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Both GPS and three-axis magnetometer (TAM) measurements can be com-
bined using an optimal filter to provide robust attitude determination of
spacecraft. The main advantage of this approach is that the TAM atti-
tude solution is always available throughout the orbit, and may be used
to estimate the attitude when GPS outages and anomalies occur (such as
cycle slips). A more fundamental utilization of the combined sensors will be
explored in this paper. The crucial aspect in GPS attitude determination
is the resolution of the integer ambiguities. Several approaches have been
investigated to resolve these integers. A new motion-based algorithm for
GPS integer ambiguity resolution has been recently derived which converts
the reference GPS sightline vectors into body frame vectors. This is ac-
complished by an optimal vectorized transformation of the phase difference
measurements. The result of this transformation leads to the conversion of
the integer ambiguities to vectorized biases, having the form identical to
a TAM bias problem. Since the GPS integer resolution problem has been
converted to a magnetometer-bias problem, if a calibrated TAM is used in
conjunction with the GPS measurements then the integers can be resolved
very quickly and reliably. Simulation results will be provided to show the
usefulness of this approach.

Introduction

The utilization of phase difference measurements from Global Positioning System (GPS) receivers
provides a novel approach for three-axis attitude determination and/or estimation. These mea-
surements have been successfully used to determine the attitude of air-based,1 space-based,2,3 and
sea-based4 vehicles. Since phase differences are used, the correct number of integer wavelengths
between a given pair of antennae must be found. The determination of the integer ambiguities can
either be accomplished by using “static” (motionless) or “dynamic” (motion-based) techniques. The
ambiguities essentially act as integer biases to the phase difference measurements. Once the integer
ambiguities are resolved, then the attitude determination problem can be solved.5
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The static method finds a solution that minimizes the error residual at a specific time by searching
through an exhaustive list of all possible integers and rejecting classes of solutions when the residual
becomes too large.6 Refinements can be made to the solution by restricting the search space with
knowledge of a-priori information, such as the maximum tilt the baseline should encounter.7 Static
methods generally rely on solving a set of Diophantine equations.8 The appeal of these methods is
that they provide an “instantaneous” attitude solution, limited only by computation time, and are
well suited for the short baselines. However, the minimum residual does not guarantee a correct
solution in the presence of noise.1 In fact, it is possible that static methods can report a wrong
solution as valid, especially when some of the calibration information, such as line bias, is incorrect.
This lack of integrity can cause significant problems if the sensor output is used to control a high
bandwidth actuator, such as gas jets on a spacecraft. Another consideration is that static methods
sometime require that the antenna array must be within a defined angle (typically 30 degrees) of
a reference attitude, which is often true for ground-based applications, but is less likely for space-
based applications. Also, structural flexibility in the baselines may lead to erroneous solutions. All
of the aforementioned limitations imply that static methods, while attractive because of their fast
solutions, are not totally acceptable for general purpose applications.

The other technique for resolving integer ambiguities involves collecting data for a given period
of time and performing a batch solution, in which the integer terms remain constant over the
collection period. This technique relies on the fact that a certain amount of motion has occurred
during the data collection, either from vehicle body rotation or GPS line-of-sight motion. The
main disadvantage of this technique, compared to static approaches, is that it takes time for the
motion to occur, which may be on the order of several minutes. Another consideration is that a
potentially significant amount of memory is required for the storage of the batch data collection. But,
motion-based techniques also have significant advantages over static methods. Most importantly,
motion-based techniques are inherently high integrity methods because there are numerous checks
that can be implemented into the solution before it is accepted. These include using statistical checks
applied to error residuals, matrix condition number checks, and using the closeness of the computed
floating-point “integers” to actual integers as a check. The probability of an erroneous solution
being reported as valid can be made as small as desired by appropriately setting the thresholds on
these integrity checks. For these reasons, motion-based techniques have been more widely used for
on-board applications.

For most spacecraft that are orbiting beneath the GPS constellation, e.g. in Low Earth Orbit
(LEO), a readily available attitude sensor capability is a Three-Axis Magnetometer (TAM). A TAM
measures the geomagnetic field in body coordinates which is compared to a reference model of the
Earth’s magnetic field, using the position of the spacecraft, for attitude determination. Although
the TAM provides three scalar measurements, only two directions of attitude can be determined at
any given point in time (i.e. all but the rotation about the field magnitude). These attitude sensors
have many advantages including: 1) TAMs are relatively inexpensive and reliable, and are already
present in most spacecraft for magnetic actuator control, 2) the Earth’s magnetic field is always in
the field-of-view, and 3) three-axis attitude determination is possible with some knowledge of the
spacecraft dynamics (usually via gyroscopic measurements or dynamic models), using information
from past measurements in batch or filter solutions.9 Recently, GPS and TAM sensor data were
combined in a filter with a dynamic model to estimate the attitude of the REX-II spacecraft.2,10 The
combined sensor output filter is considered to be more practical for sub-degree controller performance
because it provides an acceptable attitude measurement even during periods of GPS attitude sensor
outage, which has been shown to occur routinely with current GPS receiver hardware during normal
spacecraft operations.

In this paper a more fundamental use of GPS phase measurements combined with TAMs is given.
A new motion-based algorithm has been recently derived,11 which has been shown to have significant
advantages over prior methods, including: 1) it resolves the integer ambiguities without any a-priori
attitude knowledge, 2) it requires less computational effort, since large matrix inverses are not
needed, and 3) it is non-iterative. A disadvantage of the new algorithm is that it requires at least
three non-coplanar baselines. The first step of this algorithm involves determining the reference
GPS sightline vectors into body frame vectors. This is accomplished by an optimal vectorized
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Figure 1: GPS Wavelength and Wavefront Angle

transformation of the phase difference measurements. The result of this transformation leads to the
conversion of the integer ambiguities to vectorized biases. This essentially converts the problem to a
magnetometer-bias determination problem, for which optimal and efficient solutions exist.15 Using a
TAM as another effective measurement with the GPS allows for faster integer ambiguity resolution
since only two baselines are required (as will be demonstrated), as well as providing a backup system
during GPS outages.

The organization of this paper proceeds as follows. First, a review of the GPS and TAM sensor
models is shown. Then, the conversion of the GPS sightline vector into the body frame is summa-
rized. Next, GPS phase difference measurements are combined with TAM measurements in order
to provide a fast and reliable approach for integer ambiguity resolution. Then, an optimal attitude
determination algorithm is reviewed. Finally, the approach is tested using a simulated spacecraft
maneuver.

Sensor Models

In this section a brief background of the GPS phase difference measurement and TAM measurement
is shown. The GPS constellation of spacecraft was developed for accurate navigation information
of land-based, air, and spacecraft user systems. Spacecraft applications initially involved obtaining
accurate orbit information and accurate time-tagging of spacecraft operations. However, attitude
determination of vehicles, such as spacecraft or aircraft, has gained much attention. The main
measurement used for GPS attitude determination is the phase difference of the signal received from
two antennae separated by a baseline. The principle of the wavefront angle and wavelength, which
are used to develop a phase difference, is illustrated in Figure 1. The phase difference measurement
is obtained by

bl cos θ = λ(∆φ− n) (1)

where bl is the baseline length (in cm), θ is the angle between the baseline and the line-of-sight to
the GPS spacecraft, n is the number of integer wavelengths between two antennae, ∆φ is the phase
difference (in cycles), and λ is the wavelength (in cm) of the GPS signal. The two GPS frequency
carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz. As of this writing, non-military applications
generally use the L1 frequency. The phase difference can be expressed by

∆φ = bTAs + n (2)
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where s ∈ ℜ3 is the normalized sightline vector to the GPS spacecraft in a reference frame, typically
Earth-Centered-Earth-Fixed (ECEF), b ∈ ℜ3 is the baseline vector (in wavelengths), which is the
relative position vector from one antenna to another, and A ∈ ℜ3×3 is the attitude matrix that
maps the reference frame to the body frame, which is an orthogonal matrix with determinant +1
(i.e. ATA = I3×3). The measurement model is given by

∆φ̃ij = bT
i Asj + nij + vij (3)

where ∆φ̃ij denotes the phase difference measurement for the ith baseline and jth sightline, and vij

represents a zero-mean Gaussian measurement error with standard deviation σij which is 0.5cm/λ =
0.026 wavelengths for typical phase noise.1 At each epoch it is assumed that M baselines and N
sightlines exist. The minimum number of baselines and sightlines required to determine the attitude
within an ambiguity (arising from an intersection of two cones) is two baselines and two sightlines.12

A unique attitude solution exists if any more number of baselines or sightlines are available at a
given epoch.

A TAM measures three components of the Earth’s magnetic field. The measurement model is
assumed to be of the form given by

B̃B = ABI + υ (4)

where B̃B ∈ ℜ3 is the magnetic field measurement in the space body coordinate system, BI ∈ ℜ3 is
the known magnetic field vector in inertial coordinates, and υ is assumed to be zero-mean Gaussian
measurement error with standard deviation σmI3×3. The actual error is not Gaussian since the
dominate noise source comes from errors in the assumed magnetic field model (which are typically
nonlinear effects).13 For near-Earth orbits, the error in the magnetic field model may vary from 0.5
degrees near the equator to 3 degrees near the magnetic poles, where erratic auroral currents play a
large role.14 Typically the reference frame of the magnetic field is different than the GPS reference
frame; however, the transformation to a common frame is easily accomplished since the position of
the spacecraft is assumed to be known.

Integer Ambiguity Resolution

In this section an attitude-independent algorithm to resolve the integer ambiguities is presented. The
algorithm is presented assuming that three non-coplanar baselines exist. The first step involves a
conversion of the sightline vectors into the body frame. This in essence converts the integer ambiguity
problem into a form exactly as a magnetometer-bias problem. Then, the integers are resolved using a
batch solution. Finally, TAM measurements are combined with GPS phase difference measurements
in order to resolve the integers using only two baselines.

GPS Measurements Only

The attitude-independent algorithm using GPS phase difference measurements begins by determin-
ing the jth sightline vector in the body frame, Asj , as the sum of two components. The first
component ŝj is a function of the measured fractional phase measurements, and the second cj de-
pends on the unknown integer phase differences. This representation is accomplished by minimizing
the following loss function:

J(Asj) =
1

2

M
∑

i=1

σ−2
ij

(

∆φ̃ij − nij − bT
i Asj

)2

for j = 1, 2, . . . , N (5)
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If at least three non-coplanar baselines exist, the minimization of Eq. (5) is straightforward and
leads to

Asj = ŝj − cj (6a)

ŝj = B−1
j

[

M
∑

i=1

σ−2
ij ∆φ̃ij bi

]

(6b)

cj = B−1
j

[

M
∑

i=1

σ−2
ij nij bi

]

(6c)

Bj =
M
∑

i=1

σ−2
ij bib

T
i (6d)

Since the measurements are not perfect, Eq. (6a) is replaced by the following measurement model

ŝj = Asj + cj + εj (7)

where cj is a constant bias since the baselines are assumed constant, and εj is a zero-mean Gaussian
noise process with covariance Rj = B−1

j . This covariance exists only if three non-coplanar baseline
vectors exist.

The next step is to use an attitude-independent method to find the phase-bias vector cj for each
sightline, which gives all the sightlines in both the body frame and the reference frame. The explicit
integer phases are not needed for this solution, but it is important to check that they are close
to integer values. In the general case, the explicit integer phases can be found from the attitude
solution. The three-baseline case (M = 3) is simpler, for in this case Eq. (6c) can be inverted to
give

nij = bT
i cj (8)

With more than three baselines, however, Eq. (6a) does not have a unique solution for cj , so the
M integer phases for sightline sj cannot be found from cj alone. We will consider the three-baseline
case, which is the most common in practice. If more baselines are available, we are always free
to select a three-baseline subset. Then, after the integer phases have been determined, a refined
attitude estimate can be computed using all baselines (i.e. three baselines are sufficient to determine
an attitude, which may then be used to resolve the integers corresponding to the other baselines).

To eliminate the dependence on the attitude, the orthogonality of A and Eq. (7) are used to give

‖sj‖
2 = ‖Asj‖

2 = ‖ŝj − cj − εj‖
2

= ‖ŝj‖
2 − 2ŝj · cj + ‖cj‖

2 − 2(̂sj − cj) · εj + ‖εj‖
2

(9)

Next, the following effective measurement and noise are defined:

zj ≡ ‖ŝj‖
2 − ‖sj‖

2 (10a)

νj ≡ 2(̂sj − cj) · εj − ‖εj‖
2 (10b)

Then, the effective measurement model is

zj = 2ŝj · cj − ‖cj‖
2 + νj (11)

Alonso and Shuster15 showed that νj is approximately Gaussian for small εj with mean given by

µj ≡ E {νj} = −trace {Rj} (12)

and variance given by

̟2
j ≡ E

{

ν2
j

}

− µ2
j = 4(̂sj − cj)

TRj (̂sj − cj) − µ2
j (13)
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Equations (10)-(13) define an attitude-independent measurement model because they do not contain
the attitude matrix A.

The negative-log-likelihood function for the bias is given by

J(cj) =
1

2

L
∑

k=1

{

1

̟2
j (k)

[

zj(k) − 2ŝj(k) · cj + ‖cj‖
2 − µj(k)

]2
+ ln̟2

j (k) + ln 2π

}

(14)

where L is the total number of measurement epochs, and the symbol k denotes that the variable
at time tk. The maximum-likelihood estimate for cj , denoted by c∗j , minimizes the negative-log-
likelihood function, and satisfies

∂J(cj)

∂cj

∣

∣

∣

∣

c
∗

j

= 0 (15)

The minimization of Eq. (14) is not straightforward since the likelihood function is quartic in cj .
A number of algorithms have been proposed for estimating the bias (see Ref. [15] for a survey).
The simplest solution is obtained by scoring, which involves a Newton-Raphson iterative approach.
Another approach avoids the minimization of a quartic loss function by using a “centered” estimate.
A statistically correct centered estimate is also derived in Ref. [15]. Furthermore, Alonso and Shuster
show a complete solution of the statistically correct centered estimate that determines the exact
maximum likelihood estimate c∗j . This involves using the statistically correct centered estimate as
an initial estimate, and iterating on a correction term using a Gauss-Newton method. Although this
extension to the statistically correct centered estimate can provide some improvements, this part is
not deemed necessary for the GPS problem since the estimated quantity for nij is rounded to the
nearest integer.

The loss function in Eq. (14) can also be rewritten as a function of the unknown integers explicitly.
As before, we consider the case for M = 3. Equations (6b) and (6c) are first rewritten as

ŝj = B−1
j ΓjΦj (16a)

cj = B−1
j Γjnj (16b)

where

Γj ≡
[

σ−2
1j b1 σ−2

2j b2 σ−2
3j b3

]

(17a)

nj ≡ [n1j n2j n3j ]
T

(17b)

Φj ≡
[

∆φ̃1j ∆φ̃2j ∆φ̃3j

]T

(17c)

The loss function in Eq. (14) can now be rewritten as

J(nj) =
1

2

L
∑

k=1

{

1

̟2
j (k)

[

‖B−1
j Γj (Φj(k) − nj) ‖

2 − ‖sj(k)‖
2 + trace

{

B−1
j

}]2
+ ln̟2

j (k) + ln 2π

}

(18)
with

̟2
j (k) = (Φj(k) − nj)

T
ΓT

j B
−3
j Γj (Φj(k) − nj) − trace2

{

B−1
j

}

(19)

Equation (18) can now be used to directly determine the integers without pre-computing the sightline
vector in the body frame. Equation (18) clearly indicates that the loss function involves a scalar
check on the norm vector residuals (since B−1

j Γj (Φj(k) − nj) = ŝj − cj). In practice if nj is real
valued, then a sufficient amount of vehicle motion must occur in order to determine the minimum.
This was the approach used in Ref. [11].

The estimate error covariance for the integer vector nj can also be computed in order to insure
that the determined integer is statistically correct. This can be shown to be given in the limit of
infinitely large samples by

Pj =

{

L
∑

k=1

4

̟2
j (k)

[Φj(k) − nj ] [Φj(k) − nj ]
T

}−1

(20)
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Equation (20) can be used to develop an integrity check for the algorithm, using standard results
on hypothesis testing.16 For example, the computed integer can be shown to have only a 0.0013
probability of selecting the wrong integer when three times the square root of a diagonal element of
is less than 1/2.

Combined GPS and Magnetometer

For the combined GPS/TAM system we only assume a two baseline case, b1 and b2, in the GPS
with corresponding phase difference measurements ∆φ̃1j and ∆φ̃2j . Therefore, for each sightline we
need only to solve for two integers. We also assume that the TAM has been properly calibrated
so that its bias is eliminated from the measurement. Now, we use the TAM measurement as a
“pseudo-phase difference” for the third GPS measurement. This pseudo-phase difference is given by
the following:

∆φ̃3j ≡ BT
I sj (21)

Substituting Eq. (4) for BI into Eq. (21) gives

∆φ̃3j = B̃T
BAsj + ∆vj (22)

where ∆vj = −vTAsj . Since the errors in the TAM measurements are assumed to be isotropic, the

standard deviation of ∆vj is given σ3j ≡ σm. Therefore the body magnetic field measurement B̃B

is treated as another “baseline” in the third phase difference observation, so that b3 ≡ B̃B .
The advantages of using a combined GPS/TAM system now become clear. Since the TAM has

no bias, the associated integer in the pseudo-phase difference measurement (22) is zero (i.e. n3j = 0).
Therefore, we only need to solve for two integers n1j and n2j . The matrix Bj in Eq. (6d) is singular
only if the TAM body measurement is in the same plane as b1 and b2, which is unlikely in most
applications. The solution for the two integers can be now be found quickly be performing a check
on all possible integer combinations to minimize Eq. (18). This signifies a substantial savings in
the required computations. For example, consider the GPS-only case without TAM measurements.
Let the baseline magnitudes in cycles (rounded down to the nearest integer) be given by l1, l2,
and l3. In order to determine the 3 integers for each sightline the required search space is given
by (2l1 + 1)(2l2 + 1)(2l3 + 1), where the plus 1 term counts the 0 integer. But with the TAM
measurement the search space is given by (2l1 + 1)(2l2 + 1). This can, for long baselines, provide a
dramatic reduction of at least an order of magnitude in the required search space.

The complete algorithm is as follows. For the first available sightline, using two baselines and
the TAM pseudo-measurement perform a search on the possible integer pairs, evaluating the loss
function in Eq. (18) (the integer n3j is always zero). Choose the integer pair that minimizes Eq. (18).
Evaluate the covariance in Eq. (20) in order to establish an integrity check. The 3-3 element of Pj

should be very small if the TAM is well-calibrated. The 1-1 and 2-2 elements can be used to
determine 3σ bounds on the found integers (as mentioned previously). A nonlinear least-squares
solution can also be implemented using the found integers as an initial guess. This is useful to check
that the least-squares solution is close to the found integers (i.e. the least-squares solution gives real
values which should be close to the integers found from the search approach). Finally, integers for
other baseline pairs can also be checked to see if common integer solutions match using identical
baselines. For example, say that b1 and b2 are first used in the integer search algorithm; then by
performing a search for the integers associated with baselines b1 and b3, the solution of the integer
associated with baseline b1 can be checked to make sure it matches with the previous solution. This
adds another integrity check in the algorithm. The entire process is repeated for the second available
sightline.

Attitude Determination

Once all integers for the 2 baselines and 2 sightlines have been resolved, then attitude determination
using the GPS and TAM measurements is possible. For attitude determination, the ALLEGRO5

7



algorithm is used. A brief review of this algorithm is now presented. The ALLEGRO algorithm
uses measurements at time tk+1 and previous estimates at time tk to determine the body angular
velocity of the vehicle. This angular velocity is then used to propagate a simple kinematics model
from time tk+1 to time tk.

The attitude matrix A in Eq. (2) is parameterized by the quaternion, defined as17

q ≡

[

q13

q4

]

(23)

with

q13 ≡
[

q1 q2 q3
]T

= e sin(ψ/2) (24a)

q4 = cos(ψ/2) (24b)

where e is a unit vector corresponding to the axis of rotation and ψ is the angle of rotation. The
quaternion satisfies a single constraint given by qT q = 1. The attitude matrix is related to the
quaternion by

A(q) = ΞT (q)Ψ(q) (25)

with

Ξ(q) ≡

[

q4I3×3 + [q13×]
−qT

13

]

(26a)

Ψ(q) ≡

[

q4I3×3 − [q13×]
−qT

13

]

(26b)

The 3 × 3 matrix [q13×] is referred to as a cross-product matrix because a × b = [a×]b, with

[a×] ≡





0 −a3 a2

a3 0 −a1

−a2 a1 0



 (27)

Using the available GPS measurements and TAM pseudo-measurement, an estimate for the angular
velocity (ω) is given by

ω(tk) = −
1

∆t







M
∑

i=1

N
∑

j=1

σ−2
ij

[

As∆
j ×

]

bib
T
i

[

As∆
j ×

]T







−1

×

M
∑

i=1

N
∑

j=1

σ−2
ij

[

As∆
j ×

]

bi

(

∆φ̃∆
ij − bT

i As∆
j

)

(28)

where the superscript ∆ denotes that the quantity is measured at time tk+1 (all other quantities are
at time tk), and ∆t is the sampling interval. The determined quaternion can be found by using a
discrete-time propagation, given by

q̂(tk+1) = [χ(tk)I4×4 + µ(tk)Ω(tk)]q̂(tk) (29)

where

χ(tk) = cos

(

1

2
‖ω(tk)‖∆t

)

(30a)

µ(tk) = sin

(

1

2
‖ω(tk)‖∆t

)

(30b)

ρ(tk) = ω(tk)/‖ω(tk)‖ (30c)

Ω(tk) =

[

− [ρ(tk)×] ρ(tk)
−ρ

T (tk) 0

]

(30d)
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Figure 2: Hardware Simulation Block Diagram

For practical applications the sampling interval should be well below Nyquist’s limit.18 Equations
(28)-(29) are used to determine the attitude at time tk+1 and previous estimates at time tk.

The attitude error covariance at time tk+1 is given by

P (tk+1) =







M
∑

i=1

N
∑

j=1

σ−2
ij

[

As∆
j ×

]

bib
T
i

[

As∆
j ×

]T







−1

(31)

The diagonal elements of this expression give the small angle attitude errors for roll, pitch, and yaw,
irregardless of the attitude rotation sequence. Therefore Eq. (31) can be used to assess the expected
errors in the attitude solutions (i.e. the errors between the actual attitude and the determined
attitude).

Hardware Simulation

A hardware simulation of a typical spacecraft attitude determination application was undertaken
to demonstrate the performance of the combined GPS/TAM approach. A LEO spacecraft was
simulated, which nominally points at the center of the Earth. For this simulation, a Northern
Telecom 40 channel, 4 RF output STR 2760 unit was used to generate the GPS signals that would
be received at a user specified location and velocity. The signals are then provided directly (i.e. they
are not actually radiated) to a GPS receiver that has been equipped with software tracking algorithms
that allow it operate in space (see Figure 2).

The receiver that was used was a Trimble TANS Vector; which is a 6 channel, 4 RF input
multiplexing receiver that performs 3-axis attitude determination using GPS carrier phase and line-
of-sight measurements. This receiver was modified in software at Stanford University and NASA’s
Goddard Space Flight Center (GSFC) to allow it to operate in space. This receiver model has flown
and operated successfully on several spacecraft, including: REX-II, OAST-Flyer, GANE, Orbcomm,
Microlab, and others.

The antenna separation distances are 0.61 m, 1.12 m, and 1.07 m, respectively. One antenna (in
baseline 3) is located 0.23 m out of plane (below) the other three antennae. On the spacecraft, the
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Figure 4: TAM Measurements

antennae are mounted on pedestals with ground planes to minimize signal reflections and multipath.
For the simulation, multipath errors are introduced using a simple Markov process with a time
constant of 5 minutes and a standard deviation of 0.026 wavelengths. The simulated spacecraft has
four GPS antennae that form three baselines. The baseline vector components in wavelengths are
given by

b1 =





2.75
1.64
−0.12



 , b2 =





0.00
6.28
−0.17



 , b3 =





−3.93
3.93
−1.23



 (32)

Quantities such as line biases and integer ambiguities are first determined before the attitude deter-
mination algorithms are tested. The GPS raw measurements are processed at 1 Hz over a 40 minute
simulation. A plot of the number of available GPS spacecraft for the 40 minute simulated run is
shown in Figure 3. During the beginning of the run there are 5 to 6 available spacecraft. At the end
of the simulation this drops down to about 4, which means that a degraded performance is possible
(this also depends on the geometry of the GPS spacecraft, see Ref. [1] for Geometric Dilution of
Precision).

The “true” magnetic field reference is modeled using a 10th order International Geomagnetic
Reference Field (IGRF) model.19 Magnetometer measurements are known to be extremely accurate
(within 0.3 mG). However, experience has shown that errors in the magnetic field are much larger
(typically about an order of magnitude larger). Also, the errors are orbit dependent and nonlinear.13

In order to simulate magnetic field modeling error, a 6th order IGRF model with coefficients shifted
by five years is used in the TAM measurement model. Also, TAM sensor noise is modeled by a
Gaussian white-noise process with zero-mean and standard of 0.3 mG. A plot of the IGRF reference
field and simulated TAM body measurements for an 8 hour run is shown in Figure 4. Typical
roll-yaw coupling effects are shown in the X and Z axes.

The combined GPS/TAM integer ambiguity resolution approach has been implemented by eval-
uating the loss function in Eq. (18) every 20 seconds. Convergence is given when three times the
square root of every diagonal element of Eq. (20) is less than 1/2. As mentioned previously only two
baselines are required in this approach; baselines b1 and b2 are considered. The maximum possible
integer for b1 is 3 and the maximum possible integer for b2 is 6. The actual integers are 1 for b1

and 3 for b2. Again, the search space has been significantly reduced since only two baselines are
needed to determine the attitude with the combined GPS/TAM measurements. The loss function
in Eq. (18) is evaluated for every integer pair, using the pseudo-phase measurement in Eq. (21) as
the third measurement (with the “baseline” taken as the TAM body measurement). Convergence
occurred after 200 seconds. Table 1 shows loss function values for possible integers pairs using the
first available sightline over the 200 second time span (only the positive integer results are shown;
the negative loss function values are all at least an order of a magnitude larger than the minimum

10



Table 1: First Sightline Loss Function for Candidate Integer Pairs

b1

0 1 2 3

0 3.78 1.66 5.63 17.20
1 3.06 1.99 3.97 14.39
2 1.35 1.40 3.03 12.58

b2 3 3.37 0.18 3.65 11.79
4 5.09 2.75 5.04 12.00
5 9.82 6.33 7.46 13.25
6 15.56 10.91 12.89 15.52
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Figure 5: 3σ Outliers for GPS-only (solid line) and Combined TAM/GPS (dashed line)

value). Clearly, the minimum exists at the 1-3 integer pair, which has a loss function value of a least
an order of magnitude smaller than any other value. This integer pair was then implemented as an
initial guess in a nonlinear least-squares algorithm. With this initial guess the algorithm converges
in 3 iterations to values of 1.9568 and 2.9481 for baselines b1 and b2, respectively. This indicates
that the converged batch solutions are very close to the true integers. Also the 3σ outliers using
Eq. (20) are given by 0.198, 0.255, and 1× 10−5 for baselines b1, b2, and the TAM pseudo-baseline,
respectively. Since all values are below 0.5 this indicates that rounding the least-squares found so-
lutions to the nearest integers leads to the best possible solution. Also, the third outlier (1 × 10−5)
corresponds to the TAM bias. Since there is no TAM bias this value should be small, as indicated
by the results. This again gives another integrity check for the approach. Similar results are also
given for the second sightline. This approach has clear advantages over the motion-based technique
in Ref. 11, which required over 6 minutes for the solution to converge.

Once the integers have been determined for the 2-baseline, 2-sightline case with TAM measure-
ments then attitude determination is possible. Using these measurements the ALLEGRO algorithm,
given by Eqs. (28)-(30), was implemented with an initial attitude guess given by the unity quater-
nion. We this initial guess the ALLEGRO algorithm converged in 5 seconds. Then the computed
attitude was used to resolve the remaining integers associated with the other available sightlines. A
study was then made which compared the solution using GPS-only measurements with the combined
GPS/TAM measurements. Results for the 3σ attitude-error outliers for these two cases are shown
in Figure 5. Clearly, using the combined GPS/TAM measurements gives better performance than
GPS alone (especially in the pitch knowledge). Another advantage to using TAM measurements is
that when combined with a dynamic model or gyros in a filter,9 the TAM measurements can be used
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to determine 3-axis attitude during anomalous GPS situations, such as outages and re-initialization.

Conclusions

In this paper GPS measurements were combined with three-axis magnetometer measurements in
order to quickly resolve the associated GPS integers for attitude determination. The algorithm only
require two baselines in order to provide an attitude solution with TAM measurements. It uses an
integer search approach to resolve the integers by evaluating an optimal loss function. The new
algorithm has significant advantages over previously existing algorithms. First, the algorithm is
attitude independent so that no a-priori attitude estimate (or assumed vehicle motion) is required.
Second, since only two baselines are required the search space is significantly less than the case
of using three baselines. Finally, several criteria can be used to check the integrity of the found
solutions. Also, the TAM measurements can be used to update the attitude estimates using a
filter, so that an attitude can still be determined when GPS measurements are not available. The
algorithm was tested using a GPS hardware dynamic simulator to simulate the motion of a typical
low-altitude Earth-orbiting spacecraft. Results indicate that the combined GPS/TAM approach
provides a viable and robust means to effectively resolve the integer ambiguities and gives better
attitude estimates than using GPS measurements alone.
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