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Abstract 
In this paper, the utilization of Global Positioning System type transmitters, 

called pseudolites, for fully autonomous vehicle-to-vehicle relative attitude 
determination is explored.  Several issues are investigated in order to provide real-
time, autonomous, and reliable attitude information using pseudolites.  These 
issues include: the effect of non-planar wavefronts due to making measurements 
from the near-field of pseudolites, and the resolution of the integer ambiguities 
which arise since phase difference measurements are used to determine the 
attitude.  First, results of a simulation study show how the non-planar wavefronts 
affect the attitude accuracy.  Then, a new algorithm for GPS integer ambiguity 
resolution is shown.  The new algorithm has several advantages: it does not 
require an a-priori estimate of the vehicle’s attitude; it provides an inherent 
integrity check using a covariance-type expression; and it can resolve the integers 
even when coplanar baselines exist.  Using an autonomous relative attitude 
system has many advantages for applications on the International Space Station, 
including: the reduction of the likelihood of re-contact in the Crew Return Vehicle 
separation scenario, and the use in providing relative attitude for rendezvous and 
docking between other space vehicles.   

Introduction 
Real-time knowledge of the relative attitude between two vehicles is, in general, a 

requirement in situations in which the vehicles must be aligned properly to carry out some 
objective.  For instance, two space vehicles performing an on-orbit rendezvous, approach, and 
docking would particularly benefit from attitude knowledge for autonomous docking guidance.  
Moreover, in a “blind separation” situation, such as the scenario currently being considered for 
the Crew Return Vehicle (CRV) as it undergoes an emergency departure from the International 
Space Station (ISS), relative attitude knowledge would greatly enhance the likelihood of 
autonomous separation without re-contact (i.e., collision) between the two vehicles.   
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The latter scenario of an emergency departure of the CRV from the ISS has an added 
component of difficulty in that current plans for the CRV do not include relative measurements 
of any sort between the -- presumably completely disabled -- ISS.  Thus, current plans call for 
the CRV to use instruments that provide only absolute attitude knowledge in an Earth-centered 
frame.  Absolute attitude will be measured on the CRV by a 3-axis ring laser gyro unit, an 
attitude-determination-capable GPS receiver, and possibly a magnetometer.  The only knowledge 
of CRV-to-ISS relative attitude (e.g., in the ISS structural frame) will be the initial alignment of 
the CRV on its ISS docking ring.  In the emergency departure, particularly during the crucial first 
few seconds before the first propulsive separation burn, the CRV attitude will be based on gyro 
rate-based dead reckoning, with no measurements of the changing ISS attitude. 

In this paper, the use of an autonomous (independent of ISS power or data systems) set of 
radio transmitters is explored, to enable rapid and precise (sub-1°) vehicle-to-vehicle relative 
attitude determination.  The attitude determination would be based on near-field radio signals 
from these transmitters, called pseudolites,1 which are radio-frequency transmitters that emit 
signals similar to the Global Positioning System (GPS) transmissions.2-4  While pseudolites are 
still a developing technology, which have not yet been demonstrated in an on-orbit space flight 
experiment, it is perceived that they hold great promise for augmenting the existing GPS 
satellite-based navigation and attitude determination technology in local-area applications.  At 
the NASA Johnson Space Center (JSC), a recent project demonstrated the use of an indoor 
pseudolite “constellation” to enable autonomous position determination in a robot.  There are 
plans to continue development and research related to pseudolite-based navigation at the new 
JSC Navigation Systems & Technology Laboratory (NSTL). 

The problem of finding the attitude of a vehicle using GPS-type signals essentially involves a 
two-step process.  First, since phase differences are used, the correct number of integer 
wavelengths between a given pair of antennas must be found.  This problem can generally be 
solved using instantaneous integer searches or using motion-based techniques.  Much attention 
has been placed on resolving the integer ambiguity problem over the past many years.  Once the 
integer ambiguities are known, then the attitude problem must be solved.5 

Instantaneous methods6,7 for integer ambiguity resolution find a solution that minimizes the 
error residual at a specific time by searching through an exhaustive list of all possible integers 
and rejecting candidate solutions when the residual becomes too large.  Refinements can be 
made to the solution by restricting the search space with knowledge of a-priori information, such 
as the maximum tilt the baseline should encounter.  Instantaneous methods generally rely on 
solving a set of Diophantine equations.8  The appeal of these methods is that they provide an 
“immediate” attitude solution, limited only by computation time, and are well suited to short 
baselines.  However, the minimum residual does not guarantee a correct solution in the presence 
of noise.  In fact, it is possible that instantaneous methods can report a wrong solution as valid.  
This lack of integrity can cause significant problems if the sensor output is used to control a high 
bandwidth actuator, such as gas jets on a spacecraft.  Another consideration is that instantaneous 
methods sometime require that the antenna array must be within a defined angle (typically 30 
degrees) of a reference attitude, which is often true for ground-based applications, but is less 
likely for space-based applications. 

Dynamic techniques for resolving integer ambiguities involve collecting data for a given 
period of time and performing a batch solution,9-11 in which the integer terms remain constant 
over the collection period.  These techniques rely on the fact that a certain amount of motion has 
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occurred during the data collection, either from vehicle body rotation or GPS line of sight 
motion.  Their main disadvantage, compared to instantaneous approaches, is that it takes time for 
the motion to occur, which may be on the order of several minutes.  Another consideration is that 
a potentially significant amount of memory is required for the storage of the batch data 
collection.  But, motion-based techniques also have significant advantages over instantaneous 
methods.  Most importantly, motion-based techniques are inherently high integrity methods 
because there are numerous checks that can be implemented into the solution before it is 
accepted.  These include using statistical checks applied to error residuals, matrix condition 
number checks, and using the closeness of the computed floating-point “integers” to actual 
integers as a check.  The probability of an erroneous solution being reported as valid can be 
made as small as desired by appropriately setting the thresholds on these integrity checks. 

This paper is organized as follows.  First, the concept of the GPS phase difference 
measurement is introduced.  Then, the effect of non-planar wavefronts due to making 
measurements from the near-field of pseudolites is investigated.  Next, the integer ambiguity 
problem is addressed.  A geometric inequality is introduced that will be used to significantly 
reduce the integer search space.  The batch-type loss function used to resolve the remaining 
integers is shown, along with a covariance integrity check.  Finally, the new algorithm is tested 
using simulated measurements of vehicle motion relative to the ISS. 

GPS Sensor Model 
In this section, a brief background of the GPS phase difference measurement is shown.  The 

main measurement used for attitude determination is the phase difference of the GPS signal 
received from two antennas separated by a baseline.  The wavefront angle and wavelength are 
used to develop a phase difference, as shown in Figure 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  GPS Wavelength and Wavefront Angle 

The phase difference measurement is obtained by9 

θλ

bl

To GPS 
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 b nl cosθ λ φ= −∆b g  (1) 

where bl  is the baseline length (in cm), θ  is the angle between the baseline and the line of sight 
to the GPS spacecraft, n  is the integer part of the phase difference between two antennae, ∆φ  is 
the fractional phase difference (in cycles), and λ  is the wavelength (in cm) of the GPS signal.  
The two GPS frequency carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz.  As of this 
writing, non-military applications generally use the L1 frequency.  The measured fractional 
phase difference can be expressed by 

 ∆φ = +b A s nT  (2) 

where s R∈ 3  is the normalized line of sight vector to the GPS spacecraft in a reference frame, 

b R∈ 3  is the baseline vector (in wavelengths), which is the relative position vector from one 

antenna to another, and A R∈ ×3 3  is the attitude matrix, an orthogonal matrix with determinant 1 
(i.e., A A IT = ×3 3) representing the transformation between the two frames.  The measurement 
model is given by 

 ∆~φij i
T

j ij ijb A s n w= + +  (3) 

where ∆~φij  denotes the phase difference measurement for the ith baseline and jth sightline, and 
wij  represents a zero-mean Gaussian measurement error with standard deviation ϖ ij  which is 
05 0 026. .cm λ =  wavelengths for typical phase noise.9 

Attitude Determination in the Near Field of Pseudolites 
The effect of non-planar wavefronts due to making measurements from the near-field of 

pseudolites is shown in an example.  Consider a system containing two baselines, making 
observations of three non-coplanar sightlines.  Moreover, for simplicity in this example, let us 
treat the phase observations as being unambiguous ranges, as if the integer ambiguities had 
already been determined.  

A simulation has been performed to generate a set of single-difference phase measurements, 
based on transmitter distances ranging from 25 meters to 25 thousand kilometers.  The two 
simulated baselines were both 3 meters long, and were orthogonal to each other.  The 
transmitters were simulated in three cases.  The first case modeled the transmitters at a GPS-like 
distance.  The geometry of the three transmitters was such that they were widely distributed in 
the sky in this case.  The second and third cases modeled the transmitters pseudolite-like 
distances, with spacing between the transmitters on the order of 2 to 20 meters.  Table 1 shows 
the simulation parameter values.   

The simulated single-differenced measurements were used to estimate the attitude of the 
“body” to which the baseline pair was attached.  The estimation technique applied for all cases 
was an iterated minimum-variance algorithm, in which the measurements were modeled with the 
linearized expression for the unambiguous phase difference in Equation (3). 

Table 2 shows the results from the simulation run.  As expected, the attitude solution 
accuracy is essentially perfect (as we are using perfect measurements in this simulation) for cases 
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in which the transmitters are far away. It is seen using the signal set from 250 meters distance 
results in accuracy on the order of 1 degree per axis.  The signal set from 25 meters distance, 
results in accuracy on the order of 5 to 10 degrees per axis, based on this approach, due to the 
nonlinearity of the actual measurements. 

Table 1  Parameters for Simulation of Far-Field and Near-Field Signals 

 

Case 1: Distant Transmitters 

GPS-Like Scenario 

Distance: 2.5 x 107 m 
(Elev, Az)Transmitter 1 = (10°, 0°) 

(Elev, Az)Transmitter 2 = (10°, 120°) 

(Elev, Az)Transmitter 3 = (70°, 240°) 

 
Case 2: Mid-Field Transmitters: 

 Pseudolite-Like Scenario, with 20-m-level 
distances between transmitters 

Distance: 2.5 x 102 m 
(Elev, Az)Transmitter 1 = (10°, 0°) 

(Elev, Az)Transmitter 2 = (15°, 8°) 

(Elev, Az)Transmitter 3 = (20°, 15°) 

 
Case 3: Near-Field Transmitters: 

Pseudolite-Like Scenario, with 2-m-level 
distances between transmitters 

Distance: 2.5 x 101 m 
(Elev, Az)Transmitter 1 = (10°, 0°) 

(Elev, Az)Transmitter 2 = (15°, 8°) 

(Elev, Az)Transmitter 3 = (20°, 15°) 

 
Table 2   Attitude Solutions Based on Simulated Far-Field and Near-Field Signals 

 Roll Pitch Yaw 

True Attitude 10.0° -73.0° 20.0° 

Case 1 Attitude Estimate 10.000017° -73.000003° 20.000014° 

Case 2 Attitude Estimate 10.502° -74.087° 20.118° 

Case 3 Attitude Estimate 16.428° -78.558° 23.051° 

 

The results of this simulation provide an interesting study of the degradation of attitude 
accuracy for a simple estimator, in the presence of non-planar wavefronts.  Case 2 and 
particularly Case 3 show that while the nonlinearity of the single-differenced phase measurement 
has a deleterious effect in the pseudolite near field, the potential exists for attitude determination 
with few-degree accuracy per axis.  However, this simulation has assumed that the phase 
ambiguities are already resolved.  This motivates further investigation of ambiguity resolution 
methods for near-field phase-based attitude determination. 
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Integer Ambiguity Resolution 
In this section a new attitude-independent algorithm to resolve the integer ambiguities is 

presented using static searches.  This involves using a series of tests that the possible integers 
must first pass, which is used to significantly reduce the search space.  Then, an optimal batch-
type loss function is minimized to determine the optimal integers. 

Static algorithms have an advantage in that they provide an instantaneous solution of the 
integers.  However, they are prone to noise errors, which can induce incorrect solutions.  In this 
paper an integer search is performed to maximize the probability that a unique solution is the 
correct solution, while at the same time reducing the search space by using normality constraints 
as well as geometric constraints.  First, it assumed that either three noncoplanar baselines or 
three noncoplanar sightlines are available (if three noncoplanar baselines exist then they should 
be used).  The first step involves reducing the integer search space by using a set of only two 
baselines and two sightlines.  For this case, it can be shown from geometry that the following 
inequality must be true (using baselines b1 and b2 ) 

 
b b b b b n

n n b b b n

j j

j j j j j j
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2
2

1 2
2

2
2
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2

1 1 2 2 1 2 1
2
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> ⋅ + −

− − − ⋅ + −

c h e j
e je jc h e j

∆

∆ ∆ ∆

~

~ ~ ~

φ

φ φ φ
 (4) 

Note, the same inequality can be applied using sightlines s1  and s2 : 

 b s s n n n s s ni i i i i i i i i
2

1 2
2

1 1
2

1 1 2 2 1 2 2 2
2

1 2− ⋅ > − − − − ⋅ + −c h e j e je jc h e j∆ ∆ ∆ ∆
~ ~ ~ ~φ φ φ φ  (5) 

If the integers have been properly resolved then it can be shown that Equation (4) reduces down 
to (in the noise free case) 

 A s b bjc h b g⋅ × >1 2
2

0 (6) 

This means that A s j , b1 and b2  must not lie in the same plane.  We need this condition to be 
able to extract attitude information outside of the b1,b2  plane.  Note, Equation (6) is almost 
always satisfied if the integers pass the test in Equation (4).  Equation (4) or (5) can be used to 
significantly reduce the search space, since only two baselines (or two sightlines) are considered 
at a time, as opposed to considering all three simultaneously.   

The next step involves converting the sightlines into the body frame or converting the 
baselines into the reference frame.12  For the former the algorithm begins by representing the jth 
sightline vector in the body frame, A s j , as the sum of two components.  The first component 
�s j  is a function of the measured fractional phase measurements, and the second c j  depends on 
the unknown integer phase differences. This representation is accomplished by minimizing the 
following loss function 

 J As n b As j Nj
iji

M

ij ij i
T

je j e j= − − =
=
∑1

2
1 1 22

1

2

ϖ
φ∆~ , , ,for …  (7) 
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where M  is the number of baselines and N  is the number of available sightlines.  If at least 
three non-coplanar baselines exist, the minimization of Equation (7) is straightforward and leads 
to 

 As s cj j j= −�  (8a) 

 � ~s B bj j
iji

M

ij i=
L
N
MM

O
Q
PP

−

=
∑1

2
1

1
ϖ

φ∆  (8b) 

 c B n bj j
ij

ij i
i

M
=
L
N
MM

O
Q
PP

−

=
∑1

2
1

1
ϖ

 (8c) 

 B b bj
iji

M

i i
T=

=
∑ 1

2
1 ϖ

 (8d) 

Since the measurements are not perfect, Equation (8a) is replaced by the effective measurement 
model 

 �s A s cj j j j= + + ε  (9) 

where c j  is a constant bias since the baselines are assumed constant, and ε j  is a zero-mean 

Gaussian process with covariance R Bj j= −1.   This model is used for the actual attitude 
determination,12 which we will not consider further in this paper. 

The next step is to use an attitude-independent method to find the phase-bias vector c j  for 
each sightline, which gives all the sightlines in both the body frame and the reference frame.  
The explicit integer phases are not needed for this solution, but it is important to check that they 
are close to integer values, as mentioned in the Introduction.  In the general case, the explicit 
integer phases can be found from the attitude solution.  The three-baseline case ( M = 3) is 
simpler, for in this case Equation (5c) can be inverted to give 

 n b cij i
T

j=  (10) 

With more than three baselines, however, Equation (8c) does not have a unique solution for c j , 
so the M  integer phases for sightline s j  cannot be found from c j  alone.  We will consider the 
three-baseline case, which is the most common in practice.  If more baselines are available, we 
are always free to select a three-baseline subset.  Then, after the integer phases have been 
determined, a refined attitude estimate can be computed using all baselines (i.e., three baselines 
are sufficient to determine an attitude, which may then be used to resolve the integers 
corresponding to the other baselines). 

To eliminate the dependence on the attitude, the orthogonality of A and Equation (9) are used 
to give  
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s A s s c
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Next, following Alonso and Shuster, the following effective measurement and noise are 
defined13 

 z s sj j j≡ −�
2 2

 (12a) 

 v s cj j j j j≡ − ⋅ −2
2

�e j ε ε  (12b) 

Then, the effective measurement model is  

 z s c c vj j j j j= ⋅ − +2
2

�  (13) 

where v j  is approximately Gaussian for small ε j  with mean and variance given by 

 µ j j jE v R≡ = −n s n strace  (14) 

and 

 σ µ µj j j j j
T

j j j jE v s c R s c2 2 2 24≡ − = − − −{ } e j e j� �  (15) 

respectively.  Equations (12)-(15) define an attitude-independent algorithm because they do not 
contain the attitude matrix A. 

The negative-log-likelihood function for the bias is given by 

 J c
k

z k s k c c k kj
j

j j j j j j
k

L

e j b g b g b g b g b g= − ⋅ + −L
NM

O
QP + +

R
S|
T|

U
V|
W|=

∑1
2

1 2 22
2 2

2

1 σ
µ σ π� log log  (16) 

where L  is the total number of measurement epochs, and the symbol k  denotes the variable at 
time tk .  The maximum-likelihood estimate for c j , denoted by c j

* , minimizes the negative-log-
likelihood function, and satisfies 

 
∂

∂
=

∗

J c

c
j

j
c j

e j
0  (17) 

The minimization of Equation (16) is not straightforward since the likelihood function is 
quartic in c j .  A number of algorithms have been proposed for estimating the bias (see Ref. 13 
for a survey).  The simplest solution is obtained by scoring, which involves a Newton-Raphson 
iterative approach.  Another approach avoids the minimization of a quartic loss function by using 
a “centered” estimate.  A statistically correct centered estimate is also derived in Ref. 13.  
Furthermore, Alonso and Shuster show a complete solution of the statistically correct centered 
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estimate that determines the exact maximum likelihood estimate c j
* .  This involves using the 

statistically correct centered estimate as an initial estimate, and iterating on a correction term 
using a Gauss-Newton method.  Although this extension to the statistically correct centered 
estimate can provide some improvements, this part is not deemed necessary for the GPS problem 
since the estimated quantity for nij  is rounded to the nearest integer. 

In this paper another approach is used.  As before, we consider the case for M = 3.  
Equations (8b) and (8c) are first re-written as 

 �s Bj j j j= −1Γ Φ  (18a) 

 c B nj j j j= −1Γ  (18b) 

where 

 Γj j j jb b b≡ − − −ϖ ϖ ϖ1
2

1 1
2

2 1
2

3  (19a) 

 n
n
n
n

j

j

j

j

≡

L

N
MMM

O

Q
PPP

1

2

3

 (19b) 

 Φ

∆

∆

∆
j

j

j

j

≡

L

N

MMM

O

Q

PPP

~
~
~

φ
φ
φ

1

2

3

 (19c) 

The loss function in Equation (16) can now be re-written (neglecting the term independent of 
n j ): 

 J n
k

B k n s k B kj
j

j j j j j j j
k

L

e j a f a fe j a f o t a f= − − +L
NM

O
QP +

R
S|
T|

U
V|
W|

− −

=
∑1

2
1

2
1 2 2 1

2
2

1
σ

σΓ Φ trace log  (20) 

with 

 σ j j j
T

j
T

j j j j jk k n B k n B2 3 1a f a fe j a fe j o t= − − −− −Φ Γ Γ Φ trace2  (21) 

Equation (20) can now be used to directly determine the integers without pre-computing the 
sightline vector in the body frame.  Equation (20) clearly indicates that the loss function involves 
a scalar check on the norm vector residuals (since B n s cj j j j j j

− − = −1Γ Φe j � ).14  In practice if n j  
is real valued, then a sufficient amount of vehicle motion must occur in order to determine the 
minimum.  This was the approach used in Ref. [11].  However, the solution in this paper 
involves checking the remaining integers that have passed the inequality condition in Equation 
(4).  Since the solutions for the components of n j  are constrained to be integers, then it is more 
likely that a unique solution which minimizes Equation (21) can be determined with minimal 
vehicle motion. 
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The estimate error covariance can also be computed in order to insure that the determined 
integer is statistically correct.  This can be shown to be given in the limit of infinitely large 
samples by 

 P
k

k n k nj
j

j j j j
T

k

L
= − −
R
S|
T|

U
V|
W|=

−

∑ 4
2

1

1

σ a f a f a fΦ Φ  (22) 

Equation (22) can be used to develop an integrity check for the algorithm, using standard results 
on hypothesis testing.15  For example, the computed integer can be shown to have only a 0.0013 
probability of selecting the wrong integer when three times the square root of a diagonal element 
of Pj  is less than 1/2. 

The case where 3 coplanar baselines can be determined by considering 3 non-coplanar 
sightlines.  A batch solution for this case can be determined using a similar approach shown in 
Ref. 11; however, the statistically correct centered estimate approach is complex since the 
sightlines vary with time.  Also, this requires that the same 3 sightlines are available long enough 
to determine a solution (which isn’t always possible).  The integer search approach presented 
here may alleviate these difficulties.  The loss function for this case is given by 

 J n
k

S k k k n b S k ki
i

i i i i i i i
k

L

c h a f a f a f a fc h a fo t a f= − − +L
NM

O
QP +

RS|T|
UV|W|

− −

=
∑1

2
1

2
1 2 2 1

2
2

1
σ

σΓ Φ trace log  (23) 

where 

 σ i i i
T

i
T

i i i i ik k n k S k k k n S k2 3 1a f a fc h a f a f a f a fc h a fo t= − − −− −Φ Γ Γ Φ trace2  (24a) 

 Γi i i is s s≡ − − −ϖ ϖ ϖ1
2

1 2
2

2 3
2

3  (24b) 

 n
n
n
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i
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i
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N
MMM
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Q
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 (24c) 

 Φ
∆
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∆

i
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≡
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 S s s s s s si i
T

i
T

i
T= + +− − −ϖ ϖ ϖ1

2
1 1 2

2
2 2 3

2
3 3  (24e) 

For this case both Γ  and S  vary with time.  The estimate error covariance for this case is given 
by 

 P
k

k n k ni
i

i i i i
T

k

L
= − −
R
S|
T|

U
V|
W|=

−

∑ 4
2

1

1

σ a f a f a fΦ Φ  (25) 

Once again, this can be used to develop an integrity check for the algorithm. 
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There are many advantages of the new algorithm.  First, the algorithm is fully autonomous 
(i.e., it requires no a-priori information such as an a-priori attitude guess).  Second, it can be used 
to determine the integers when 3 coplanar baselines exist.  Third, the required search space can 
be significantly reduced using Equation (4) or (5).  Finally, the integers for other sightlines (or 
baselines) can be easily resolved by calling the same subroutine.  For these reasons, the new 
algorithm provides an attractive approach to resolve the integers. 

Integer Ambiguity Simulation Results 
A simulation of a CRV escape maneuver has been undertaken. The overall goal of the 

simulation study is to evaluate how fast the integers can be resolved, and to assess the reliability 
of the determine solutions.  The simulated CRV has four GPS antennas that form three baselines 
(this is typical for most GPS attitude determination systems).  The antenna separation distances 
are 0.61 m, 1.12 m, and 1.07 m, respectively.  One antenna (in baseline 3) is located 0.23 m out 
of plane (below) the other three antennas.  On the CRV, the antennas are assumed to be mounted 
on pedestals to minimize signal reflections and multipath.  For the simulation, multipath errors 
are introduced using a simple Markov-process with time constant of 5 seconds and standard 
deviation of 0.026 wavelengths.16  The baseline vectors in wavelengths are given by 

 b b b1 2 3

2 75
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0 00
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.

 (26) 

The raw measurements are processed at 1 Hz over a forty minute simulation.  During the 
simulated run, a minimum of three visible pseudolites are in sight at all times.  However, 
resolution of the ambiguous integers for the phase measurements from any specific pseudolite 
requires that it remain in view continuously until the sequential algorithm converges.  In practice, 
all available sightlines should be processed, since attitude determination requires the integers to 
be resolved for two pseudolites simultaneously.  The simulation contains a number of spans 
when sightlines to two specific pseudolites are continuously available for the ambiguity 
resolution algorithm. 

Since the baselines are non-coplanar, Equations (4) and (20) will used to determine the 
integers.  For the simulation the following integer ambiguities are introduced: 

 n n1 2

6
1
3

5
8
2

=
−L

N
MMM

O

Q
PPP

= −
−

L

N
MMM

O

Q
PPP

,  (27) 

From the baseline geometry the integers are bounded from –8 to 8.  If a full search is 
implemented using Equation (20) solely this would require 8192 searches (4096 for each 
sightline).  Equation (4) requires a total of only 1024 searches.  The integers at the initial time 
that passed the inequality in Equation (4) are shown in Table 3. 

Table 3 clearly shows how Equation (4) can be used to dramatically reduce the search space.  
Only 9 remaining searches need to be used in Equation (20).  Since the computational load to do 
this search is extremely low, a search can be implemented every few seconds or so.  For this 
simulation the cost function in Equation (20) is summed over time and has been checked every 5 
seconds.  The stopping condition is given when three times the square root of every diagonal 
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element of Pj  is less than 1/2.  For this case, this occurred in 15 seconds for each sightline.  The 
associated cost for each integer set after 15 seconds is also shown in Table 3.  Clearly, the correct 
integers have been found.  Also, another simulation using Equations (5) and (23) has been 
performed in order to investigate the performance using 3 non-coplanar sightlines.  Results 
indicate that this approach give comparable results to the results shown in Table 3.  Finally, 100 
Mote Carlo type simulations have been executed in order to assess the reliability of the new 
algorithm.  In every case the integers were determined correctly within 15 seconds.   

Table 3  Remaining Integers and Associated Costs 

 Integers Cost 

-6     1     3 5.3 

-3     5     3 10.2 

-3     7     3 13.6 
First Baseline 

-1     8     2  145.2 

 5    -8    -2 5.7 

 7    -6    -3 11.4 

 7    -5    -3 13.8 

 8    -8    -8 26.3 

Second Baseline

 8    -7    -7 94.6 

 
Conclusions 

In this paper, the use of an autonomous (independent of ISS power or data systems) set of 
radio transmitters (pseudolites) is explored for relative vehicle-to-vehicle attitude determination.  
Two vital issues were addressed: (1) the effect of non-planar wavefronts due to making 
measurements from the near-field of pseudolites, and (2) the resolution of the integer ambiguities 
due to the need for phase difference measurements.  Simulation results show that the attitude 
accuracy for a simple estimator degrades in the presence of non-planar wavefronts.  Still, the 
potential exists for attitude determination within few-degree accuracy per axis.  A new algorithm 
was developed for GPS integer ambiguity resolution.  The algorithm uses the best qualities of 
both instantaneous and motion-based techniques.  It uses an instantaneous approach to 
substantially reduce the search space, and then uses a batch-type loss function to resolve the 
remaining possible integers.  The new algorithm has several advantages over previously existing 
algorithms.  First, the algorithm is attitude independent so that no a-priori attitude estimate (or 
assumed vehicle motion) is required.  Second, a suitable integrity check can be used to determine 
the correct values.  Finally, it can resolve the integers even when coplanar baselines exist.  The 
algorithm was tested using a simulation of a typical escape maneuver for the Crew Return 
Vehicle.  Results indicated that the new algorithm provides a viable and attractive means to 
effectively resolve the integer ambiguities.  Results for these studies clearly show that 
pseudolites can provide an effective means for relative attitude determination. 
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