforming the general 
cost function into a form which can be minimized 
without iterative intense methods.  One such technique, 
developed by Cohen,1 transforms the general cost 
function into a form identical to Wahba’s problem.6  
Therefore, fast algorithms such as QUEST7 and 
FOAM8 can then be used to determine the attitude.  
Cohen showed that the solution based on Wahba’s 
problem is almost an order of magnitude faster than a 
conventional nonlinear least-squares algorithm. 

Cohen’s approach involves a two step process.  
The first step involves finding a weighting matrix, 
using a Singular Value Decomposition (SVD), which 
transforms the baseline configuration to an equivalent 
orthonormal basis.  At least three non-collinear 
baselines must exist to perform this transformation.  If 
this is not the case, the transformation can still be 
accomplished as long as three non-collinear sightlines 
exist.  However, a SVD must be performed for each 
new sightline, which can be computationally expensive, 
whereas the baseline transformation has to be done 
only once.  The second step involves finding the 
attitude using the fast algorithms such as QUEST or 
FOAM.  Since the weighting matrix transforms the 
baseline configuration to an equivalent orthonormal 
basis, suboptimal attitude solutions may arise if the 
baseline configuration does not already form an 
orthonormal basis.1  An example of this scenario is 
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when three baselines are coplanar.  In order to 
determine the optimal attitude, iterative techniques 
which minimize the general cost function must be used.  
The method presented in this paper also is suboptimal 
for the case where the baseline (or sightline) 
configuration does not form an orthonormal basis.  
However, it does not require a SVD of a 3 3×  
dimensional matrix to perform the orthonormal 
transformation. 

Bar-Itzhack et. al.9 show another analytical 
conversion of the basic GPS scalar difference 
measurements into unit vectors to be used in Wahba’s 
problem.  This is accomplished by expressing the angle 
determined by one of the baselines, which describes a 
cone around the baseline vector, and likewise for the 
second baseline, into a three-dimensional vector 
resolved in a reference coordinate system.  Attitude 
solutions are provided for baselines which constitute 
Cartesian and non-Cartesian coordinate systems; 
however, these solutions shown in Ref. [9] involve only 
two baseline vectors.  This paper generalizes these 
results to multiple baseline vectors.  Also, covariance 
relations are shown for the new approach, as well as for 
techniques which minimize the general cost function 
directly.  This allows users to quantify any additional 
errors produced by transforming the general cost 
function into Wahba’s form. 

The organization of this paper proceeds as follows.  
First, the concept of the GPS phase difference 
measurement is introduced.  Then, the general cost 
function used for GPS-based attitude determination is 
reviewed.  Next, Cohen’s method for transforming the 
general cost function into Wahba’s problem is shown.  
Also, system observability using two baselines is 
discussed.  Then, a general technique for transforming 
the general cost function is developed.  Also, the 
equivalence of the general and transformed (Wahba) 
cost functions for orthogonal baselines and/or sightlines 
is discussed.  Next, a covariance analysis is performed 
on the new algorithm, and on algorithms which 
minimize the general cost function directly.  Finally, 
results are shown for a simulated vehicle with near-
orthogonal baselines, non-orthogonal baselines, and 
baselines which are nearly collinear. 

Background 

In this section, a brief background of the GPS 
phase difference measurement is shown.  The GPS 
constellation of spacecraft was developed for accurate 
navigation information of land-based, air, and 
spacecraft user systems.  Spacecraft applications 
initially involved obtaining accurate orbit information 

and accurate time-tagging of spacecraft operations.  
However, attitude determination of vehicles, such as 
spacecraft or aircraft, has gained much attention.  The 
main measurement used for attitude determination is 
the phase difference of the GPS signal received from 
two antennas separated by a baseline.  The principle of 
the wavefront angle and wavelength, which are used to 
develop a phase difference, is illustrated in Figure 1. 

To GPS

θλ

bl  
Fig. 1  GPS Wavelength and Wavefront Angle 

The phase difference measurement is obtained by 

 b nl cosθ λ φ π= + ∆ 0 2e j  (1) 

where bl  is the baseline length, θ  is the angle between 
the baseline and the line of sight to the GPS spacecraft, 
n  is the number of integer wavelengths between two 
receivers, ∆φ 0  is the actual phase difference 
measurement, and λ  is the wavelength of the GPS 
signal.  The two GPS frequency carriers are L1 at 
1575.42 MHz and L2 at 1227.6 MHz.  Then, assuming 
no integer offset, we define a normalized phase 
difference measurement ∆φ  used for attitude 
determination by 

 ∆
∆

φ
λ φ
π

≡ =
0

2 b
b As

l

T  (2) 

where s R∈ 3 is the normalized line of sight vector to 

the GPS spacecraft in an inertial frame, b R∈ 3  is the 
normalized baseline vector, which is the relative 
position vector from one antenna to another, and the 
attitude matrix A  is in SO 3a f, which is a Lie group of 

orthogonal matrices with determinant 1 (i.e., A A IT =  
and det A = 1). 
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Cohen’s Method 
In this section, Cohen’s method1 for determining 

the attitude of a vehicle using Equation (2) is reviewed.  
The general cost function to be minimized is given by 

 J A w b A sij
j

n

i

m

ij i
T

ja f e j= −
==
∑∑1

2
11

2
∆φ  (3) 

where m represents the number of baselines, and n  
represents the number of observed GPS spacecraft.  
The parameters, wij , serve to weight each individual 
phase measurement.  The phase measurement can 
contain noise, which is modeled by 

 ∆ ∆φ φij ij ijv= +true  (4) 

where vij  is a zero-mean stationary Gaussian process 

with covariance given by σ ij
2 .  The maximum 

likelihood estimate for wij  is given by 1 2/σ ij .  If the 
weights wij  factor into a satellite-dependent and a 
baseline-dependent factor, i.e. w w wij bi sj= , then the 
cost function in Equation (3) may be re-written as1 

 J A W B A S WB
T

S F
a f e j= −1 2 1 2 2

∆Φ  (5) 

where F
2  denotes the Frobenius norm, and 

 ∆Φ

∆ ∆ ∆
∆

∆ ∆

=

L

N

MMMM

O

Q

PPPP

φ φ φ
φ

φ φ

11 12 1

21

1

"

% #
"

n

m mn

 (6a) 

 B b b bm= 1 2 "  (6b) 

 S s s sn= 1 2 "  (6c) 

The weighting matrices WB  and WS  are applicable to 
the rows (baselines) and columns (spacecraft) of ∆Φ , 
respectively. 

If the quaternion10 representation is used for the 
attitude matrix, then Equation (5) leads to a quartic 
dependence in the quaternions.  In Wahba’s problem, 
this dependence cancels out of the cost function.  In 
order to cancel this dependence in Equation (5), Cohen 
chooses the following weighting matrix for WB  

 W V VB B B B
T= −Σ 2  (7) 

where VB  and ΣB  are given from a SVD of B , i.e. 

B U VB B B
T= Σ .  From Equation (7), the matrix B  must 

be full rank, which means that at least three non-

collinear baselines must be used.  However, if this is 
not true a solution can still be found as long as three 
non-collinear sightlines exist.  This can be 
accomplished by performing a SVD of S , and 
choosing WS  as in the same form in Equation (7).  
However, a SVD must be performed for each sightline.  
This is more computationally expensive than using 
Equation (7), which may be done once for constant 
baselines.  It is also not obvious that Equation (7) is 
consistent with Equation (3).  Substituting Equation (7) 
into the general cost function in Equation (5) leads to 
Wahba’s problem, which maximizes 

 J A A S W W B AGS
T

B
T T' a f e j e j= ≡trace trace∆Φ  (8) 

However, by constraining WB  or WS , the solution using 
the transformed cost function in Equation (8) is 
suboptimal for non-orthogonal baselines or sightlines.  
The concept of the suboptimal solution will be 
discussed in detail later. 

Attitude Determination from 
Vectorized Measurements 

In this section, a new method for attitude 
determination from GPS phase measurements is 
developed.  This new method extends the method 
shown in Ref. [9], which converts the phase 
measurements into vector measurements.  The general 
method for the vectorized measurements is based on an 
algorithm given by Shuster.11  Also, a covariance 
analysis is performed for the new method, and for 
methods which minimize the general cost function in 
Equation (3) directly. 

The vectorized measurement problem involves 
determining the sightline vector in the body frame, 
denoted by ~s A sj j≡ , or the baseline in an inertial 

frame, denoted by b A bi
T

i≡ .  For the sightline case, 
the following cost function is minimized 

J s b s j nj j
iji

m

ij i
T

j
~ ~ , , ,e j e j= − =

=
∑1

2
1 1 22

1

2

σ
φ∆ for …  (9) 

The minimization of Equation (9) is straightforward 
and leads to11 

 ~s M yj j j
= −1  (10) 

where 

 M b b j nj
iji

m

i i
T= =

=
∑ 1 1 22

1 σ
for , , ,…  (11a) 
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 y b j n
j

iji

m

ij i= =
=
∑ 1 1 22

1 σ
φ∆ for , , ,…  (11b) 

The error covariance of ~s j  is given by 

 P Mj j= −1 (12) 

If the sightline in the body is required to be normalized, 
then the cost function in Equation (9) must be 
minimized subject to the constraint ~ ~s sT = 1.  However, 
Shuster11 showed that the error introduced by ignoring 
this constraint is on the order of 

m s I s s P I s sj j j
T

j j j
T− −

− −L
NM

O
QP

1 2
trace ~ ~ ~ ~ ~e j e j , which is 

usually negligible.  The solution of Wahba’s problem 
as shown below will determine the optimal attitude (in 
the least-squares sense) which results in a normalized 
body vector.  Therefore, the normalization constraint 
may be ignored.  Also, the normalized error covariance 
is singular, as shown in Ref. [11].  This singularity is 
avoided by using the covariance given by Equation 
(12).  For a discussion of singularity issues for 
measurement covariances see Ref. [12]. 

From Equation (10) it is seen that at least three non-
collinear baselines are required to determine the 
sightlines in the body frame.  This is analogous to the 
problem posed by Cohen.1  However, if only two non-
collinear baselines exist, a solution is again possible as 
long as three non-collinear sightlines exist.  This 
approach determines the baselines in the inertial frame, 
using the following cost function 

J b b s i mi i
ijj

n

ij i
T

jd i e j= − =
=
∑1

2
1 1 22

1

2

σ
φ∆ for , , ,…  (13) 

The minimization of Equation (13) is again 
straightforward and leads to 

 b N zi i i= −1  (14) 

where 

 N s s i mi
ijj

n

j j
T= =

=
∑ 1 1 22

1σ
for , , ,…  (15a) 

 z s i mi
ijj

n

ij j= =
=
∑ 1 1 22

1 σ
φ∆ for , , ,…  (15b) 

The error covariance of b i  is given by 

 Q Ni i= −1 (16) 

The case with two non-collinear baselines and two 
non-collinear sightlines can also be solved for either the 
baseline inertial case or sightline body case.  Solving 
for the latter case yields 

   ~ ,s a b a b a b b jj j j j= + + × =1 1 2 2 3 1 2 1 2c h for  (17) 

where 

a b b b b jj j j1 1 2
2

1 2 1 2 1 2= × − ⋅ =
−

∆ ∆φ φ c h for ,  (18a) 

a b b b b jj j j2 1 2
2

2 1 1 2 1 2= × − ⋅ =
−

∆ ∆φ φ c h for , (18b) 

 
a b b f b b

b b j

j j j

j j j

3 1 2
2

1 2
2

1
2

1 2 1 2 2
2 2

2 1 2

= ± × × −

− ⋅ + =

−
∆

∆ ∆ ∆

φ

φ φ φ

{
c h t for ,

 (18c) 

where f sj j= ~ 2
.  Equation (18c) involves knowledge 

of ~s j
2

.  However, this quantity can be assumed to be 

1 with reasonable accuracy.  Also,  from Equation 
(18c), there are two possible solutions for the body 
sightlines.  However, this sign ambiguity can usually be 
resolved from the geometry of vehicle to the GPS 
spacecraft.  The error covariance is given by11 

 P T L Tj j
T=  (19) 

where 

 T b b b b= ×1 2 1 2# #  (20a) 

 L
D l
l dj

j j

j
T

j
=
L
NMM

O
QPP
 (20b) 

and 

 D U P Uj j
= φ  (21a) 

 U b b
b b

b b
= ×

− ⋅
− ⋅
L
NM

O
QP

−
1 2

2 1 2

1 2

1
1

 (21b) 

 P
j

j

j
φ

σ
σ

=
L
N
MM

O
Q
PP

1
2

2
2
0

0
 (21c) 

   l b b D U P Uj j
T

j j jj
= × −LNM

O
QP

− −
∓ 1 2

1 1 2
1 ψ ψ ψφ  (21d) 

  d b b D U P Uj j
T

j j j
T

jj
= × −LNM

O
QP

− −

1 2
2 1

1 ψ ψ ψ ψφ  (21e) 

 ψ
φ
φj

j

j
≡
L
NM
O
QP

∆
∆

1

2
 (21f) 
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The covariance in Equation (19) is singular.  However, 
this does not affect the determination of the attitude 
error covariance, as will be shown.  Also, the method 
can be trivially modified to determine the baselines in 
inertial space. 

Attitude Determination 

The attitude determination problem using body 
sightlines is very similar to that using inertial baselines, 
so we may consider only the former case.  The attitude 
is determined by using the following cost function 

 J A s As M s A sj j
T

j j j
j

n
a f e j e j= − −

=
∑1

2
1

~ ~  (22) 

This cost function is not identical to Wahba’s problem 
since the quartic dependence in the quaternion does not 
cancel, unless the baselines form an orthonormal basis 
so that M j  is given by a scalar times the identity 
matrix.  The cost function in Equation (22) is in fact 
equivalent to the general cost function in Equation (3).  
This is shown by substituting Equation (10) and (11) 
into (22) and expanding terms, giving 

 
J A y M y y As

s A M As

j
T

j j j
T

j
j

n

j
T T

j j

a f

j

= −FH

+

−

=
∑1

2
21

1  (23) 

Expanding Equation (23) now yields 

 

J A y M y

b A s

j
T

j j
iji

m

ij
j

n

ij
ij i

T
j

j

n

i

m

a f

e j

= −
F
HGG

I
KJJ

+ −

−

==

==

∑∑

∑∑

1
2

1

1
2

1

1
2

1

2

1

2
2

11

σ
φ

σ
φ

∆

∆

 (24) 

Since the first term in Equation (24) is independent of 
attitude, it is clear that this cost function is equivalent to 
the general cost function in Equation (3).  In order to 
reduce the cost function in Equation (22) into a form 
corresponding to Wahba’s problem the condition that 
M j  is given by a scalar times the identity matrix must 
be valid.  Therefore, if the baselines do not form an 
orthonormal basis, then the attitude solution is 
suboptimal.

Attitude Covariance 

Wahba posed the three-axis determination problem 
in terms of finding the proper orthogonal attitude 
matrix that minimizes  

 J A a s Asj j j
j

n
a f = −

=
∑1

2
2

1

~  (25) 

Several efficient algorithms have been developed to 
solve this problem (e.g., QUEST7 and FOAM8).  
Another solution for the attitude matrix is given by 
performing a SVD of the following matrix 

 F a s s U Vj j j
T

j

n
T= =

=
∑ ~

1

Σ  (26) 

The optimal solution for the attitude matrix is given 
by13 

 A U V T
opt = + +  (27) 

where 

 U U U+ = diag 1 1, ,detb g  (28a) 

 V V V+ = diag 1 1, ,detb g  (28b) 

The covariance of the estimation error angle vector in 
the body frame is given by13 

E P I F A

a a s E e e s I F A

T
opt
T

i j j i j
T

j

n

i

m

j
T

opt
T

δα δαn s e j

{ } e j

= = −

× × × −

−

==

−
∑∑

body
1

11

1~ ~
 (29) 

where ~s j ×  represents the cross product matrix (see 

Ref. [13]), δα  is the small error angle, and 

 e A s s kk opt k k≡ −δ δ~ , for any  (30) 

The terms δ s  and δ ~s  represent variations in the 
inertial and body sightlines, respectively.  The 
expectation in Equation (29) can be written as 

 E e e A E s s A E s si j
T

opt i j
T

opt
T

i j
T{ } { } { }= +δ δ δ δ~ ~  (31) 

Assuming that the only errors are in the effective phase 
measurements reduces Equation (29) to 

 
P I F A a s P s

I F A

opt
T

j j j j
T

j

n

opt
T

body = − × ×

× −

−

=

−

∑e j

e j

1 2

1
1

~ ~

 (32) 
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Now using the approximation of 

 ~s A sj j≈ opt  (33) 

yields  

 

I F A a I s s

a s s X

opt
T

j j j
T

j

n

j j
j

n

j
T

− ≈ −

= × × ≡

=

=

∑

∑

~ ~

~ ~

e j
1

1

 (34) 

and thus the error angle covariance is given by 

 P X a s P s Xj j j j
T

j

n

body ≈ × ×
R
S|
T|

U
V|
W|

−

=

−∑1 2

1

1~ ~  (35) 

Note that if the covariances Pj  are multiples of the 

identity, P Ij j= σ 2 , and then setting a j j= −σ 2  yields 

 P s s Xj j j
T

j

n

body ≈ × ×
L

N
MM

O

Q
PP =−

=

−

−∑σ 2

1

1

1~ ~  (36) 

Therefore, in this case the covariance in Equation (36) 
would be identical to the covariance given by QUEST.7  
The best suboptimal weighting factor a j  in Equation 
(35) can be found by minimizing the trace of Pbody .  
However, this is extremely complex.  If Equation (36) 
is still a good approximation, then a j  can be chosen to 
minimize some matrix norm of the following 

 J a a P Ij j jd i = −  (37) 

An alternative to Equation (37) is to minimize the 
following cost function for some matrix norm 

 J a a I Pj j jd i = − −1  (38) 

For example, minimizing Equation (38) with a 
Frobenius norm results in 

 a P Mj j j= =−1
3

1
3

1trace tracee j d i  (39) 

Once a proper weight is determined, then Wahba’s 
problem in Equation (25) can be solved.  The 
covariance of the attitude errors is given by Equation 
(35). 

Transforming the general cost function in Equation 
(3) results in a suboptimal solution.  In order to 
quantify the errors introduced by the suboptimal 
solution, the error attitude covariance for the general 
cost function is derived.  This is accomplished by using 

results from maximum likelihood estimation.14  The 
Fisher information matrix for a parameter vector x  is 
given by 

 F E
x x

J xxx T
x

=
RST

UVW
∂

∂ ∂
b g

true

 (40) 

where J xb g  is the negative log likelihood function, 
which is the loss function in this case.  If the 
measurements are Gaussian and linear in the parameter 
vector, then the error covariance is given by 

 P Fxx xx= −1 (41) 

Since the cost function in Equation (22) is equivalent to 
the full cost function in Equation (3), Equation (22) can 
be used to determine the covariance of the optimal 
solution.  First, the attitude matrix is approximated by 

 
A e A

I A

=

≈ − × + ×F
H

I
K

− ×δα

δα δα

true

true
1
2

2  (42) 

Equations (42) and (33) are next substituted into 
Equations (22) and (40) to determine the Fisher 
information matrix.  First-order terms vanish in the 
partials, and third-order terms become zero since 
E δαl q = 0.  Also, assuming that the quartic terms are 
negligible leads to the following simple form for the 
optimal covariance 

 P s P sj j j
T

j

n

opt ≈ × ×
L

N
MM

O

Q
PP

−

=

−

∑ ~ ~1

1

1

 (43) 

Note that the optimal covariance in Equation (43) 
reduces to the covariance in Equation (36) if the 
condition P Ij j= σ 2  is true.  The errors introduced 
when using a suboptimal solution can now be 
compared to the expected performance of minimizing 
the general cost function in Equation (3).  Also, for the 
case of two baselines and two sightlines, the optimal 
covariance can be derived by using Equation (3) in the 
Fisher information matrix, which leads to 

 P s b s b
ij

j i j i
T

ji
opt ≈ × ×
L

N
MM

O

Q
PP

==

−

∑∑ 1
2

1

2

1

2
1

σ
~ ~e je j  (44) 

The covariance analysis can be easily extended to 
the case where the baselines in inertial space are 
determined.  The body covariance for the transformed 
cost function in this case becomes 
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 P B a b AQ A b Ba i i i
T

i
T

i

m

abody ≈ × ×
=
∑ 2

1

 (45a) 

 B a ba i i
i

m
= ×
L
N
MM

O
Q
PP=

−

∑ 2

1

1

 (45b) 

The error covariance for the optimal solution is given 
by 

 P b AQ A bi i
T

i
T

i

m

opt ≈ × ×
L
N
MM

O
Q
PP

−

=

−

∑ 1

1

1

 (46) 

Simulation Results 
In this section, simulation results are shown using 

the new algorithm and covariance expressions.  Three 
case are presented.  The first case involves three 
baselines which are nearly orthogonal.  The second 
involves three baselines which do not constitute an 
orthogonal set.  The third case involves three baselines, 
where the first two baselines are far from constituting 
an orthogonal set (i.e., nearly collinear).  Although the 
third case would most likely never be used in a 
practical application, it provides a radical test 
comparison between the optimal and suboptimal 
solutions.  It is assumed that the vehicle is always in the 
view of two GPS spacecraft with constant and 
normalized sightlines given by 

 
s

s

T

T

1

2

1
3

1 1 1

1
2

0 1 1

=

=
 (47) 

The three normalized baseline cases are given by 

 Case 1 

 

b

b

b

T

T

T

1

2

3

1
1 09

1 0 3 0

0 1 0

0 0 1

=

=

=

.
.

 (48a) 

 Case 2 

 

b

b

b

T

T

T

1

2

3

1
2

1 1 0

0 1 0

0 0 1

=

=

=

 (48b) 

 

 Case 3 

 

b

b

b

T

T

T

1

2

3

1
1 02

0 1 1 0 1

0 1 0

0 0 1

=

=

=

.
. .

 (48c) 

The noise for each phase difference measurement is 
assumed to have a normalized standard deviation of 
σ = 0 001.  (corresponding to an attitude error of about 
0.5 degrees).  Also, the attitude of the vehicle is 
assumed to be Earth-pointing with a rotation of 236 
deg/hr about the vehicle’s y-axis (negative orbit-
normal), while holding the remaining axis rotations to 
zero. The spacecraft z-axis is defined to be pointed 
nadir, and the x-axis completes the triad. 

If the baselines do not constitute an orthogonal set, 
the solution of the transformed cost function to 
Wahba’s form is suboptimal.  However, the covariance 
analysis shown in this paper can be used to assess the 
errors introduced from the transformation.  All 
simulation results presented in the figures use a j  given 
by Equation (39).  Figure 2 shows the attitude errors 
and three-sigma bounds by solving Wahba’s form for 
Case 1.  This shows the excellent agreement between 
theory and simulated measurement processes.   
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Fig. 2  Attitude Errors and Bounds for Case 1 

In order to quantify the error introduced by using 
the suboptimal solution, the following error factor is 
used 

 f
m

P

Pk

m

=
=
∑1

1 2

1 2
1tot

body

opt

trace diag

trace diag

tot { }
{ }

 (49) 
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where mtot  represents the total number of 
measurements used in the simulation.  A plot of the 
error factor at each time is shown in Figure 3.  Equation 
(49) represents the average of the curve shown in 
Figure 3.  Clearly, the suboptimal solution is adequate, 
with a maximum error of about 3%.   
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Fig. 3  Error Factor for Case 1 

A plot of the standard deviation errors for the 
suboptimal and optimal solutions for Case 2 is shown 
in Figure 4.  The optimal standard deviation error is 
always lower than the suboptimal solution.   
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 Fig. 4  Standard Deviation Comparison for Case 2 

A plot of the error factor at each time is shown in 
Figure 5.  For this case, the suboptimal solution can 
produce large errors, with a maximum error of about 
35%.  This is due to the non-orthogonal baselines, and 
due to the attitude of the vehicle.   
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Fig. 5  Error Factor for Case 2 

Results using various values of a j  for all three 
case are shown in Table 1 (the subscripts max and min 
denote eigenvalues).  The performance factor f 
represents the average error.  Clearly, various choices 
for the weighting factors a j  do not affect system 
performance.  Also, Case 3 where the baselines are 
nearly collinear results in a substantial degradation in 
performance when using the suboptimal solution as 
compared to the optimal solution.  Therefore, the 
covariance analysis is extremely helpful for 
determining whether or not the suboptimal and/or the 
optimal solution meets required performance 
specifications. 

 

Table 1  Weighting Factor f Performance Comparisons 

 Case 1 Case 2 Case 3 

a
P

j
j

=
1

e jmax

 1.014 1.151 58.13 

a
P P

j
j j

=
+

2

e j e jmax min

 
1.014 1.151 58.16 

a
P P

j
j j

=
+− −1 1

2

e j e j
max min  1.014 1.151 58.29 

a Pj j= −1
3

trace 1e j  1.014 1.151 58.13 
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Conclusions 
The problem of determining the attitude of a 

vehicle using GPS phase measurements was addressed 
in this paper.  A general method which transforms the 
general GPS cost function into a Wahba cost function 
was presented.  Covariance equations for both the new 
method, and methods which solve the general cost 
function were developed.  It was shown that the 
transformation produces suboptimal attitude solutions 
for non-orthogonal baselines and sightlines.  The 
equivalence of both covariance equations for 
orthogonal baselines and/or sightlines was also shown.  
Simulation results indicate that the new method is 
adequate for nearly orthogonal baselines or sightlines, 
but can produce large errors for nearly collinear 
baselines or sightlines, as compared to methods which 
minimize the general cost function directly.  This paper 
provides a means of accessing various performance 
criteria, such as computational efficiency versus 
attitude accuracy, for the particular application. 
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