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Abstract.  

In this paper, an analysis of two techniques for 
finding a point-by-point (deterministic) attitude 
solution of a vehicle using Global Positioning System 
phase difference measurements is preformed.  These 
techniques transform a general loss function into a 
more numerically efficient form.  One technique 
determines three-dimensional vectors in the body 
coordinate system, and the other in the reference 
coordinate system.  Covariance relationships for both 
vectorized approaches show that they produce 
suboptimal estimates of the attitude unless the baseline 
or sightlines are proportional to an orthonormal set, in 
which case they produce optimal estimates.  Both 
vectorized techniques are tested on a hardware dynamic 
simulator.  Results from this study are useful to 
determine the circumstances for which vector 
transformation yields the more accurate results. 

Introduction 
The utilization of phase difference measurements 

from Global Positioning System (GPS) receivers 
provides a novel approach for three-axis attitude 
determination and/or estimation.  These measurements 
have been successfully used to determine the attitude of 
both aircraft1 and spacecraft.2,3  Recently, much 
attention has been placed on spacecraft-based 
applications.  One of the first space-based GPS 
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experiments for attitude determination was flown on 
the RADCAL (RADar CALibration) spacecraft.4  To 
obtain maximum GPS visibility, and to reduce signal 
interference due to multipath reflection, GPS patch 
antennas were placed on the top surface of the 
spacecraft bus.  Although the antenna baselines were 
short for attitude determination, accuracies between 0.5 
to 1.0 degrees (root-mean-square) were achieved. 

In this paper, the problem of finding the attitude 
from GPS phase difference measurements using 
deterministic approaches is addressed.  Error sources, 
such as integer ambiguity,5 are not investigated.  These 
errors are assumed to be accounted for before the 
attitude determination problem is solved.  The most 
common GPS attitude determination scheme minimizes 
a loss function constituting the sum weighted two-norm 
residuals between the measured and determined phase 
difference quantities.  A suboptimal solution involves 
transforming the general loss function into a form that 
can be minimized without iterative intense methods.  
One such technique, shown in Ref. [6], transforms the 
general loss function into a form identical to Wahba’s 
problem.7  Therefore, fast algorithms such as QUEST8 
and FOAM9 can then be used to determine the attitude.  
Cohen [1] showed that the solution based on Wahba’s 
problem is almost an order of magnitude faster than a 
conventional nonlinear least-squares algorithm. 

The vectorized approach in Ref. [6] involves a two 
step process.  The first step involves finding the 
sightline vectors in the body coordinate system.  At 
least three non-coplanar baselines must exist to perform 
this transformation.  If this is not the case, the 
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transformation can still be accomplished as long as 
three non-coplanar sightlines exist.  However, a 3 3×   
matrix inverse must be performed for each new 
sightline, which can be computationally expensive, 
whereas the baseline transformation has to be done 
only once.  Also, Ref. [6] shows that body and 
reference transformations produce suboptimal estimates 
of the attitude unless the baseline or sightline vectors 
are proportional to an orthonormal set.  The second step 
involves finding the attitude using the fast algorithms 
such as QUEST or FOAM.  In order to determine the 
optimal attitude for the case that the baselines or 
sightlines are not proportional to an orthonormal set, 
other approaches, such as iterative techniques, which 
minimize the general loss function must be used. 

Bar-Itzhack et. al.10 show another analytical 
conversion of the basic GPS scalar difference 
measurements into unit vectors to be used in Wahba’s 
problem.  This is accomplished by expressing the angle 
determined by one of the baselines, which describes a 
cone around the baseline vector, and likewise for the 
second baseline, into a three-dimensional vector 
resolved in a reference coordinate system.  Attitude 
solutions are provided for baselines which constitute 
Cartesian and non-Cartesian coordinate systems; 
however, these solutions shown in Ref. [10] involve 
only two baseline vectors.  This paper generalizes these 
results to multiple baseline vectors.  Also, covariance 
relations are shown for the new approach, as well as for 
techniques which minimize the general loss function 
directly.  This allows users to quantify any additional 
errors produced by transforming the general loss 
function into Wahba’s form. 

Another technique in Ref. [11] uses a predictive 
(one time-step ahead) approach to solve for the body 
angular velocity components.  These are then use to 
propagate a simple kinematics model to determine the 
attitude.  Advantages of this approach include: (i) the 
algorithm is non-iterative, (ii) the algorithm works even 
for the case of coplanar baseline or coplanar sightline 
vectors, and (iii) the algorithm produces optimal 
estimates provided that the observation sampling is 
fairly frequent.  Even though the algorithm requires an 
initial attitude estimate, it has been shown that it always 
converges to the correct solution.  However, a point-by-
point solution can be useful for initialization purposes 
and as an integrity check. 

The organization of this paper proceeds as follows.  
First, the concept of the GPS phase difference 
measurement is introduced.  Next, the quaternion 
attitude representation is reviewed.  Then, the general 
loss function used for GPS-based attitude determination 

is shown, and an analysis is performed for the case that 
the baselines are proportional to an orthonormal set.  
Next, the vectorized transformations of the general loss 
function are reviewed, as well as the corresponding 
covariance expressions.  Finally, these transformations 
are tested using a GPS hardware simulator. 

Background 

In this section, a brief background of the GPS 
phase difference measurement is shown.  The GPS 
constellation of spacecraft was developed for accurate 
navigation information of land-based, air, and 
spacecraft user systems.  Spacecraft applications 
initially involved obtaining accurate orbit information 
and accurate time-tagging of spacecraft operations.  
However, attitude determination of vehicles, such as 
spacecraft or aircraft, has gained much attention.  The 
main measurement used for attitude determination is 
the phase difference of the GPS signal received from 
two antennas separated by a baseline.  The principle of 
the wavefront angle and wavelength, which are used to 
develop a phase difference, is illustrated in Figure 1. 

To GPS

θλ

bl  
Fig. 1  GPS Wavelength and Wavefront Angle 

The phase difference measurement is obtained by 

 b nl cosθ λ φ= −∆b g  (1) 

where bl  is the baseline length (in cm), θ  is the angle 
between the baseline and the line of sight to the GPS 
spacecraft, n  is the number of integer wavelengths 
between two antennas, ∆φ  is the phase difference (in 
cycles), and λ  is the wavelength (in cm) of the GPS 
signal.  The two GPS frequency carriers are L1 at 
1575.42 MHz and L2 at 1227.6 MHz.  As of this 
writing, non-military applications generally use the L1 
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frequency.  Then, the phase difference ∆φ  can be 
expressed by 

 ∆φ = +b A s nT  (2) 

where s R∈ 3  is the normalized line of sight vector to 

the GPS spacecraft in a reference frame, b R∈ 3  is the 
baseline vector (in wavelengths), which is the relative 
position vector from one receiver to another, and 
A R∈ ×3 3  is the attitude matrix, which is an orthogonal 

matrix with determinant 1 (i.e., A A IT = ×3 3 ).  The 
measurement model is given by 

 ∆~φij i
T

j ij ijb A s n v= + +  (3) 

where ∆~φij  denotes the phase difference measurement 

for the ith baseline and jth sightline, and vij  represents a 

zero-mean Gaussian measurement error with standard 
deviation σ ij  given by 0.5cm / λ = 0.026 wavelengths 

for typical phase noise. 

Quaternion Representation 
In this paper the attitude matrix is assumed to be 

represented by the quaternion, defined as 

 q
q
q

=
L
NM
O
QP

13
4

 (4) 

with 

 q
q
q
q

n
13

1

2

3
2

≡
L

N
MMM

O

Q
PPP
= F
HG
I
KJ� sin ϑ  (4a) 

 q4 2
= FHG

I
KJcos ϑ  (4b) 

where �n  is a unit vector corresponding to the axis of 
rotation and ϑ  is the angle of rotation.  The attitude 
matrix using the quaternion representation is given by 

 A q q qTe j e j e j= −Ξ Ψ  (5) 

with 

 Ξ q
q I q

qTe j ≡
+ ×

−

L

N
MMM

O

Q
PPP

×4 3 3 13

13

 (6a) 

 Ψ q
q I q

qTe j ≡
− + ×L

N
MMM

O

Q
PPP

×4 3 3 13

13

 (6b) 

where I3 3×  is a 3 3×  identity matrix., and q
13
×  is a 

cross-product matrix because a b a b× = × , with 

 a
a a

a a
a a

× ≡
−

−
−

L

N
MMM

O

Q
PPP

0
0

0

3 2

3 1

2 1

 (7) 

Because a three-degree-of-freedom system is 
represented by a four-dimensional vector, the 
quaternion components cannot by independent of each 
other, which is shown by the following normality 
constraint 

 q q q q qT T= + =
13 13 4

2 1  (8) 

The matrix Ξ qe j  obeys the following helpful relations 

 Ξ ΞT Tq q q q Ie j e j e j= ×3 3  (9a) 

 Ξ Ξq q q q I q qT T Te j e j e j= −×4 4  (9b) 

 ΞT q qe j = ×03 1  (9c) 

 Ξ ΞT Tq qe j e jρ ρ ρ= −
×

for any
4 1

 (9d) 

The matrix Ψ qe j  also obeys the equivalent relations in 

Equation (9).  Also, other useful identities are given by 

 Ξ Ωq qe j b gω ω ω= ×for any 3 1  (10a) 

 Ψ Γq qe j b gω ω ω= ×for any 3 1 (10b) 

where 

 Ω ω
ω ω
ω

b g ≡ − ×

−

L
NM

O
QPT 0

 (11a) 

 Γ ω
ω ω
ω

b g ≡ − × −L
NM

O
QPT 0

 (11b) 

Some useful relations for Ω ωb g  and Γ ωb g  also include 

 Ω Ωω ω ω ωb g b g e j= − ×
T I4 4  (12a) 

 Γ Γω ω ω ωb g b g e j= − ×
T I4 4  (12b) 
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GPS Loss Function 
In this section an analysis of the GPS standard loss 

function is shown.  The general loss function to be 
minimized is given by 

 
J q b A q s

q q

ijj

n

i

m

ij i
T

j

T

e j e j{ }= −

=

==
∑∑1

2
1

1

2
11

2

σ
φ∆

subject to

 (13) 

where m  represents the number of baselines, and n  
represents the number of observed GPS spacecraft.  
The extrema of J qe j , subject to the normalization 

constraint, can be found by the method of Lagrange  
multipliers, which maximizes 

 g q g q g q q qTe j e j e j= − − +1 2 γ  (14) 

with 

 g q b A q s
ijj

n

i

m

ij i
T

j1 2
11

1e j e j=
==
∑∑ σ

φ∆  (15a) 

 g q b A q s
ijj

n

i

m

i
T

j2 2
11

21
2

1e j e j{ }=
==
∑∑ σ

 (15b) 

where γ  is the Lagrange multiplier and  is 
independent of q .  Substituting Equation (5) into 

b A q si
T

je j  and using Equation (10) leads to the 

following identity 

 b A q s q b s qi
T

j
T

i je j c h e j= Ω Γ  (16) 

This identity can also be used to form the K  matrix in 
Wahba’s problem (see Ref. [12]).  Differentiating 
Equation (14) with respect to q  and setting the result to 

zero leads to 

 K K I q1 2 4 4 4 10− − =× ×γb g  (17) 

where 

 K s b
ijj

n

i

m

ij j i1 2
11

1
=

==
∑∑ σ

φ∆ Γ Ωe j c h  (18a) 

    K s b q q b s
ij

j i
T

i j
j

n

i

m

2 2
11

1
=

==
∑∑ σ

Γ Ω Ω Γe j c h c h e j  (18b) 

Note that Γ Ω Ω Γs b b sj i i je j c h c h e j=  (i.e., the two 

matrices commute).  Therefore, minimizing Equation 
(13) is equivalent to finding an orthonormal basis qe j  
for the null space of K K1 2− .  This is not 
straightforward since K2  explicitly depends on q . 

A straightforward solution to Equation (17) can be 
found if either the baselines or the sightlines are 
proportional to an orthonormal set.  First, we note 
thatσ ij is the same for all baselines and sightlines 

(which will be denoted by σ ).  Next, the term K q2  in 

Equation (17) can be re-written using the relations in 
Equation (10), so that  

K q s q b b q q sj i i
T T

j
j

n

i

m

2 2
11

1
= −

==
∑∑σ

Γ Ξ Ξ Ψe j e j e j e j (19) 

If the baselines are proportional to an orthonormal set, 
then  

 b b b Ii i
T

i

m

=
×∑ =

1
3 3  (20) 

where b  is a scalar.  Equation (19) now reduces to 

 K q b s q q q sj
T

j
j

n

2 2
1

= −
=
∑σ

Γ Ξ Ξ Ψe j e j e j e j  (21) 

Using the relations in Equations (9) and (12) leads to 
the following simplification 

 K q
nb

q2 2=
σ

 (22) 

Therefore, Equation (17) simplifies to the following 
form 

 1
2

11
2σ

φ
σ

γ∆ Γ Ωij j i
j

n

i

m
s b q

nb
qe j c h

==
∑∑

R
S|
T|

U
V|
W|

= +
F
HG

I
KJ  (23) 

Equation (23) is equivalent to the q-method solution of 
Wahba’s problem.12  Many efficient and optimal 
algorithm exist for finding the solution to this problem 
(e.g., see Refs. [8-9]).  A similar form to Equation (23) 
can be easily developed for the case that the sightlines 
are proportional to an orthonormal set 

If neither the baselines nor the sightlines are 
proportional to an orthonormal set, then Equation (17) 
must be solved directly.  As of this writing the optimal 
(point-by-point) solution to this equation can only be 
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found by numerically intense optimization techniques.  
Cohen1 proposed a linearized least-squares technique 
that is numerically efficient, but is sensitive to initial 
guesses.  Another technique by Crassidis et. al.11 
provides an optimal solution that is both numerically 
efficient and insensitive to initial guesses, but relies on 
sequential operations. 

Attitude Determination from 
Vectorized Measurements 

In this section, a previously found method for 
attitude determination from GPS phase measurements 
is summarized (see Ref. [6] for more details).  The 
general method for the vectorized measurements is 
based on an algorithm given by Shuster.13  Also, a 
covariance analysis is performed for the new method, 
and for methods which minimize the general loss 
function in Equation (13) directly. 

The vectorized measurement problem involves 
determining the sightline vector in the body frame, 
denoted by ~s A sj j≡ , or the baseline in the reference 

frame, denoted by b A bi
T

i≡ .  For the sightline case, 
the following loss function is minimized 

J s b s j nj j
iji

m

ij i
T

j
~ ~ , , ,e j e j= − =

=
∑1

2
1 1 22

1

2

σ
φ∆ for … (24) 

The minimization of Equation (24) leads to11 

 ~s M yj j j
= −1  (25) 

where 

 M b b j nj
iji

m

i i
T= =

=
∑ 1 1 22

1 σ
for , , ,…  (26a) 

 y b j n
j

iji

m

ij i= =
=
∑ 1 1 22

1 σ
φ∆ for , , ,…  (26b) 

The error covariance of ~s j  is given by 

 P Mj j= −1  (27) 

If the sightline in the body is required to be normalized, 
then the loss function in Equation (24) must be 
minimized subject to the constraint ~ ~s sT = 1 .  
However, Shuster13 showed that the error introduced by 
ignoring this constraint is usually negligible.  The 
solution to Wahba’s problem determines the optimal 
attitude (in the least-squares sense) which results in a 

normalized body vector.  Therefore, the normalization 
constraint may be ignored.  Also, the normalized error 
covariance is singular, as shown in Ref. [13].  This 
singularity is avoided by using the covariance given by 
Equation (27).  For a discussion of singularity issues 
for measurement covariances see Ref. [14]. 

From Equation (25) it is seen that at least three non-
coplanar baselines are required to determine the 
sightlines in the body frame.  This is analogous to the 
problem posed by Cohen.1  However, if only two non-
collinear baselines exist, a solution is again possible as 
long as three non-coplanar sightlines exist.  This 
approach determines the baselines in the reference 
frame, by minimizing the following loss function 

J b b s i mi i
ijj

n

ij i
T

jd i = −FH IK =
=
∑1

2
1 1 22

1

2

σ
φ∆ for , , ,… (28) 

The minimization of Equation (28) is again 
straightforward and leads to 

 b N zi i i= −1  (29) 

where 

 N s s i mi
ijj

n

j j
T= =

=
∑ 1 1 22

1σ
for , , ,…  (30a) 

 z s i mi
ijj

n

ij j= =
=
∑ 1 1 22

1σ
φ∆ for , , ,…  (30b) 

The error covariance of b i  is given by 

 Q Ni i= −1  (31) 

The case with two non-collinear baselines and two non-
collinear sightlines can also be solved for either the 
baseline reference case or sightline body case (see Ref. 
[6] or [10] for details). 

Attitude Determination 

The attitude determination problem using body 
sightlines is very similar to that using reference 
baselines, so we may consider only the former case.  
The attitude is determined by minimizing the following 
loss function 

 J A s A s M s A sj j
T

j j j
j

n
b g e j e j= − −

=
∑1

2
1

~ ~  (32) 

This loss function is not identical to Wahba’s problem 
since the quartic dependence in the quaternion does not 
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cancel, unless the baselines are proportional to an 
orthonormal set so that M j  is given by a scalar times 

the identity matrix.  The loss function in Equation (32) 
is in fact equivalent to the general loss function in 
Equation (13).  This is shown by substituting Equations 
(25) and (26) into (32) and expanding terms, giving 

 
J A y M y y A s

s A M A s

j
T

j j j
T

j
j

n

j
T T

j j

b g

j

= −FH

+

−

=
∑1

2
21

1  (33) 

Expanding Equation (33) now yields 

 

J A y M y

b A s

j
T

j j
iji

m

ij
j

n

ij
ij i

T
j

j

n

i

m

b g

e j

= −
F
H
GG

I
K
JJ

+ −

−

==

==

∑∑

∑∑

1
2

1

1
2

1

1
2

1

2

1

2

2

11

σ
φ

σ
φ

∆

∆

 (34) 

Since the first term in Equation (34) is independent of 
attitude, it is clear that this loss function is equivalent to 
the general loss function in Equation (13).  In order to 
reduce the loss function in Equation (32) into a form 
corresponding to Wahba’s problem the condition that 
M j  is given by a scalar times the identity matrix must 

be valid.  Therefore, if the baselines are not 
proportional to an orthonormal set, then the attitude 
solution is suboptimal. 

Attitude Covariance 

An attitude error covariance can also derived from 
the GPS loss function in Equation (13).  This is 
accomplished by using results from maximum 
likelihood estimation.6,15  The Fisher information 
matrix for a parameter vector x  is given by 

 F E
x x

J xxx T
x

=
R
S|
T|

U
V|
W|

∂
∂ ∂

b g
true

 (35) 

where El q  denotes expectation, and J xb g  is the 
negative log likelihood function, which is the loss 
function in this case.  If the measurements are Gaussian 
and linear in the parameter vector, then the error 
covariance is given by 

 P Fxx xx= −1  (36) 

Now, the attitude matrix is approximated by 

 
A e A

I A

=

≈ − × + ×F
HG

I
KJ

− ×

×

δα

δα δα

true

true3 3
21

2

 (37) 

where δα  represents a small angle error (for the 
quaternion 2

13
δ δαq ≈ ).  Equation (37) is next 

substituted into Equation (13) to determine the Fisher 
information matrix.  First-order terms vanish in the 
partials, and third-order terms are small because we 
assume the probability distribution to be approximately 
symmetric about the mean.  Also, assuming that the 
quartic terms are negligible (see [16] for a Gaussian 
approximation to fourth-order terms) leads to the 
following form for the optimal covariance 

 P A s b b A so
ij

j

n

i

m

j i i
T

j
T

body ≈ × ×
L

N
MM

O

Q
PP

−

==

−

∑∑ σ 2

11

1

 (38) 

Note that the optimal covariance requires knowledge of 
the attitude matrix.  However, if the baselines are non-
coplanar then the optimal covariance can be determined 
without the attitude knowledge by replacing A s j  with 
~s j . 

For the sightline transformation case the following 
loss function, which is equivalent to Wahba’s form, is 
minimized  

 J A a s A sj j j
j

n
b g = −

=
∑1

2
2

1

~  (39) 

Several efficient algorithms have been developed to 
solve this problem (e.g., QUEST8 and FOAM9).  Also, 
various methods for determining optimal values for a j  

are shown in Ref. [6].  Minimizing the loss function in 
Equation (39) produces suboptimal attitude estimates 
unless the baselines are proportional to an orthonormal 
set.  The attitude error covariance for the sightline 
transformation case can be shown to be given by 

 P X a s P s Xs
j j j j

T

j

n

body ≈ × ×
R
S|
T|

U
V|
W|

−

=

−∑1 2

1

1~ ~  (40) 

where 

 X a s sj j
j

n

j
T

≡ × ×
=
∑ ~ ~

1

 (41) 
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Note that if the covariances Pj  are multiples of the 

identity, P Ij j= σ 2 , and then setting a j j= −σ 2  yields 

 P s s Xj j j
T

j

n

body
s ≈ × ×
L

N
MM

O

Q
PP =−

=

−

−∑σ 2

1

1

1~ ~  (42) 

Therefore, in this case the covariance in Equation (42) 
would be identical to the covariance given by QUEST.8  
This analysis is equivalent to the previous analysis on 
the GPS loss function itself for baselines that are 
proportional to an orthonormal set. 

The covariance analysis can be easily extended to 
the case where the baselines in the reference frame are 
determined.  The body covariance for the transformed 
loss function in this case becomes 

 P A B a b Q b B Ab
a i i i i

T

i

m

a
T

body ≈ × ×
=
∑ 2

1

 (43a) 

 B a ba i i
i

m
= ×
L
N
MM

O
Q
PP=

−

∑ 2

1

1

 (43b) 

It can easily be shown that P Ps o
body body≥  and 

P Pb o
body body≥ .  Equations (43) and (40) can be 

compared to Equation (38) to determine which 
transformation produces the best estimate.  In general 
this will be a function of the baseline and sightline 
geometry. 

Dilution of Precision 
In order to access the relative performance of the 

two transformations, a number of dilution of precision 
(DOP) factors are used.  The first, called the attitude-
DOP (ADOP), uses the optimal covariance expression, 
with 

 ADOP trace body= Poe j  (44) 

The next two use the covariance for the sightline 
transformation case, called the sightline-attitude-DOP 
(SADOP), and the covariance for the baseline 
transformation case, called baseline-attitude-DOP 
(BADOP), with 

 SADOP trace body= Pse j  (45a) 

 BADOP trace body= Pbe j  (45b) 

Hardware Simulation Results 
A hardware simulation of a typical spacecraft 

attitude determination application was undertaken to 
demonstrate the performance of the new algorithm.  For 
this simulation, a Northern Telecom 40 channel, 4 RF 
output STR 2760 unit was used to generate the GPS 
signals that would be received at a user specified 
location and velocity.  The signals are then provided 
directly (i.e., they are not actually radiated) to a GPS 
receiver that has been equipped with software tracking 
algorithms that allow it operate in space. 

The receiver that was used was a Trimble TANS 
Vector; which is a 6 channel, 4 RF input multiplexing 
receiver that performs 3-axis attitude determination 
using GPS carrier phase and line of sight 
measurements.  This receiver software was modified at 
Stanford University and NASA-Goddard to allow it to 
operate in space.  This receiver model has been flown 
and operated successfully on several spacecraft: REX-
II, OAST-Flyer, GANE, Orbcomm, Microlab, and 
others. 

The simulated motion profile was for an actual 
spacecraft, the Small Satellite Technology Initiative 
(SSTI) Lewis satellite, which carried an experiment to 
assess the performance of GPS attitude determination 
on-orbit.  Although the spacecraft was lost due to a 
malfunction not related to the GPS experiment shortly 
after launch, this motion profile is nonetheless very 
representative of the types of attitude determination 
applications.  The orbit parameters and pointing profile 
used for the simulation are given in Table 1. 

Table 1  SSTI Lewis Orbit parameters 

Semimajor axis (a) 6901.137 km 

Inclination (i) 97.45 deg 

Right Ascension of Ascending Node  -157.1 deg 

Eccentricity (e) 0.0001 

Pointing profile Earth pointed 

Launch date Aug. 22, 1997 

Quantities such as line biases and integer ambiguities 
are first determined before the attitude determination 
algorithms are tested.  The GPS raw measurements are 
processed at 1 Hz over a 40 minute simulation.  A plot 
of the number of available GPS spacecraft sightlines 
for the simulated run is shown in Figure 2.  During the 
beginning of the run there are 5 to 6 available 
sightlines, which drops down to about 4 near the end of 
the simulation. 
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Fig. 2  Number of Available GPS Sightlines 

For the first set of simulations the performances of 
the sightline and baseline transformations were 
investigated using the available sightlines in Figure 2 
and three normalized baseline vectors.  Two of these 
baselines are orthogonal, given by 

 b b1 2

1
0
0

0
1
0

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

,  (46) 

The third baseline is given by using an azimuth angle 
ψ  and an elevation angle θ  (see Figure 3), so that 

 b3 =
L

N
MMM

O

Q
PPP

cos cos
sin cos

sin

ψ θ
ψ θ

θ

b g b g
b g b g
b g

 (47) 

 

 

 

 

 

 

Fig. 3  Orientation of the Third Baseline 

The assumed length for each baseline is 5 cycles (i.e., 
about 1 meter).  Also, it is assumed that the third 
baseline sees the same sightlines for all azimuth and 
elevation angles.  A 40 minute simulation was run each 
time for a given set of azimuth and elevation angles.  A 
plot of the time-averaged ADOP for each angle is 
shown in Figure 4.  Clearly, an orthogonal set of 

baselines does not yield the best results for this case, 
since the minimum ADOP occurs at ψ = 1D  and 

θ = 45D .  This is due to the geometry of the sightlines.  
A plot of the time-averaged SADOP divided by the 
time-averaged ADOP is shown in Figure 5.  This case 
uses the baseline vectors to transform the sightlines into 
the body frame.  Clearly, the performance is degraded 
as the elevation angle decreases and the baselines 
become coplanar.  The minimum value (1.00) occurs at 
elevation and azimuth angles of 90°, as expected.  A 
plot of the time-averaged BADOP divided by the time-
averaged ADOP is shown in Figure 6.  This case uses 
the sightline vectors to transform the baselines into the 
reference frame.  Clearly, this case is less sensitive to 
changes in elevation and azimuth angles in the third 
baselines than the SADOP case.  This is again due to 
the geometry of the sightline vectors.  A plot of the 
time-averaged ADOP, SADOP, and BADOP values 
versus the elevation angle with azimuth angle set to 45° 
is shown in Figure 7.  For this case SADOP becomes 
lower than BADOP when the elevation angle is greater 
than about 45°.  This analysis shows that the DOP 
quantities in Equations (44) and (45) can be extremely 
useful to show which transformation (baseline or 
sightline) yields the more accurate results. 

The next simulation uses the baseline vectors for 
the actual Lewis spacecraft. The antenna separation 
distances are 0.61 m, 1.12 m, and 1.07 m, respectively.  
One antenna (in baseline 3) is located 0.23 m out of 
plane (below) the other three antennas.  On the 
spacecraft, the antennas are mounted on pedestals with 
ground planes to minimize signal reflections and 
multipath.  For the simulation, the signal was provided 
to the GPS receiver without multipath noise.  The 
simulated SSTI Lewis spacecraft has four GPS 
antennas that form three baselines.  The baseline vector 
components in wavelengths are given by the following 

 b b b1 2 3

2 75
1 64
0 12

0 00
6 28
0 17

3 93
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1 23

=
−
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−
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=
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−

L

N
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O

Q
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.
.
.

,
.
.
.

,
.

.
.

 (48) 

A plot of the ADOP, SADOP, and BADOP values 
during the 40 minute run is shown in Figure 8.  The 
increase in ADOP and BADOP just after 25 minutes 
and just before 40 minutes is due to that fact that only 
three sightlines were available (see Figure 2).  This run 
clearly shows that the case that involves transforming 
the baseline vectors into the reference frame yields the 
more accurate results, since the geometry of the 
sightline vectors is better than the geometry of the 
baseline vectors. 

ψ

θ  

X  

Y

Z b3  
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Fig. 4  Plot of Time-Averaged ADOP Values 
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Fig. 5  Plot of Time-Averaged SADOP Values  
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Fig. 6  Plot of Time-Averaged BADOP Values  
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Fig. 7  Plot of DOP Values for 45° Azimuth Angle 
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Fig. 8  Plot of DOP Values for Lewis Spacecraft 

Conclusions 
In this paper an investigation of two 

transformations of the GPS loss function into Wahba’s 
form was performed using simulated and actual 
receiver data.  One transformation involves determining 
the sightline vectors into the body frame; the other 
involves determining the baseline vectors in the 
reference frame.  An analysis was performed to show 
that the GPS loss function reduces to Wahba’s form 
when either the baselines or sightlines are proportional 
to an orthonormal set.  Covariance expressions were 
developed and used to create various dilution-of-
precision quantities.  Since these transformations are 
simple, one can use both for on-board applications and 
then choose the best transformation based on the 
dilution-of-precision values.  Also, since the algorithms 
in this paper provide point-by-point solutions, they can 
be used as integrity checks or for initializing 
iterative/sequential routines. 
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