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A COMPARATIVE STUDY OF SLIDING MODE CONTROL

AND TIME-OPTIM AL CONTROL

Jongrae Kim*, John L. Crassidis’

ABSTRACT

A comparative study of sliding mode control and
time-optimal control for spacecraft attitude con-
trol using thrusters is presented. The on-off type
thrusters are assumed to be attitude control actu-
ators. Application of time-optimal control theory
to the kinematic and dynamic equations of motion
leads to a nonlinear two-point boundary value prob-
lem. The solution can be computed by iterative
numerical methods, but typically, the computing
method is not compatible with real-time comput-
ing constraints. In this paper, sliding mode control
is used for the input of PWPF (Pulse Width and
Pulse Frequency) modulator thrusters. The settling
times are minimized by tuning the gains of sliding
mode control. The sliding mode control is derived
using modified Rodrigues parameters. We also de-
rive the upper bound of sliding function for inertia
uncertainty and external disturbances. Disturbance
accommodating sliding mode control with PWPF
is derived to minimize the settling time with inertia
uncertainty and external disturbance. Simulation
results show that the settling times are shorter than
the ones of the sliding mode control with PWPF.

INTRODUCTION

Spacecraft attitude control for large-angle slew-
ing maneuvers poses a difficult problem, including:
the nonlinear characteristics of the governing equa-
tion, modeling uncertainty and unexpected external
disturbances. Usually, for rapid and coarse attitude
maneuvers, on-off type thrusters have been used.
Control algorithms can be divided into open-loop
systems and closed-loop systems. Application of
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time-optimal control theory to the kinematic and
dynamic equations of motions leads to a nonlinear
two-point boundary value problem. Time-optimal
control for spacecraft attitude maneuvers is different
from the eigenaxis rotation.! The solution can be
computed by iterative numerical methods, but the
computing method is not compatible with real-time
computing constraint. Also, it is sensitive with re-
spect to modeling errors and external disturbances.

Sliding mode (variable structure) control provides
robustness with respect to modeling errors and is an
effective method for handling the nonlinear charac-
teristics for attitude control. Vadali presented an
optimal sliding manifold using error quaternions.?
In his paper, two types of actuators, i.e., thrusters
and reaction wheels, are used for the spacecraft ma-
neuver. In this paper, the sliding mode control using
modified Rodrigues parameters are combined with a
P WPF (Pulse Width Pulse Frequency) modulator.’
The PWPF modulator drives a thruster valve with
an on-off pulse sequence having a nearly linear duty
cycle with the input amplitude. The settling time is
minimized by tuning the gains in the sliding mode
control using standard optimization techniques.

One of the drawbacks of sliding mode control
is the chattering problem due to disturbance and
modeling imprecision. For spacecraft attitude con-
trol, chattering may excite the higher frequencies
of the spacecraft. Chattering can be settled by
smoothing the control input using boundary layer or
bandwidth-limited sliding mode control, which was
presented by Dwyer and Kim.> However, a globally
suitable boundary layer thickness cannot be eas-
ily determined. Moreover, for spacecraft attitude
control it may be difficult to predict the external
disturbances acting on body. When bounded un-
modeled external torques are added, the closed-loop
system is no longer globally asymptotically stable
since a steady-state error is present. The error can
be minimized by increasing the correction control
gain or decreasing the thickness of the boundary
layer in sliding mode control. In this paper we de-
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rive this relation using a Lyapunov function. But
for limited actuator capability the maximum cor-
rection control gain and the minimum thickness of
boundary layer being allowed may be restricted.
Though the steady-state errors are usually small, in
a high-precision attitude pointing or tracking sys-
tems, these errors may not tolerable for satisfying a
mission requirement.

In this paper, we adopt disturbance accommo-
dating control to minimize steady-state errors in
sliding mode control. The disturbance accom-
modating control concept was first proposed by
Johnson.%7 External disturbances w(t) are assumed
to satisfy d™+1w(t)/dt™*! = 0 differential equation
where the external disturbances are represented as
mth-degree polynomials in time ¢ with unknown
coefficients.” Design procedures and existence of
the disturbance observer are presented in [8] and
[9]. In these papers, a disturbance accommodating
observer i3 combined with a control method that
provides linear behaviors in the responses of the
systems. Advantages of using disturbance accom-
modating observer include the following: 1) it is
linear, and 2) it also compensates the error due to
modeling uncertainty.

Combining sliding mode control with a distur-
bance accommodating observer (i.e., Disturbance
Accommodating Sliding Mode Control) was pre-
sented by Kim, and was applied to a robot manipu-
lator for reducing the upper bound of bandwidth of
sliding mode control.!! In this paper sliding mode
control based on modified Rodrigues parameters is
adopted for spacecraft attitude control. Also, a dis-
turbance accommodating observer is combined with
sliding mode control in order to reduce the settling
time with inertia uncertainty and external distur-
bances.

The organization of this paper proceeds as fol-
lows. First, a brief summary of the kinematics and
dynamics of a spacecraft is presented. Then, a brief
overview of the sliding mode control based on modi-
fied Rodrigues parameters and PWPF modulator is
shown. Next, a robust analysis of the sliding mode
control with respect to modeling errors and exter-
nal disturbances is accomplished using a Lyapunov
function. A disturbance accommodating observer is
derived for reducing the settling time. Also, slid-
ing mode control and disturbance accommodating
observer are combined. Finally, we compare the
settling time with the ones of time-optimal solution
and demonstrate the performance against modeling

2

errors and external disturbances.

PROBLEM FORMULATION

In this section, a brief review of the kinematic
equations of motion using modified Rodrigues pa-
rameters, the rigid body dynamics, sliding mode
control based on the kinematics, and PWPF mod-
ulator is shown.

Attitude Kinematics and Dynamics
The modified Rodrigues parameters are defined

by13
p = fitan (6/4) )

where p is a 3 x 1 vector, 1 is a unit vector corre-
sponding to the axis of rotation and 8 is the angle
of rotation. The kinematic equations of spacecraft
attitude motion described in modified Rodrigues
parameters are derived by using the spacecraft’s an-
gular velocity (w), given by!®

R 1
= 7{(1=P"P) Baxs +2[px] +2 PP }w (2)
where p7 is the transpose of p, I3xs is a 3 x 3 iden-

tity matrix, and [px] is a 3 x 3 cross product matrix
defined by

0 —-p3 po
px]=| ps 0 -p ®3)
-p2 M 0

The dynamic equation of motion for a rigid body
with external disturbance (w) is given by Euler’s
equation, defined by

w=J"Jux]w+J ut+ I 7w

)

where, J is the spacecraft’s inertia (3 x 3) matrix,
J ! is the inverse matrix of J, and u is the control
input torque (3 x 1) vector.

Sliding Mode Control

In this paper it is assumed that measurements of
both the spacecraft attitude and angular rate are
available and the dynamics of the actuator is ne-
glected. The nonlinear model for spacecraft motion
is summarized by!®

p=F(p)w (5)
w=Ff(w)+J u+J'w (6)
where
F(p) = 1/4{(1-p"p)lsxs +2[px]+2 pp"}
flw) = J!'[Jox]w
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Sliding mode control introduces velocity vector
fields directed toward the sliding surface or mani-
fold (s = 0) in its immediate vicinity, where s is
given by!2

s = w — m(p)

(7

The quantity m(p) is defined using a desired vector
field from the kinematic equation, given by'2

m(p) = F~'(p)d(p) (8)

The quantity d(p) is formed by allowing a linear
behavior in the sliding motion, given by!3

d(p) =A(pP—pa) 9)

where py is the desired reference trajectory and A
is a diagonal matrix with negative elements. The
input by sliding mode control is divided into two
parts. The first is the equivalent control u., for
satisfying the ideal sliding mode conditions (i.e., in-
variant conditions). The second is the correction
control u,, for satisfying the sliding mode existence
conditions.!? As a result, the control input is given
by

U = Uegq + Ugyp

(10)

where
ey = =7 {£(0) - S2P(@) lm(p) e}
u.r = —JKsat(s,e) (12)

where K is a 3 x 3 positive definite diagonal ma-
trix. The saturation function is used to minimize
chattering in the control torques. The function is
defined by

1 ifs; >e€
sat(ss,€) = ¢ sife if |8 <e (13)
-1 ifs;<e

The detailed descriptions of the quantities m(p) and
8m/8p for the regulation and the tracking problems
can be found in [13].

PWPF Modulator

PWPF modulator is composed of a first-order lag
filter and a Schmitt trigger inside a feedback loop
as shown in Fig. 1. In contrast to the Schmitt
trigger, the static characteristics, i.e., thruster pulse
width, off-time, frequency and duty cycle, etc., of
the PWPF modulator are independent of the space-
craft inertia.3

3

control torgue

command pulse on —off

command

] [T
_LJ ][_lfoff Uon

+ Tms + |

Fig. 1 PWPF modulator

CONTROL DESIGN

In this section a robust analysis of the sliding
mode control with respect to modeling errors and
external disturbances is accomplished using a Lya-
punov function. A disturbance accommodating ob-
server is also derived in order to reduce the effect of
inertia uncertainty and external disturbances. Fi-
nally, sliding mode control and disturbance accom-
modating observer are combined.

Robust Analysis of Sliding Mode Control

We use the following candidate Lyapunov func-
tion V to study global stability of the motion by
sliding mode control!4

V= %STJS (14)
We define the bounded modeling error as follows:

(15)
(16)

J+AJ
Jl+aJt

J =
J—l

In general, the inverse of J and AJ are not equal to
J—1 and AJ! respectively. The first time deriva-
tive of the candidate Lyapunov function with the
control input reduces to

14 —sT [JAJ—l f%?F(p)(s + m)

+JK sat(s,€) + J"lw] (17)
In the above equation, we neglect the nonlinear
part of dynamic equation. Substituting the con-
trol torque into the first time derivative of sliding
function leads to the following

~Om

s -1 §0111
5§ = AJ JapF(p)(s+m)

~J VJKsat(s,€) + J'w (18)

We assume that the thickness of boundary layer €
is sufficiently small and the correction control gain
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Fig. 2 The upper and lower bound of sliding
function

K is sufficiently large to keep the time derivative of

Lyapunov function negative-definite with modeling

errors and bounded external disturbances in the re-

gion of the outer boundary layer. After neglecting

the relatively small term in the boundary layer the
dynamics of sliding function is given by
1 .

8= —EJ‘I JKs+J 'w (19)

If the sliding function s settles to a finite constant

Sg¢, the steady-state value satisfies the following in-

equality .
s8] < e[']I{]_ll""|m¢n:= (20)

As shown in Fig. 2, when we use reaction wheels as
actuators, the sliding function trajectory is bounded
in the expected maximum bound. However, in the
case of thrusters, due to the restricted minimum
pulse width the trajectory oscillates up and down
from the expected bound.

Disturbance Accommodating Observer

The uncertainty associated with some internal
and external disturbances wi(t) is represented by
a semideterministic waveform-model description of
the generalized spline-function type, given by'®

w(t) = c1f1 (t) + szz(t) + e+ Cmfm(t) (21)

‘where the basis functions f,(t), f2(t), --- fm(t) are
completely known and the constant weighting coef-
ficient vectors c1, c2, --- cm are totally unknown
and may jump in value from time to time. Without
loss of generality, it is further assumed that the basis
functions f;(t) satisfy a linear differential equation.

4

As a consequence, there exists a linear dynamical
“state model” representation as follows:1?

w(t) = H(t)z (22)

z=D(t)z+o(t) (23)

where H(t), D(t) are completely known and o(t)
is a vector of impulse sequences representing jumps
in the c; which are sparse but otherwise totally un-
known. The waveform and state models have been
successfully used to represent plant model errors as-
sociated with the following items:10

e coulomb and other complex forms of nonlinear
damping

e uncertain external input disturbances
e plant parameter model errors
¢ coupling effects in reduced-order state models

The basis functions can be chosen as power series
in time ¢ or as orthogonal polynomials commonly
used in approximation theory.!® The design proce-
dure and the existence problem of the appropriate
observer with the stabilizing gain was shown in [9].

Disturbance Accommodating Sliding Mode
Control

In this paper we divide the control input into the
equivalent control input u,, and the correction con-
trol input u,, of the sliding mode control and the
disturbance accommodating control input ug,. for
canceling the effects of external disturbances:1%11

U = Ugq + Uer + Udac (24)
After applying the control input to the dynamics of
the sliding function, the dynamics and the distur-
bance model can be written in the following state-
space form:10:11

§ = Jlug+J  ugec+J 7w (25)
z = D@l)z+0o(t) (26)
w = H(t)z 20

The appropriate disturbance accommodating ob-
server is given by®

2 = D)2 - Ko(z — %)
w = H(@t)z

(28)
(29)

where K is the observer gain (9 x 9) matrix which
provides sufficient time constants in the observer.
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Fig. 3 System Block Diagram

We adopt the three basis functions as 1, t, #2 for
each body axis (i.e.,i=1, 2, 3)

w;(t) = ¢1 + cat + cat? (30)

We assume that the time derivative of the jerk of
external disturbance is zero (i.e., d®w;(t)/dt® = 0),
so that H;, D; are given by

H = [100]

010
0 01
0 0O

All the matrices in the observer are constant, how-
ever, the observer in Eq. (28) cannot be directly
implemented due to the unmeasurable state z. De-
fine a new state variable Q as follows:!!

(31)

D;

il

(32)

Q=%2-Ks (33)

where K is a gain matrix (9 x 3). The gain K; can
be tuned to satisfy the following condition:!!

Ko+ K J'H=0 (34)

Finally, the modified observer composed by the
measurable or known states is derived as follows:!%
Q =

(D + Ko)Q+ (D + Ko)K;s

- K J! (ucr + Ugac) (35)

where the initial condition is given by Q(0) =
—K1s(0). Then, the estimation error dynamics
become!®

AQ — (D + Ko) AQ = —o(t) (36)

5

where
AQ = (z— K;s) — (z - K;8) 37

If the gain Kj is large enough so that the error dy-
namics is stable and converges fast, then the track-
ing error offset is reduced. The designed observer
is linear and it can be easily implemented in digi-
tal software. One of drawbacks of the observer is
that the sensor noise is amplified by the gain at the
output of the observer. In this case we cannot use
the reduced observer form, and have to implement
a observer to estimate the state s.

A brief description of the control and system is
shown in Fig. 3. The estimated states Z, W and
W4, are calculated by the following relation:10:1

2 = Q+Kis (38)
w = Hz (39)

Udge = —W (40)

SIMULATION

In this section, first, reaction wheels are applied
to show the control errors using sliding mode control
and disturbance accommodating sliding mode con-
trol. Second, we will compare the results of sliding
mode control and disturbance accommodating slid-
ing mode control using thrusters with time-optimal
solutions. Second, for 180 degrees yaw maneuver,
we will compare the settling times and trajectories
for each control methods, i.e., time-optimal control,
sliding mode control with PWPF and disturbance
accommodating sliding mode control with PWPF.
The initial conditions for the angular velocity are
set to zero. The boundary layer thickness € in the
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saturation controller is set to 0.01. The K, Ty, of
the lag filter in PWPF are given by 7.46 and 1.33
respectively. Also, Uopn is 0.45 and Uyps is 0.25.
The simulations are performed by Runge-Kutta 5th
method in simulink in MATLAB with a maximum
step size of 0.1 sec, minimum step size of 0.0001 sec
and a tolerance 1.0 x 107.

Sliding mode control and Distrubance
Accommodating Sliding Mode Control

The inertia matrix of the simulated spacecraft
and the estimated inertia matrix are as follows re-
spectively:

J =diag[ 125.4 108.3 13L1 ] [kg m?] (41)

J=diag[ 114 114 114 ] [kg m?] (42)

The inertia uncertainties for each body axis are
about -9.1%, 5.26% and -13.04%. The external dis-
turbances applied to each body axis are set to

w; = 0.001sin(¢) [N-m] (43)
wy = —0.001sin(t) [N-m] (4)
wy = 0.001sin(t) [N-m] (45)

The observer gain Ky, for each body axis (i.e., i =
1, 2, 3) is calculated using a pole-placement method
as the following:
-300 0 O
Ky, = -3000 0 O (46)
-10000 0 O

The gains A and K are given by 0.3854 and -0.0421
respectively. Reaction wheels are used as the control
actuators. We apply bounded inertia uncertain-
ties and external disturbances. In the figure, DAC
stands for disturbance accommodating control.

As shown in Fig. 4, the trajectory of disturbance
accommmodating sliding mode control approaches
zero. In the case of sliding mode control, the tra-
jectory oscillates due to the uncertainties and the
external disturbances. The estimated disturbance
for yaw axis is shown in Fig. 5. About up to 35
seconds, the estimated value is large due to the in-
ertia uncertainties and relatively large angular rate
at the initial maneuver.

Time-optimal control

The inertia matrix is assumed to be given by iden-
tity matrix with no uncertainty in the inertia matrix
and with no external disturbances. The gains, A
and K are selected to minimize the settling time

6

—T T T

——- SMC
2l ——  SMCwith DAC | -

25 ) L s
50 60 70 80
time [sec]

—_ L
100 110

Fig. 4 Trajectories of 33

o " . \ s
20 40 60 ) 100
time [sec]

Fig. 5 Estimated Disturbance

using the fmins function in optimization toolbox in
MATLAB. The optimized results are given by Ta-
ble. 1, where SMC stands for sliding mode control
and TOC stands for time-optimal control. The ro-
tation maneuvers are all about the yaw axis. The
settling times are larger than 40% with respect to
the ones of time-optimal solution. As shown in the
Table. 1 as the rotation angle becomes larger, the
relative difference is smaller.
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Fig. 8 Case A: Trajectories of the p3

Table. 1 Optimal gains and settling times

Degree A k SMC | TOC?
(sec) | (sec)
180° -2.2437 1.3960 4.7478 | 3.2431
135° -2.3287 1.5527 4.2822 | 2.8845
90° -2.1917 1.4262 3.8747 | 2.4211
73° -2.2396 1.4529 3.6252 | 2.2024
72° -2.2396 1.4166 3.6020 | 2.1885
45° -2.2812 1.4194 2.9598 | 1.7499
10° -2.3240 1.4017 2.3400 | 0.8334
(*Ref. 1)
Robustness

In this section, we compare the settling times and
trajectories for the following control algorithms:

e Time-optimal control.

¢ Sliding mode control with PWPF.

¢ Disturbance accommodating sliding mode con-

trol with PWPF.

Simulation cases are also given by

e Case A: Without inertia uncertainty and exter-

nal disturbances.

o Case B: Without inertia uncertainty and with
external disturbances.

¢ Case C: With inertia uncertainty and without
external disturbances.

¢ Case D: With inertia uncertainty and external
disturbances.

~——  Time-optimal
SMC with DAC| T

L :
60 80 100 120
time [sec]

Fig. 7 Case B: Trajectories of the p;

T T T

Time—optimal
SMC with DAC| 1

02t

" N
60 80 100 120
time [sec]

Fig. 8 Case C: Trajectories of the p;3

F'ig. 6 shows the trajectories of ps for each control
method. In this case, the settling time of distur-
bance accommodating sliding mode control is faster
than the one for sliding mode control. As shown in
Fig. 7, the settling time of disturbance accommo-
dating sliding mode control for the Case B is also
shorter than sliding mode control. The trajectory
of time-optimal control slowly diverges with a value
of about -0.02 at 120 seconds. This is due to the
fact that open-loop control is not robust. In the
Case C, as shown in Fig. 8, the settling time of
disturbance accommodating control is 46.3249 sec-
onds and the one for sliding mode control is 73.2095
seconds. In the Case D, as shown in Fig. 9, the set-
tling time for disturbance accommodating control is
46.2921 seconds and the one for sliding mode control
is 72.8977 seconds. These simulation results clearly
show that combining sliding mode control with a
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disturbance accommodating observer provides ro-
bustness with respect to inertia uncertainties and
external distrubances.

CONCLUSION

Sliding mode control with PWPF was imple-
mented and compared with the time-optimal solu-
tion. The settling times were minimized by tuning
the gains in the sliding mode control. They were
larger than 40% with respect to the ones of time-
optimal solution. We also derived the upper bound
of the sliding function for inertia uncertainty and
external disturbances. A method for compensating
the steady-state error of sliding mode control due
to inertia uncertainty and external disturbance was
presented and applied to spacecraft attitude maneu-
vers. The designed disturbance accommodating ob-
server is linear allowing the use of many design and
analysis methods for linear systems. When we use a
continuous torque actuator, i.e., reaction wheels, the
presented disturbance accommodating sliding mode
control is more effective than the traditional slid-
ing surface stabilizing problem since steady-state
errors are reduced. Also, the robustness of sliding
mode is guaranteed in the range of actuator capa-
bility. In this paper, the continuous torque actuator
control was expanded to use PWPF thrusters. Sim-
ulation results show that the settling times were
shorter than the ones of the sliding mode control
with PWPF. '
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