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Abstract

In this paper, autonomous orbit navigation of space-
craft for deep space missions is implemented com-
pletely independent of a ground tracking system. In
order to achieve this aim, the Doppler measurement
due to the relative motion from a spacecraft to the Sun
is used. Other measurements are the directional data
from the spacecraft to the Sun measured from a Sun
sensor, and directional data from the spacecraft to the
Earth measured from an Earth sensor. The observabil-
ity of the system with the available measurements is
investigated using a linearized observability analysis.
Autonomous orbit navigation is obtained by extended
Kalman filtering. Results using the Doppler mea-
surement and Sun sensor indicate that autonomous
navigation can be accomplished within an accuracy of
5km in position. Adding directional data with respect
to the Earth considerably improves the estimate accu-
racy to within 3km.

Introduction

In general, orbit determination of a spacecraft in-
volves measurements of range and range rate based on
ground tracking or (as a newer technique) signals from
GPS receivers.1 However, ground tracking may incur
extensive costs to a spacecraft mission, and GPS is not
suitable for deep space missions. Therefore, estimat-
ing the orbit without aid from the Earth is needed.
The concept of autonomous orbit determination for
Earth-orbiting spacecraft without ground tracking or
GPS was first proposed and analyzed in Ref. [2]. A
batch estimator was designed in Ref. [3] based upon
nonlinear least squares to autonomously determine the
orbits of two spacecraft from measurements of the
relative position vector from one spacecraft to the
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other. The estimator in Ref. [3] uses a time series of
the inertially-referenced relative position vectors and
orbital dynamic models. This concept can be used
for absolute orbit determination of formation flying
spacecraft. Recently, the idea of autonomous naviga-
tion of a spacecraft using celestial objects has been
presented using an extended Kalman filter.4 The mea-
surements used in the simulations are the line of sight
directions to the celestial objects from high-accuracy
attitude sensors and one-way Doppler measurements
from ground stations. Guo5 has proposed a complete
self-contained autonomous navigation system for deep
space missions using two types of on-board observation
data. The first is a directional data of the space-
craft relative to the Sun, and the second is the optical
Doppler shift due to the motion of the spacecraft rel-
ative to the Sun.

In general, the light of the Sun can be imaged with
a spectrograph or a spectrometer. Due to the rel-
ative motion between a light source and a moving
object, the spectral lines of light are shifted from the
original positions corresponding to their wavelengths,
which is called the Doppler shift. Since the shifted
amount depends on the relative velocity, a radial ve-
locity can be calculated. The Doppler shift from sun-
light can be measured using instruments such as a
Doppler compensator and a resonance-scattering spec-
trometer.6 According to [6], the Doppler compensator
gives an accuracy of 1 − 10m/sec and the resonance-
scattering spectrometer has an accuracy of less than
1cm/s. The resonance-scattering spectrometer instru-
ment uses a selected single spectral line, not all spec-
tral lines. When the light comes to the instrument,
it passes through a filter, polarizer, and electro-optic
modulator. The polarized light shows only one or two
shifted components due to a magnetic field in the va-
por cell. From these shifted lines, the radial velocity
can be measured.

At this point of time, there are several space-based
observatories that observe the sun, such as Global
Geospace Science (mission operations, Interplan-
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etary Physics Laboratory WIND, Polar Plasma
Laboratory POLAR), SERTS (Solar Extreme-
ultraviolet Rocket Telescope and Spectrograph),
and SOHO (The Solar and Heliospheric Obser-
vatory) (http://www.lmsal.com/solarsites.html).
Among them, SOHO is a space-based observa-
tory for the helioseismology, which needs to be
able to measure the individual oscillation modes
that have amplitudes of less than about 0.1m/s.
Therefore, a need exists for an instrument that
can measure to within an accuracy of less than
1cm/s(http://soi.stanford.edu/results/heliowhat.html).
This coincides with our need for an instrument to
measure a radial velocity measurement.

The work by Guo5 is extended in this paper by
incorporating dynamical models for orbit navigation
using a Kalman filter. In order to achieve this aim, it
is assumed that the Doppler measurement due to the
relative motion from a spacecraft to the Sun is used.
Other measurements used in the Kalman filter are the
directional data from the given spacecraft to the Sun
measured from a Sun sensor, and directional data from
the spacecraft to the Earth measured from an Earth
sensor.

First, we introduce the equations of motion for an
orbiting spacecraft. Next, a summary of the obser-
vations equations is given, which uses both velocity
measurements and line of sight information. Then, the
extended Kalman filter is reviewed. Next, an analysis
of the observability of the system using different sen-
sor configurations is shown. Finally, simulation results
and discussions are given.

Equations of Motion

In this paper, the orbit of an interplanetary space-
craft is considered to be estimated. The heliocentric
coordinate system (Figure 1) is used in which the ori-
gin is the center of the Sun, the fundamental plane
is the plane of the ecliptic, the x-axis directs to the
Vernal equinox, the y-axis is perpendicular to the x-
axis in the fundamental plane, and the z-axis points
out perpendicularly with respect to the fundamental
plane at the origin following the right-hand rule.7 In
Figure 1, ε is the obliquity of ecliptic, β is the celestial
latitude and λ is the celestial longitude of an object.

In this initial work, a non-rotating Sun is assumed.
The dynamical model equation for a spacecraft moving
under the influence of the Sun’s gravity is

ṙ = v (1a)

v̇ = −µs
r3

r (1b)

where the vectors r and v denote the inertial position
and velocity of a spacecraft, r =

√

x2 + y2 + z2 and
µs is the gravitational mass constant of Sun. It is
assumed that there is no external disturbing force for
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Fig. 1 Heliocentric coordinate system.

the system except the gravitational force between the
Sun and an interplanetary spacecraft.
As mentioned previously, there are two kinds of mea-

surements in the filter: a radial velocity and a line of
sight vector. Attitude knowledge for an interplanetary
spacecraft is assumed to be known; attitude estimation
is not considered in this paper. First, a radial velocity
ṙ = v can be measured from a Doppler shift due to the
relative motion between the Sun and a spacecraft with
spectrometer as mentioned in previous sectioin. For
simulation purposes, the radial velocity can be mod-
eled by the following equation:

ṙ ≡ vr =
r · ṙ
r
=

r · v
r

(2)

Second, we assume that a measurement of line of sight
is available using an optical instrument, so that r = r l̂.
In a real system, this measurement should be observed
from the given spacecraft to the Sun but here, the line
of sight measurement is in the reference frame, since we
only deal with the absolute position and velocity with
respect to the inertial reference frame. We assume
that the line of sight vector is formed using spherical
coordinate measurements, so that

l̂ = cos(Θ) cos(Φ)n̂1 + cos(Θ) sin(Φ)n̂2

+sin(Θ)n̂3

(3)

where Φ (azimuth angle) and Θ (elevation angle) are
considered to be measured. Figure 2 shows the graphi-
cal concept of the orbit of an interplanetary spacecraft,
the radial velocity measurement vr, and the line of
sight vector l̂. From this line of sight vector, two an-
gles Φ and Θ can be modeled as follows:

Φ = tan−1
(y

x

)

(4a)

Θ = sin−1
(z

r

)

(4b)

To improve the estimation accuracy, an additional
measurement is introduced, which is a line of sight vec-
tor l̂se measured from a given spacecraft to the Earth.
The description of this measurement is shown in Fig-
ure 3 as well as the Doppler measurement and the
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Fig. 2 Diagram of an orbit and Sun measurements.
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Fig. 3 Diagram of an orbit and Earth measure-
ments.

line of sight measurement with respect to the Sun.
An orbit of the Earth can be obtained by the same
forcing equation as Eq. (1) replacing r and v by re

and ve for position and velocity vector, and then re is
√

x2
e + y2

e + z2
e . The line of sight vector between the

interplanetary spacecraft and the Earth can be written
in the same manner as the line of sight vector between
the Sun and a spacecraft as

l̂se = cos(Θse) cos(Φse)n̂1 + cos(Θse) sin(Φse)n̂2

+sin(Θse)n̂3

(5)

Now, the measurement from this line of sight vector
can be expressed as

Φse = tan
−1

(

ye − y

xe − x

)

(6a)

Θse = sin
−1

(

ze − z

re − r

)

(6b)

where Φse is an azimuth angle and Θse is an eleva-
tion angle of the Earth, when they are viewed from an
interplanetary spacecraft to the Earth in the inertial
reference frame.

Extended Kalman Filter

An extended Kalman filter is used for position and
velocity estimation. The standard orbit model in
Eq. (1) can be written in the general state equation
form which can be used for the propagation of the
states in the filter as

ẋ = f(x, t) +w(t) (7)

where x =
[

rT vT
]T
and w is a process noise term.

In general, the the discrete measurement equation can
be expressed for the filter as

ỹk = hk(xk, tk) + vk (8)

where ỹ is a measurement vector and v is a measure-
ment noise which is assumed to be a white Gaussian
noise process. In order to use a recursive filter, we need
to express the state and measurement equation in the
linearized form. When the first order expansion is used
for above nonlinear equation, it can be rewritten to be

δẋ = Fδx+Gw (9a)

δỹ = Hδx+ v (9b)

where

F ≡ ∂f

∂x
(10a)

G ≡ ∂f

∂w
(10b)

H ≡ ∂h

∂x
(10c)

E{wwT } = Q (10d)

E{vkvTk } = R (10e)

where w and v are assumed to be uncorrelated, Q
and R are process noise weight matrix and measure-
ment noise weight matrix with zero mean, respectively.
Since the state equation is a standard orbit model, the
Jacobian matrix of the state equation is given by

∂f

∂x
= F =

[

03×3 I3×3

G3×3 03×3

]

(11)

and G is a gravity gradient matrix which can be writ-
ten by

G =







−µs

r3
+ 3µsx

2

r5
3µsxy
r5

3µsxz
r5

3µsxy
r5

−µs

r3
+ 3µsy

2

r5
3µsyz
r5

3µsxz
r5

3µsyz
r5

−µs

r3
+ 3µsz

2

r5







(12)
In order to obtain the partial of the measurement

equation, Eq. (2) can be reformulated as

r · ṙ = r · v (13)
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From the above expression, the partial of a radial ve-
locity with respect to each state is given by

∂ṙ

∂x
=
1

r

[

∂ r

∂x
ṙ+ r

∂ṙ

∂x
− ∂r

∂x
ṙ

]

(14)

Let X be y/x and Y be z/r. Then the line of sight
measurements can be expressed as

∂Φ

∂x
=

1

1 +X2

∂X

∂x
(15)

∂Θ

∂x
=

1√
1− Y 2

∂Y

∂x
(16)

Now, the above partials of measurement equations can
be used in the filter. In the extended Kalman filter,
the state can be updated when new measurements are
available using the equation:8

x̂+
k = x̂−k +Kk

[

ỹk − hk(x̂
−
k
)
]

(17)

where the superscripts + and − denote the estimate at
the measurement update time and propagation time,
respectively, and K is a gain at the measurement time
update given by

Kk = P−k H
T
k

[

HkP
−
k H

T
k +R

]

(18)

and here P+
k is an updated error covariance matrix

P+
k = [I −KkHk]P

−
k (19)

and P−k is an error covariance matrix before the up-
date which comes from the integration of the following
equation

Ṗ = AP + PAT +GQGT (20)

Also, the state propagation is given by the following
equation

x̂ = f(x̂, t) (21)

Equations (17) to (21) represent the extended Kalman
filter that is used to estimate the orbital position and
velocity.

Observability

The performance of a filter can be checked by in-
vestigating the observability of the given system with
various available measurements. The controllabiliy
and the observability were analyzed by Ref. [9] for
nonlinear systems. Observability of a nonlinear sys-
tem can be characterized from a differential geometric
point of view. Consider the following system Σ:

Σ

{

ẋ = f(x)
y = g(x)

(22)

where x ∈ N , a C∞ connected manifold of dimension
n, y ∈ <m and f and g are C∞ functions. A pair of
points x0 and x1 are indistinguishable if (Σ,x0) and

(Σ,x1) realize the same input-output map. Indistin-
guishability I is an equivalence relation on N . The
system Σ is locally weakly observable at x0 if there
exists an open neighborhood U of x0 such that for ev-
ery neighborhood V of x0 contained in U , Iv(x0) =
{x0} and is locally weakly observable if it is so at ev-
ery x ∈ N .9 Local weak observability can be checked
by an algebraic test using linear operators on C∞(N)
by Lie differentiation:

Lf g(x) =
∂g

∂x
f(x) (23)

If g is differentiated k times along f , the notation
Lkf g(x) is used, defined as

Lkf g(x) =
∂(Lk−1

f g)

∂x
f(x) (24)

with L0
f g(x) = g(x). Also, for simplicity the following

partial derivative is defined:

dg =
∂g

∂x
(25)

It is straightforward to show that the orbital and ob-
servation equations used in this paper are closed with
respect to Lie differentiation. Local observability can
be checked by forming the following matrix:

O =















dg(x)
dLf g(x)

...
dLn−2

f g(x)

dLn−1
f g(x)















(26)

If Σ satisfies the observability rank condition (i.e., O
has rank n) at x0, then Σ is locally weakly observ-
able at x0. In this analysis the matrix O is formed
at one instant of time. Global observability is difficult
to prove, although a version of the extended Kalman
filter in a special coordinate system has been shown
to asymptotically converge.10 In this paper the ob-
servability matrix is accumulated over the entire time
from the initial time t0 to the final time tf (i.e., the
set that contains all x in t) as a global check. This
approach does not guarantee convergence in the ex-
tended Kalman filter; however, we have found it useful
to quantify the relative observability between various
sensor configurations.
Using the observability matrix in Eq. (26), the sin-

gular value decomposition is performed as

O = UΣVT (27)

where Σ is a diagonal matrix of singular values and U

and V are unitary matrices. The singular values give
an indication of the rank of the observability matrix.
When Σ has rank n, which is the system order, the
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Table 1 Position and velocity at initial and final
time.

Initial r and v Final r and v

x 1.500× 108 1.4030× 107
y 2.814× 107 1.577× 108
z 9.444× 105 5.293× 106
ẋ -4.5653 28.38
ẏ 29.28 3.045
ż 0.9824 0.1022

Table 2 Orbital elements used in simulations.

Semimajor axis a = 1.5426× 108km
Eccentricity e = 0.033
Inclination i = 1.92 deg

Node right ascension Ω = 0deg
Argument of perigee ω = 297.9 deg

Period T = 3.305× 107s

system is fully observable. On the contrary, when Σ
has rank less than n, the overall system is unobserv-
able; however, the magnitude of each singular value
gives an indication of the degree of observability. Any
state corresponding to a larger singular value is more
observable than any state corresponding to a smaller
value. From the companion matrix VT of the singular
value decomposition, the state corresponding to each
singular value can be found. A column of the matrix
VT corresponds to each singular value and the num-
bers in each element in any column represents each
state. For example, the column corresponding to the
largest singular value means that this column gives
the most observable information, and the state corre-
sponding to the largest number in the column of VT

is the most observable state. In the same manner, the
column corresponding to the smallest singular value
gives the least observable information, and the state
corresponding to the largest number in the column of
VT is the least observable state.
In order to check the observability, an orbit trajec-

tory of an interplanetary spacecraft is chosen similar
to the Earth’s trajectory. The initial and the final val-
ues of the spacecraft position in km and velocity in
km/s are shown in Table 1. Figure 4 shows the tra-
jectory of the interplanetary spacecraft with the Sun
in the center. The orbit elements corresponding to the
above initial conditions are shown in Table 2.
Two sensor cases are investigated: the first uses the

Doppler measurement and directional data to the Sun
as measurements, and the second adds one more mea-
surement of directional data to the Earth. To be fully
observable, the observability matrix should have rank
6. It may not be possible to estimate the orbit of a
spacecraft using only the radial velocity measurement
with respect to the Sun since the rank of the observ-
ability matrix has less than 6, i.e. rank 4 in this case.
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Fig. 4 Position of an Interplanetary S/C.

Table 3 shows the singular values and the columns
of VT for this case. In the first column, two of the
singular values are zero up to 16 significant digits.
A condition number can be obtained by dividing the
largest singular value by the smallest singular value.
The condition number for this case is 1.58255 × 1020.
Column 1 of the VT matrix corresponds to the largest
singular value. The fourth element in this column has
the largest number, which means that the state ẋ is
the most observable state for this case. In column 2
the 3rd element has the largest number, and in column
3 the 6th element has the largest number. Using the
same insight to other columns, we can find which state
is most observable and which state is least observable.
In column 6 the fifth element has the largest value,
which means that the state ẏ is least observable. As
seen from Table 3, we infer the most observable state
to the least observable state is in the order of ẋ, z,
ż, x, y, and ẏ. Simulation results indicate that the
extended Kalman filter does not converge using only
velocity measurements, as expected from the observ-
ability analysis. Therefore, additional information is
required. Sun sensors can provide a directional mea-
surement with respect to the Sun. Additional, Earth
sensors provide a line of sight vector to the Earth.
Therefore, both sets of information can be added as
additional measurements to estimate the complete or-
bital position and velocity.

Table 4 shows the singular values in decreasing or-
der of their sizes which are obtained from two mea-
surements using velocity and Sun sensor information
(Case I), and from velocity, Sun sensor and Earth sen-
sor information (Case II). As shown in Table 4, Case
II is clearly more observable than Case I. For Case
I, the condition number is approximately 2.5 × 1010.
For Case II, the condition number is decreased up to
about 3.71 × 108 even though this case has the same
largest singular value as Case I. Therefore, we can
conclude that adding one more measurement from the
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Table 3 Singular values and the companion matrix VT.

SV column 1 column 2 column 3 column 4 column 5 column 6
908 1.97× 10−8 1.58× 10−7 5.31× 10−9 0.938 -0.345 -0.0116
2.41 −3.68× 10−7 −5.02× 10−8 −1.69× 10−9 -0.345 -0.938 -0.03148

1.76× 10−9 0.443 0.896 0.0301 −2.13× 10−7 −1.09× 10−5 0.000322
2.0× 10−12 -0.896 0.442 0.0149 3.21× 10−8 −0.00124 0.0369

0 0.0329 -0.0166 −8.47× 10−4 −6.75× 10−7 -0.0335 0.999
0 −3.54× 10−5 0.0336 -0.999 1.96× 10−10 9.65× 10−6 −0.000288

Table 5 Companion matrix VT for two measurement case.

column 1 column 2 column 3 column 4 column 5 column 6
x 1.97× 10−8 1.58× 10−7 5.31× 10−9 0.938 -0.345 -0.0116
y −3.96× 10−7 −1.65× 10−7 −2.12× 10−7 -0.345 -0.938 -0.0390
z 2.11× 10−8 5.14× 10−7 −2.73× 10−5 2.61× 10−3 0.0406 -0.999
ẋ −3.28× 10−4 -0.0182 0.9998 −3.11× 10−9 9.13× 10−7 −2.73× 10−5

ẏ 0.236 0.972 0.0178 −2.38× 10−7 −1.88× 10−7 1.25× 10−8

ż -0.972 0.236 0.00397 1.02× 10−7 3.30× 10−7 6.25× 10−9

Table 4 Singular values of the observability ma-
trix.

Case I Case II
1 907.754 907.758
2 2.41436 14.0824
3 1.43947 12.0302
4 2.68233× 10−5 2.62769× 10−4

5 5.34681× 10−6 2.33333× 10−4

6 3.1682× 10−8 3.62553× 10−6

Earth sensor makes the given system more observable.
For deep space missions, the directional data from a
spacecraft to the Earth can be substituted with the
directional data of any other planet near the given
spacecraft. Table 5 shows the 6 column matrix VT

obtained by using two measurements (Case I). For this
system, the position vector is weakly observable com-
pared to the velocity vector. From column 1 of VT

matrix, we can see that the state ż is the most ob-
served state, while from the last column of VT, the
state z is the least observed state. As a whole, us-
ing two measurements (radial velocity and a line of
sight with respect to the Sun), all states can be well
estimated, with the degree from the most observable
state to the least observable state in the order of ż, ẏ,
ẋ, x, y, and z.
Table 6 shows the 6 column matrix VT obtained by

using three measurements (Case II). Adding the Earth
sensor measurement make the system much more cou-
pled from an observability sense. For this case, the
states can be well observed in the order of ż, ẏ, ẋ, x, z,
and y. The state y is the least observable state. In this
case the position vector is the least observable state,
which is the same result given in the two measurement
case. This analysis indicates that the Kalman filter
can be considerably improved by using three measure-
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Fig. 5 Condition number between semimajor axis
and eccentricity.

ments (i.e., the filter should be able to converge better
by using all three measurements). This result is shown
in the next section.

We now consider the effects of the observability di-
rectly on the orbital elements in order to provide more
physical meaning. We only show results for the two
measurement case (Case I). The condition numbers of
the observability matrix are computed for two cases.
The first gives the condition number for varying values
between the semimajor axis a and eccentricity e with
constant inclination i set at 0 degrees. The second
gives the condition number for varying values between
the semimajor axis a and inclination i with constant
eccentricity e set at 0. All other orbit elements are
fixed as constants. For both cases, the semimajor axis
varies from 0.5 × 108km to 2 × 108km. The eccen-
tricity varies from 0 to 0.5 at 0.1 increments, and the
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Table 6 Companion matrix VT for three measurement case.

column 1 column 2 column 3 column 4 column 5 column 6
x 2.02× 10−8 1.59× 10−7 5.62× 10−9 0.938 -0.345 -0.0116
y −2.75× 10−6 −8.19× 10−6 2.58× 10−5 -0.102 -0.309 0.946
z −1.39× 10−5 −2.12× 10−5 −8.77× 10−6 -0.330 -0.886 -0.325
ẋ -0.128 -0.342 0.931 3.11× 10−6 9.15× 10−6 −2.54× 10−5

ẏ -0.512 -0.781 -0.357 8.84× 10−6 2.33× 10−5 1.01× 10−5

ż -0.849 0.523 0.0758 −4.75× 10−8 6.29× 10−8 8.25× 10−9
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Fig. 6 Condition number between semimajor axis
and inclination.

inclination varies from 0deg to 100 deg at 20 deg incre-
ments. The results are shown in Figure 5 and Figure
6 for each case, respectively. In Figure 5, the observ-
ability decreases as the semimajor axis increases, since
the condition number increases as the semimajor axis
increases. As a whole, the trend shows that the observ-
ability increases as the eccentricity increases except in
a few semimajor axis cases.
In Figure 6, the trend shows that the observabil-

ity increases as the inclination increases up to about
50 deg. When the inclination is greater than 50 deg,
the system observability decreases. For this case, the
radial velocity measurements at all times are the same
since the eccentricity is fixed as 0. However, the angu-
lar measurements Φ and Θ are influenced by a change
in the inclination. Figure 6 shows the various inclina-
tion changes (and thus changes in Φ and Θ) for varying
semimajor axis. For every value of the semimajor axis,
an inclination of 45 degrees gives the most observable
information.

Simulation Results

The orbital elements for the simulations are given
in Table 2. The standard deviation of the measure-
ment error for the radial velocity is assumed to be
1× 10−5km/s (i.e. 1cm/s) according to Ref. [6]. The
angle error is assumed to be 1.745×10−6rad following
the conventional measurement accuracy for the direc-
tional measurement. The process noise matrix Q in

the Kalman is assumed to be O6×6, following the tra-
ditional approach for orbit determination. There is
no process noise term used for the state propagation
since we assume that the dynamical model for the state
is perfect Keplerian motion. The measurement noise
weight matrix R is

R =





0.000012 0 0
0 0.0000017452 0
0 0 0.0000017452



 (28)

The initial estimates for the states are 1% off from
the true initial state values. This corresponds to a very
large error of about 1.5× 106km for position in the x-
axis. The initial error covariance P0 is theoretically an
expectation value of E{(x0 − x̂0)(x0 − x̂0)

T }. Here,
x̂0 is the initial estimated state vector. For two mea-
surements case, the initial error covariance adopted is
a diagonal matrix given by

P0 = 1.0× 1014

















12 0 0 0 0 0
0 12 0 0 0 0
0 0 12 0 0 0
0 0 0 a 0 0
0 0 0 0 a 0
0 0 0 0 0 a

















(29)

where a = (1×10−7)2. The filter is not sensitive to the
initial error covariance if the order of the initial error
covariance is greater than 1.0× 1010 and smaller than
1.0 × 1020. Using the Doppler measurement and the
Sun sensor measurements, the estimation errors for the
position and velocity are shown in Figure 7 and Fig-
ure 8 with the theoretical 3σ outliers computed from
the diagonal elements of the covariance matrix. The
estimation accuracy is obtained to within about 5km
in position and to within 1× 10−6km/sec in velocity.
In order to obtain more precise estimates, the line

of sight vector to the Earth is added as another mea-
surement. The initial error covariance is given by

P0 = 1.0× 1018

















12 0 0 0 0 0
0 12 0 0 0 0
0 0 12 0 0 0
0 0 0 a 0 0
0 0 0 0 a 0
0 0 0 0 0 a

















(30)

where a = (1 × 10−7)2. This case works well with
the initial error covariance order from 1.0 × 1018 to

7 of 9

American Institute of Aeronautics and Astronautics Paper 2000–3936



0 0.5 1 1.5 2 2.5 3

x 10
7

−100

0

100

time(s)

x 
er

ro
r(

K
m

)

0 0.5 1 1.5 2 2.5 3

x 10
7

−100

0

100

time(s)

y 
er

ro
r(

K
m

)

0 0.5 1 1.5 2 2.5 3

x 10
7

−100

0

100

time(s)

z 
er

ro
r(

K
m

)

Fig. 7 Position error with 3σ outliers for two mea-
surements.
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Fig. 8 Velocity error with 3σ outliers for two mea-
surements.

Table 7 3σ outliers of position and velocity at
t = tf .

Case I Case II
x 8.57036 5.39141
y 30.1329 14.7696
z 21.1996 2.49821
ẋ 5.08885× 10−6 2.85665× 10−6

ẏ 3.13851× 10−6 1.45402× 10−6

ż 3.92841× 10−6 7.26774× 10−7

1.0 × 1020, which is a smaller range than in Case I.
The estimation errors for the position and velocity are
shown in Figures 9 and 10 with 3σ outliers. The es-
timation accuracy is considerably improved from the
previous case to within about 3km in position and
1 × 10−7km/sec in velocity. In order to compare the
filter accuracy, the 3σ error outliers at the final time
tf for both cases are computed and shown in Table 7.
From Table 7, the estimation errors are much smaller
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Fig. 9 Position error with 3σ outliers for three
measurements.
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Fig. 10 Velocity error with 3σ outliers for three
measurements.

by using the Earth sensor as an additional measure-
ment, with the z-axis showing the largest improvement
in accuracy.

Conclusions

The autonomous orbit navigation problem has been
considered using various sensor configurations involv-
ing radial velocity from Doppler measurements and
line of sight measurements to the Sun and Earth.
An observability analysis has been performed for the
various sensor configurations in order to quantify the
expected performance of the extended Kalman filter.
This analysis indicates that using only the radial ve-
locity measurement, it is not possible to estimate all
orbital states. Autonomous orbit navigation can be
possible by using a radial velocity and a line of sight
with respect to the Sun. By adding one more line of
sight measurement from an Earth sensor, the estima-
tion accuracy can be considerably improved. Results
indicate that the velocity states can be estimated very
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well with an accuracy of 1×10−7km/sec (0.01cm/sec),
and the position states with an accuracy of less than
3km. Results from this work clearly show that a fully
autonomous orbit navigation system is feasible, assum-
ing a suitable reason for measuring Doppler shift of
Sun light is developed and implemented.
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