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AAS 02-101 
  

ATTITUDE DETERMINATION AND AUTONOMOUS ON-ORBIT 
CALIBRATION OF STAR TRACKER FOR THE GIFTS MISSION 

 
Puneet Singla,1 D. Todd Griffith,2 John L. Crassidis,3  and John L. Junkins4 

 
           A novel split field of view star tracker is being developed for the EO-3 
GIFTS mission (2004).  The camera is designed to be autonomously self-
calibrating, and capable of a rapid/reliable solution of the lost-in-space problem as 
well as recursive attitude estimation.  Two efficient Kalman filter algorithms for 
attitude, camera principal point offset, and focal length estimation are developed.  
These algorithms make use of three axis gyros for the rate data and star camera 
split field-of-view line-of-sight vector measurements.  To model the optics of the 
camera the pinhole model is used, which is found to be sufficiently accurate for 
most of star cameras.  The relative merits of the two algorithms are then studied 
for estimating the principal point offset, focal length and attitude of a simulated 
spacecraft motion.  Simulation results indicate that both algorithms produce 
precise attitude estimates by determining the principal point offset, focal length 
and rate bias; however, reliability and robustness characteristics favor the second 
algorithm. 

 
Introduction 

Spacecraft attitude determination is the process of estimating the orientation of a spacecraft by 
utilizing on-board observations of celestial bodies or other reference points.  Combinations of these 
observations are used to generate more accurate estimates of the spacecraft rotational attitude.  If these 
observations are error free then the spacecraft attitude can be determined precisely.  But, in practical 
problems these measurements are not error free, so some sensor noise is always present.  Several attitude 
sensors exist, including: three axis magnetometers, sun sensors, Earth-horizon sensors, global positioning 
sensors, star cameras, and rate integrating sensors.  The accuracy of the attitude estimation depends on the 
quality of the attitude sensor.  For example, the attitude accuracies that can be achieved with a sun sensor 
are approximately 0.015 degrees for the best available instruments.1  For higher accuracies, star 
measurements are used as the key inputs for attitude estimation.  Accuracies in the sub-arc second range are 
possible, but the drawbacks are the cost of star camera, complexity, and extensive software and calibration 
requirements.  Systematic effects that require calibration are due to lens distortion and instrument aging.  
These systematic effects introduce error in the attitude estimate, and must be accounted for in order to 
achieve high-precision attitude determination.  Ground based testing is used to calibrate the star cameras 
for these systematic errors, but this process requires the set up of high-precision laboratories.  A novel 
algorithm for on-orbit autonomous calibration of star cameras is being developed for the EO-3 GIFTS 
mission to bring down the overall cost of the mission.  This algorithm makes the overall system camera 
design adaptive to any possible sensor changes due to environment, aging electronics, and similar difficult-
to-anticipate effects.  Many algorithms are mentioned in the literature for the calibration of CCD array 
cameras;2, 3 however, these are mainly for used laboratory calibration. 

To improve the attitude estimation accuracy, the attitude is normally estimated by the combination 
of measurements of attitude along with the model of the spacecraft dynamics. The use of densely measured 
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rate data can omit the need for a dynamic model.  But the rate sensors have inherent noise and systematic 
error problems, of which bias is the most important. 

Attitude estimates must be calculated quickly and continuously during the entire operational life of 
the mission.  During normal operations the problem is recursive, i.e., the attitude filter makes new 
predictions based on present and prior sensor information.  The Kalman filter (Ref. 4,5,6,7,8) is one of the 
most widely used and powerful tools for real-time estimation problems.  The Kalman filter minimizes the 
trace of the covariance of the estimate error between the model response and actual measurements in the 
least squares sense.  The main advantage of a Kalman filter over other methods for attitude estimation is 
that it combines the rate data measurements with the attitude sensor data to give more accurate estimates 
than using each sensor alone.  Optimal filter design depends upon the properties of the measurement and 
process noise (in this case the process noise is a function of the gyro model parameters). 
 In this paper we will present attitude determination results using the Extended Kalman filter for 
both single field-of-view (FOV) and dual field-of-view cameras.  A modified version of the algorithm for 
interlock angle estimation is also presented.  Two efficient recursive algorithms will be discussed for 
boresight and focal plane calibration.  Both attitude dependent and attitude independent methods for the 
calibration problem are given.  The relative merits of the two algorithms are then studied for star camera 
calibration and attitude determination.  Reliability and robustness characteristics favor the attitude 
independent algorithm. 
 
Attitude Kinematics 

Spacecraft attitude can be represented by various parameters, for example Euler angles, Rodrigues 
parameters, modified Rodrigues parameters and quaternions or Euler parameters.  Quaternions are ideal 
and the most widely used parameterization for attitude estimation for the following reasons (Ref. 
1,4,5,9,10): 

1. The attitude matrix is algebraic in nature. 
2. The parameterization is free from singularities. 
3. The kinematic equations are linear in nature. 

Generally, elements of the quaternions are expressed in terms of the principal eigenvector e and rotation α 
about the e as follows (Ref. 1,5,6): 
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Clearly, the elements of the quaternion satisfy a unit norm constraint.  The direction cosine matrix can be 
expressed in terms of the quaternions as (Ref. 1,5,10): 
 ( ) ( )2
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A successive composition in terms of quaternions is performed by quaternion multiplication                  
(Ref. 1,5,10).  The result of the multiplication of two quaternions is a third quaternion, which yields the 
same direction cosine matrix given by the multiplication of the corresponding direction cosine matrices: 
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where, 
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The spacecraft kinematic equations of motion in terms of quaternions can be derived by taking the time 
derivative of equation (2) (Ref. 1,5,10): 
 ( )( ) ( ) ( )( ) ( )1 1( )

2 2
t t t t t= =q Ω ω q Ξ q ω  (6) 

where, Ω(ω) and Ξ(q) are defined as, 
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Kalman Filter Formulation 

The Kalman filter is the most widely used sequential estimator for the spacecraft attitude 
determination problem.  The Kalman filter minimizes the trace of the covariance of the estimate error 
between the model response and the actual measurements in the least squares sense, but due to its recursive 
structure, it is computationally more efficient than the batch least squares algorithm, where a large set of 
measurement data has to be processed simultaneously.  The main advantage of the Kalman filter for 
attitude determination is that it optimally combines the rate data with the attitude sensor data to produce 
more accurate results.  The Extended Kalman filter (EKF) for non-linear systems uses the linearized state-
space model about the current estimate of the states to generate the update at a measurement time, and 
propagates the estimates between the measurement times.  There are many excellent sources on this 
subject, and the derivation of EKF equations can be found in (Ref. 5,6,8,10).  The EKF equations can be 
divided into two categories: Prediction and Update equations.  The Prediction part of the EKF requires a 
model for the dynamics of the system, while the update part requires a measurement model.  A summary of 
the EKF equations is given below. 
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The above equations are formulated by assuming the process and measurement noise to be 
Gaussian white noise; further it is also assumed that the sensitivity matrix H is free of any kind of error.  
Optimal filter design depends upon the tuning and the properties of measurement and process noise.  To 
use the Kalman filter, we have to first identify our measurement and dynamical model. 
 
Measurement Model 

A Dual Field of view star tracker will be used as the attitude sensor for the EO-3 GIFTS mission.  
Star positions are the most accurate source of reference celestial bodies for the attitude determination, as 
their position with respect to an inertial frame is fixed.  Spacecraft attitude is determined by taking the 
photographs of the stars by using a CCD camera.  Pixel formats of the order of 512×512 or larger are 
commonly used to provide good resolution pictures.  The first stage in attitude determination is to identify a 
star with reference to an on-board star catalog.  After star identification is made,12,13 image plane 
coordinates of the stars are given by using a pinhole camera model for the camera (Ref. 2,5).  Photograph 
image plane coordinates of jth star are given by following co-linearity equations: 
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where f is the camera focal length determined by ground or on-orbit calibration, Cij are the direction cosine 
matrix elements, and the inertial star vector rj is given by 
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Choosing the z-axis of the image coordinate system towards the boresight of the camera as shown in figure 
1, and measurement unit vector bj is given by following equation: 
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The relation between measured star direction vectors bj in image space and their projection rj on the inertial 
frame is given by 
 j j j= +b C r υ  (15) 
where υj is a zero mean Gaussian white-noise process with covariance Rj.  Therefore the attitude 
determination problem reduces to the estimation of the different elements of the attitude matrix C, which 
can be parameterized in terms of the quaternion as given in equation (2). 

 
Gyro Model 

Rate gyros are used to measure the angular rates of the spacecraft without regard to the attitude of 
the spacecraft.  Rate gyros provide the angular rates of the spacecraft to a very high accuracy. With rate 
data, the well-known kinematics model of spacecraft can replace the dynamical model.  But the rate sensors 
have their own inherent noise problems, where the noise level of the sensor and bias (constant drift) are the 
two main characteristics of the rate data.  Bias estimation is very important for attitude determination using 
rate data.  The gyro model is given by (Ref.4,5,10,11) 
 = − − 1ω ω b η  (16) 
where ω is the true angular velocity, ω  is the gyro measured angular velocity, and b is the gyro bias 
vector, which is further modeled by 
 = 2b η  (17) 
where η1 and η2 are assumed to be modeled by a Gaussian white-noise process with standard deviation of 
σu and σv.  Defining the noise vector: 
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and T is the sampling time of gyro data. 
 
EKF Formulation For Quaternion Parameterization 

The redundancy of the four-parameter description of the quaternion generates a singularity in the 
covariance matrix P of the Kalman filter.  Define  

ˆ∆ = −q q q  
Assuming that the estimated quaternion is close to the true quaternion, then 
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Hence, q lies in the null space of P, which generates a singularity in the covariance matrix P.  Lefferts, 
Markley and Shuster10 have proposed three methods to take into account the singularity in covariance 
matrix: 

1. Reduced representation of the covariance matrix. 
2. The truncated covariance representation. 
3. The body fixed covariance representation. 
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In this paper the Extended Kalman filter formulation is based upon the third approach.  In this approach, an 
error quaternion is defined, which is the composition of the true quaternion and inverse estimated 
quaternion:  
 1ˆδ −= ⊗q q q  (22) 
 
From equations (4), (7) and (22), we can show that 
 4ˆ ˆ( )   and 1T Tqδ δ= = ≈q Ξ q q q q  (23) 
 
Since the fourth component of error quaternion is close to unity, only the vector part of error quaternion is 
of interest to us.  So the state vector for the EKF consists of only the 3×1 vector part of error quaternion and 
the 3×1 vector of gyro biases. 
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The state equations for new state vector using the gyro model, given in equations (16) and (17), are given 
by10  
 ( )1 4ˆ 1 2  and qδ δ δ= − × − ∆ + = ∆ =q ω q b η b 0  (25) 
where 
 ˆˆ = −ω ω b  (26) 
 
So the F and G matrices in equation (10) are given by 

 [ ] 1 1ˆ 2 2,   × × ×

× × × ×

   − ⊗ − −
= =   

      

3 3 3 3 3 3

3 3 3 3 3 3 3 3

ω I I O
F G

O I O I
 (27) 

From equation (25), the quaternion prediction equation is given by 
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and the covariance prediction is given by 
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According to equations (11) and (15), the sensitivity matrix H is given by 
 3 3[  ]×=H L O  (30) 
where 

 ( )
( )

( )( )
( )δ δ

∂∂
= =

∂ ∂

C q rb
L

q q
 (31) 

According to the definition of error quaternion: 
 
 ˆ( ) ( ) ( )δ=C q C q C q  (32) 



 7 
 

From equation (2), we can show that the differential δq update results in 
 
 ( ) [ ] [ ]3 3 3 32δ × ×≈ − ⊗ ≈ − ⊗C q I δq I δα  (33) 
where δq is the error quaternion and δα is the small angle approximation.  Substituting equation (33) into 
(32) and further substituting equation (32) into (31) gives 
 ( )ˆ ˆ[ ] [ ( ) ]= ⊗ = ⊗L 2 b 2 C q r  (34) 
Simulations 

The design specifications for the EO-3 GIFTS mission require rate data to be sampled at 200Hz 
and star data at 10Hz.  Figure 2 describes the data flow between different software modules for the GIFTS 
mission (CM in figure 2 denotes the GIFTS control module), while figure 3 describes the main parts of 
Kalman filter algorithm for attitude determination.  The prediction loop of the Kalman filter depends upon 
the rate data frequency, while update frequency depends upon image processing, centroiding, star 
identification and star-tracker data frequencies. 
 
 
and dual FOV star camera. The gyro data is simulated for GEO orbit with a gyro noise 
standard deviation of 0.33 deg/hr, a bias drift noise of 0.11deg/hr/hr and gyro bias of 0.1 
deg/hr about each axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the J-2000 star catalog with stars of magnitude up to 6.4, assuming 8°×8° field of view star camera 
and 17µ radian (for 1024×1024 pixel array) of centroiding error, star data are simulated.  Simulations are 
done for single FOV.  Plots of attitude error and estimated gyro bias for single FOV star cameras are shown 
in figures 4 and 5, respectively.  As the z-axis of image coordinate system coincides with the bore-sight 
axis of the camera, less information is available for the rotation about the z-axis, which corresponds to 
higher covariance in the yaw angle estimates. The same fact can be verified by the singular value 
decomposition (SVD) of the observability matrix.  Singular values of the observability matrix give us an 
idea about the degree of observability of the states and the columns of V show the degree of cross 

Figure 2: Macroscopic Data Flow for GIFTS Mission 
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correlated observability of states.  The singular values and columns of the observability matrix O=[HT 
(HF)T (HF2)T (HF3)T (HF4)T (HF5)T]T are given below: 
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 (35) 

 
The sixth column of the V corresponds to the zero singular value and shows that the yaw angle state is 
poorly observable.  Thus the covariance related to yaw angle state is higher than the covariance of the pitch 
and roll angle states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 6 and 7 show the plots of attitude error and estimated gyro bias, respectively, for the dual 
FOV camera.  In this case the z-axis of image plane coordinate system coincides with the boresight axis of 
one FOV, but information of the rotation about the z-axis is available from the other FOV (perpendicular to 
first one).  So the dual FOV star camera gives a more accurate attitude estimate than the single FOV case.  
It is clear from the results that attitude accuracy estimates of 5µrad about each axis can be obtained for a 
dual FOV star camera.  

Figure 3: Extended Kalman Filter Flow Chart
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The accuracy of the results implicitly depends on the knowledge of the interlock angle between 
the two FOVs, as stars from both FOVs are projected on same focal plane detector (say FOV-A).  The 
interlock uncertainty is not accounted for above, therefore the estimation of interlock angle between two 
FOV is very important.  Figure 8 shows a flow chart for an algorithm to estimate the interlock angle 
between the two FOVs.  The state vector of the EKF is now appended with three extra states corresponding 
to an error quaternion for FOV-B.  Basically, the new Kalman filter is the combination of two Kalman 
filters working in tandem with each other.  For simulation purposes, star-data in two perpendicular FOVs 
are generated and then data from the second FOV-B is projected onto the FOV-A detector and used as 
measurements for the Kalman filter.  Using the current estimate of the interlock angle, stars from FOV-B, 
identified in FOV-A are projected back into FOV-B and used as measurements for the attitude estimation 
of FOV-B.  Figures 9, 10 and 11 show the attitude errors for FOV-A and FOV-B and bias estimates, 
respectively.  From these plots, it is clear that the EKF algorithm developed in this paper is able to estimate 
the attitude, interlock angle and gyro bias accurately. 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Attitude Errors and 3σ Bounds  
for Dual Field-of-View Star Camera 

Figure 7: Estimated Gyro Biases

Figure:4: Attitude Errors and 3σ Bounds
Figure 5: Estimated Gyro Biases
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Figure 9: Attitude Errors and 3σ Bounds for 
FOV-A of Dual Field-of-View Star Camera Figure 10: Attitude Errors and 3σ Bounds for 

FOV-B of Dual Field-of-view Star Camera 

Figure 11: Estimated Rate Biases 

Figure 8: Flow-Chart For Interlock Angle Estimation Algorithm 
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Covariance Analysis 
 A residual covariance analysis can be used to check the consistency of the attitude errors.  
According to equations (32) and (33), the estimated and true attitude are related as 
 

                                           ( ) ( ) ( ) ( [ ]) ( )= ≈ − ⊗C q C δq C q I δα C q                                           (35) 
 
Substituting equation (35) into equation (15) gives 
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Therefore, the residual is given by 
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We now need to determine a relationship between the attitude error and the measurement noise using the 
computed attitude.  This is accomplished by directly using Wahba’s loss function:14 
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     ⊗     
     

= = =     
     
     
     

⊗          

C q r R ν
C q r R ν

H R

C q r R ν

                                       (40) 

 
We recognize that P≡(HTR-1H)-1 is the attitude error covariance derived from a least squares formulation.  
Next, since the vector measurements errors are uncorrelated we have 
 

( ){ } ( ) [ ] [ ]1 11 1 1 ( ) ( )T TT T T T
i i iE P

− −− − −= ⊗ ≡ ⊗H R H H R νν H R H C q r C q r                  (41) 

 
Therefore, substituting equation (39) into equation (37) and using the relationship in equation (41) leads to 

                      ( )( ){ } [ ] [ ]ˆ ˆ ( ) ( )
T T

i i i i i i i iE≡ − − = − ⊗ ⊗γ b b b b R C q r P C q r                          (42) 

The right hand-side of the equation (42) can be computed independently of the attitude using equation (15), 
and the left hand-side is numerically computed.  The matrix γi is computed recursively by 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 1
1 1

11 1
1

T
i i i i i i i

i i i i

kk k k k k k k
k k

k k k k
k

 + = + + − + − −       + + 

+ = + + −  +

γ γ e e e e γ

e e e e

(43) 

where ˆ
i i i≡ −e b b and ie  is the mean.  Equation (42) is used to check the validity of the attitude 

determination algorithm.  From simulation results, it is found that γi ≤ Ri, i.e., the error covariance is inline 
with the projected random error magnitude, and the left hand-side of the equation (42) matches well with 
the right hand-side. 
 
CCD Camera Calibration 

Star camera calibration is an important task in attitude determination of the spacecraft using the 
star trackers as attitude data sensors.  The accuracy of attitude estimation depends upon the calibration of 
the star camera.  The design specification for GIFTS attitude accuracy is 5 µrad.  Therefore, for this 
mission the accuracy for attitude determination will require a well-calibrated star camera.  Generally, star 
cameras are calibrated on the ground in very high precision laboratories.  However, any significant change 
in the instrument or the environment can result in this calibration being inaccurate on-orbit.  Therefore, the 
precise nature of the systematic errors for the star camera system should be and will be determined on-
orbit, and the proper corrections will be applied on-orbit.  A key question regarding the proper selection of 
a calibration approach is “How irregular is the distortion?”  A global best fit of distortions should be 
sufficient if the slope of the distortion map is smooth globally.  In the presence of localized distortions, a 
more judicious selection of the calibration approach will be required.  In this section, several approaches 
for on-orbit calibration of star tracker camera for the EO-3 GIFTS mission (2004) are discussed.  These 
approaches are quite general in nature and show promise for many future on-orbit calibration requirements. 
The calibration process is mainly divided into two major parts: 

1. Calibration of principal point offset (x0, y0) and focal length (f). 
2. Calibration of focal plane image distortions due to all other effects (lens distortions, misalignment, 

detector alignment, etc.).15 
Generally, the implicit pinhole camera model is not exact so we need to find the best effective estimates of 
principal point offset (x0, y0) and focal length (f).  In this paper, calibration of principal point offset and 
focal length is discussed in detail.  Two approaches have been developed for the recursive estimation of 
principal point offset error and focal length.  
 
Attitude Dependent Approach 

In the first approach, the boresight error and focal length are determined by projecting the inertial 
catalogued star vectors into body frame using the best estimated attitude. But the problem with this 
approach is that the attitude itself depends upon the estimate of boresight error and focal length.  A nested 
Kalman filter with the gyro bias and attitude being estimated in one filter and the principal point offset and 
effective focal length in other using the pinhole camera model is developed.  The nested Kalman filter is 
needed, since the principal point offset and focal length are very weakly observable with spacecraft attitude 
and rate bias. The singular values and corresponding V matrix of observability matrix are given by 
 

[ ]6.3223 6.3207 3.1610 3.1602 0.2908 0.1452 0.1062 0.00017 0.0001

 -0.8952 -0.4451    0.0003    0.0006   -0.0206    0.0000    0.0057    0.0001    0.0082
 -0.4450 0.8954   -0.0007    0.0003   -0.0093 

T=

=

S

V

 -0.0000    0.0005   -0.0002    0.0039
  0.0229 0.0010   -0.0000   -0.0001   -0.9983   -0.0000    0.0536    0.0009   -0.0001
 -0.0003 0.0007    0.8876   -0.4602    0.0000    0.0209   -0.0000    0.0000  -0.0000
  0.0007 0.0003    0.4601    0.8878   -0.0000    0.0093    0.0000    0.0000    0.0000
  0.0000 -0.0000   -0.0229    0.0014    0.0000    0.9997    0.0000    0.0000   -0.0000
  0.0040 -0.0081    0.0000   -0.0000    0.0000    0.0000    0.0001   -0.0429    0.4276
 -0.0081 -0.0040    0.0000    0.0000   -0.0001    0.0000    0.0002   -0.0088   -0.9039
 -0.0041 -0.0020    0.0000    0.0000   -0.0537   0.0000   -0.9984   -0.0188   -0.0003

 
 
 
 
 
 
 
 
 
 
 
 
   

 (44) 
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Singular values of 0.00017 and 0.0001 correspond to state x0 and y0.  It can be inferred from these singular 
values that x0 and y0 are poorly observable, and corresponding columns of V reveal the fact that they are 
very poorly cross co-related observable.  So we estimate the principal point offset and focal length in one 
filter, while attitude and rate bias in the second filter by using the estimates of first filter.  From the pinhole 
camera model, the star vector in the image coordinate system is given by 
 

 
0

02 2 2
0 0

( )
1 ( )

( ) ( )

j

j j

j j

x x

y y
x x y y f

f

− − 
 = − − 

− + − +   

b  (45) 

Therefore, 

( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 0 0 0
0 0 0

3 2 3 2 3 2

2 0 0 0
0 0 0

3 2 3 2 3 2

0 0
0 0

3 2 3 2

1 1

1 1

1

j j
j j j

j j j j

j j
j j j

j j j j

j j
j j

j j

dx dy
x x x x y y fx x x x y y dx df df

D D df DD D
dx dy

y y x x y y fx x y y y y dy df df
D D df DD D

dx dy
f x x y y ff x x f y y df df

D D D

 
− − + − + − − −  − − − +

 
− − + − + − − −∂  = − − − +

∂

 
− + − +− −  − +

b
x

3 2D

 
 
 
 
 
 
 
 
 
 
  
 
 
   

(46) 

where D is given by 

 2 2 2
0 0( ) ( )j jD x x y y f= − + − +  (47) 

Simulations 
An  80x80 field of view star-tracker is simulated by using the pinhole camera model with principal 

point offsets of x0=0.75 and y0=0.25.  The focal length of the star camera is assumed to be 64.2964mm. 
Star tracker data are sampled at 10 Hz and a centroiding noise of mean zero and standard deviation of 
17µrad is introduced to the true star data.  Plots of the estimated principal point offset, attitude and gyro 
bias are shown in Figures 12, 13 and 14, respectively.  Simulations result show that the algorithm is able to 
estimate the principal point offset, focal length, attitude and rate bias accurately, but correlation between 
attitude and principal point offset makes the tuning of the Kalman filter in first approach somewhat 
difficult.  Figures 15, 16 and 17 show the results of the simulation with a centroiding noise standard 
deviation of 15µrad.  It is clear from the results that the attitude estimates are biased.  We know that the 
calibration coefficients are valid when the standard deviation is inline with the projected random error 
magnitude.  So we can perform the covariance consistency test given by equation (42).  It is verified that 
error covariance is again inline with the measurement error covariance.  Therefore, it can be concluded that 
bias in attitude estimation is due to strong correlation between the principal point offset and attitude. 
 
 
 
 
 

 
 
 

  
 

Figure 12: Principal Point offset and Focal Length 
Estimates (σcentrioding error=17µ rad.) Figure 13: Attitude Estimation Errors (σcentrioding error=17µ rad.) 
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Attitude Independent Approach 

An algorithm has been developed to estimate the principal point offset and focal length without 
using the attitude information.  This approach depends upon the fact that the angle between two vectors is 
an invariant, whether measured in image frame or inertial frame.  Thus we can form the measurement 
equations that do not depend upon the attitude but do depend upon the uncertain focal length and principal 
point offset.16  If these is sufficient information in these measurement equations to estimate the principal 
point offset and focal length; then we can obtain an accurate attitude.  Since the interstar angles for the 
imaged vectors and the cataloged vectors have to be same, then 
 ( )cos T T

ij i j i jθ = =r r b b  (48) 
Now using equation (45) we can show that; 
 ( )0 0

1 2

, ,T
i j ij

N g x y f
D D

= =r r  (49) 

where 

 
( )( ) ( )( )

( ) ( )

( ) ( )

2
0 0 0 0

2 2 2
1 0 0

2 2 2
2 0 0

i j i j

i i

j j

N x x x x y y y y f

D x x y y f

D x x y y f

= − − + − − +

= − + − +

= − + − +

 (50) 

Figure 15: Principal Point offset and focal length 
estimates (σcentrioding error=15µ rad.) 

Figure 14: Gyro Bias Estimates 
(σcentrioding error=17µ rad.) 

Figure 16: Attitude Estimation Errors  
(σcentrioding error=15µ rad.) 

Figure 17: Gyro Bias Estimates 
 (σcentrioding error=15µ rad.) 
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Linearization of equation (49) gives 

 ( )

{ }
0 0

0

0 0 0
ˆ0 0 ˆ ˆ, ,

ˆˆ ˆ( , , )

[ ]

ij ij ijT
ij i j ij

x y f

ij

x
g g g

R r r g x y f y
x y f

f

R A Z

 
∂ ∂ ∂   = − =   ∂ ∂ ∂   

 
= ∆

 (51) 

 
The various derivatives in equation (51) are given by 
 

 

( ) ( )
( )
( ) ( )
( )

[ ]
( )

1 2 0 0 2 1 0 1 2

2
0 1 2

1 2 0 0 2 1 0 1 2

2
0 1 2

1 2 2 1 1 2
2

1 2

(2 )

(2 )

(2 )

i j i jij

i j i jij

ij

D D x x x N x x D D x x D Dg
x D D

D D y y y N y y D D y y D Dg
y D D

g D D f Nf D D D D
f D D

 − − + − + −∂  =
∂

 − − + − + −∂  =
∂

∂ + +
=

∂

 (52) 

 
By using the EKF, we can show that the solution of equation (51) is given by 

 

1

1

1 ( )

T T
k k k k k k k

k k k ij

k k k k

K P A A P A R

Z Z K R g

P I K A P

−

+

+

 = + 
 ∆ = ∆ + − 

= −

 (53) 

  
The above formulation is based upon the assumption that the sensitivity matrix is error free.13 

From equation (51) it is clear that the sensitivity matrix A is still a function of the centroiding coordinates 
of the stars, which include some random centroiding measurement errors as well as systematic errors that 
are not known.  So the EKF estimates are not guaranteed to be accurate for poor initial guesses.  Therefore, 
a new estimator is developed by the combination of Least Squares (LS) and the Kalman filter.  A least 
squares estimate of the principal point offset is determined from equation (51).  Then the LS estimates are 
used as “measurements” for a recursive Kalman filter to filter out the noise, combining many LS estimates 
to find a best estimate.   
 
Spacecraft Simulation and Results 

A simulation study is performed for the GIFTS mission.  The simulated spacecraft is in a 
geosynchronous orbit.  An  80x80 field of view star camera is simulated by using the pinhole camera model 
with principal point offsets of x0=0.75 and y0=0.25.  The focal length of star camera is assumed to be 
64.2964mm.  Star tracker data are sampled at 10 Hz and a centroiding noise of mean zero and standard 
deviation of 17µrad is introduced to true star data.  

A plot of the LS estimates is shown in figure 18.  From this plot, the LS estimates appear to be 
very noisy.  Figure 19 shows the plot of estimated principal point offset and focal length after filtering out 
the noise from the LS estimates by using a Kalman Filter.  The simulation results show that the values of 
(x0, y0) and f converged after 250 seconds.  The simulation results also reveal the fact that the focal length 
convergence is quite robust while x0 and y0 are less observable with larger oscillations in their convergence 
transients.  This fact can be supported by the SVD decomposition of matrix A in equation (51).  The 
singular values of the sensitivity matrix give an idea of the degree of observability of the states.  Singular 
values of matrix A are given in Table 1.  It is clear from the table that two singular values of matrix A are an 
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order of magnitude lower than the third one (corresponds to focal length), and therefore principal point 
offsets are less observable than the focal length.  From these figures, it is clear that sequential estimator 
developed in this paper is able to give accurate estimates of the principal point offset and focal length. 

 
Table 1: Singular Values of A 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Variance Analysis 
In this section a variance analysis for the attitude independent approach is derived.  Consider two 

body measurements: 

 
( )

( )
i i i

i i i

= +

= +

b C q r ν

b C q r ν
                     (54) 

where νi and νj are uncorrelated. Define the following effective measurement 
 

                                    (55) 

 
since νi and νj are uncorrelated then 
                                                                         { } T

i jE =z r r                                                                     (56) 
Define the following variable 
                                           { } T T T T T

i j j i i jp E≡ − = + +z z r C ν r C ν ν ν                                               (57) 
 
Then taking E{p2} yields 
 
                       { }2 2 ( )T T T T

p i j i j i j i jE p Traceσ = = + +r C R Cr r C R Cr R R                                     (58) 

 
The last term is typically higher-order, which can effectively be ignored.  If 2

i iσ=R I and 
2

j jσ=R I then 

                                                         2 2 2 2 23p i j i jσ σ σ σ σ= + +                                                                  (59) 
 

7.5341e-004 2.1476e-005 1.5472e-005 

Figure 18: LS Estimate of Boresight Error for  
Attitude Independent Approach 

Figure 19: Boresight Error Estimates after Filtering 
by the Kalman Filter  

T T T T T T T
i j i j i j j i i j≡ = + + +z b b r r r C ν r C ν ν ν
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Furthermore, if 2 2 2
i jσ σ σ= = then 2 2 42 3pσ σ σ= + .  The residual variance can be computed using the 

scalar version of the approach given in equation (43).  Equation (42) is used to check the consistency of the 
simulation results.   It is found that the left hand-side of this equation matches well with the right hand-side. 
 
Higher Order Focal Plane Calibration 

Higher order focal plane distortions can be estimated by making x0, y0 and f function of positions, 
i.e., x0 and y0 can be written as 

 
( )
( )

0 1

0 2

f ,

f ,

x x y

y x y

=

=
 (60) 

As the angle between two vectors is invariant, whether measured in image frame or inertial frame, we can 
write 

 0

0 0 0
1

0

0 0
2

( )
1 ( ) ; ;

( )
1 ( ) ; ;

T T
i j i j

i i
T T

i i i i i i i

j j
T T

j j j oj j j j

x x
y y x y

D
f

x x
y y x y

D
f

=

− − 
 = − − = = 
 
 

− − 
 = − − = = 
 
 

r r b b

b Φ a Φ b

b Φ a Φ b

 (61) 

So, we have 

 ( ) ( ) ( ) ( )
( ) ( )( )
( ) ( )( )

1 2

2
0 0 0

2 2 2
1 0

2 2 2
2 0 0

T
i j

i i j j i oi j j

i i i oi

j j j j

N g
D D

N x x x x y y y y f

D x x y y f

D x x y y f

= =

= − − + − − +

= − + − +

= − + − +

r r

 (62) 

Linearizing equation (62), we obtain 
 

 
( )ˆˆ ,1 2

ˆ
ˆ ˆ

T
i j

N g g
D D

 ∂ ∂ = +   ∂ ∂   a b

a
r r

ba b
 (63) 

where 
 

0 0

,   T T T T
i j i j

i oj i oj

g g g g g g
x x y y

∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂
Φ Φ Φ Φ

a b
 (64) 

 
After computing various partials, 
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 (65) 
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the following equation is given: 
 

1 2

ˆ
ˆ ˆ

T
i j

N g g
D D

 ∂ ∂ − =   ∂ ∂   

a
r r

ba b
 (66) 

From equation (66) a and b can be estimated in the same manner as the principal point offset and focal 
length were estimated.  But, selection of the distortion model should be made in a judicious fashion, i.e., 
various kinds of distortion functions exist in various imagery systems, which take into account the radial 
and tangential distortions.  A good survey of the literature and discussion of methods for CCD cameras 
calibration is presented by Lenz and Tsai3.  Tsai method3 is based upon the assumption that the tangential 
distortion is negligible as compared to radial distortion. In this paper, we will look for some radial 
distortion function for lens distortions.  The lens distortion is assumed to be given as2,3 

 

  2 3 4
0 0;   ;   

T T Tr r r r x x y y = = = Φ Φ a Φ b                                      (67) 

 2 2 2 2 2 2

2 2 2 2 2 2

or

( ) 3 2

( ) 3 2

T

x

T

y

x x y x y xy x y

y x y x y xy x y

 = + + + 

 = + + + 

Φ

Φ

 (68) 

 
Simulations and Results 

A study is performed by simulating an 80x80 FOV star camera, using the pinhole camera model 
lens distortion given by equation (61) and (67 & 68).  The focal length of star camera is assumed to be 
64.2964mm.  Star tracker data are sampled at 10 Hz and a centroiding noise of mean zero and standard 
deviation of 17µrad is introduced to true star data.  Figures 20 and 21 show the surface plots of the true 
distortion functions by using the distortion functions given by equations (67 & 68).  Estimated distortion 
surfaces are shown in figures 22 and 23.  The true and estimated values of the distortion parameters are 
given in Tables 2 and 3.  From the results we can conclude that the distortion parameters are successfully 
estimated by the algorithm developed in this paper, which allows for autonomous calibration of the star 
camera on-orbit.  But in presence of localized distortion, a more judicious selection of the distortion 
parameters is needed.  
 

Table 2: True and Estimated Distortion Parameters for Distortion Given by Equation (67) 
 
 

 
 
 

Table 3: True and Estimated Distortion Parameters for Distortion Given by Equation (68) 
 

 

 
 

atrue aest btrue best 
5e-04 -5.1127e-004 8e-04 -8.2594e-004 
2e-04 -1.9572e-004 -5e-04 5.0775e-004 

-3.4e-04 3.5959e-004 5.6e-04 -5.7828e-004 
-5.3e-04 5.3435e-004 -3.4e-04 3.8590e-004 

atrue aest btrue best 
5e-04 -4.5920e-004 8e-04 -9.2657e-004 
2e-04 -2.4988e-004 -5e-04 5.6702e-004 

-3.4e-05 5.1022e-005 5.6e-05 -6.9582e-005 
-5.3e-06 3.5486e-006 -3.4e-06 4.2967e-006 
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Figure 20: True Distortion Surface for Distortion 
 Basis Function Given by Equation (67) 

Figure 22: True Distortion Surface for Distortion 
Basis function Given by Equation (68) 

Figure 23: Estimated Distortion Surface for 
Distortion Basis Function Given by Equation (68)

Figure 21: Estimated Distortion Surface for  
Distortion Basis Function Given by Equation (67) 
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Conclusions 
The Kalman filter algorithm was developed in this paper for attitude, interlock angle and rate bias 

determination using three-axis gyro data and split field of view star camera measurements.  Two algorithms 
were presented for focal plane distortion estimation.  In the attitude dependent approach, focal plane 
distortion estimation depends upon the estimated attitude and vice-versa.  The strong coupling between 
principal point offset and attitude makes this algorithm numerically unstable.  A novel approach was 
developed for the focal plane calibration using the measurements independent of attitude.  The results 
indicated the algorithms developed in this paper provide precise estimates of attitude, interlock angle, 
principal point offset, focal length, and higher order focal plane distortion and gyro rate bias. 
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