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SPACECRAFT ANGULAR RATE ESTIMATION ALGORITHMS
FOR STAR TRACKER-BASED ATTITUDE DETERMINATION

Puneet Singla,∗ John L. Crassidis,† John L. Junkins‡

In this paper, two different algorithms are presented for the estima-
tion of spacecraft body angular rates in the absence of gyro rate data
for a star tracker mission. In first approach, body angular rates are
estimated with the spacecraft attitude using a dynamical model of
the spacecraft. The second approach makes use of a rapid update
rate of star camera to estimate the spacecraft body angular rates
independent of spacecraft attitude. Essentially the image flow of the
stars is used to establish a Kalman filter for estimating the angular
velocity. The relative merits of both the algorithms are then stud-
ied for the spacecraft body angular rates measurements. The second
approach has an advantage of being free from any bias in attitude
estimates.

Introduction

Spacecraft angular rate data plays an important role in attitude determination and
attitude control. With the use of rate data, the attitude of spacecraft can be predicted
between two different frames of star tracker data. Generally, three axis gyros are used on
board to provide the body angular rate information. In the presence of densely measured
rate data, the exact kinematic model can replace the dynamical model. But when rate data
is not available, then estimation accuracy is obviously dependent on 1) accuracy of the star
measurements, 2) their frequency in time, and 3) the accuracy of the dynamical model. An
accidental gyro failure (e.g. failure of four of six rate gyros on the Earth Radiation Budget
Satellite1) or intentionally omission of gyros (e.g. in Small Explorer (SAMPEX)1) due to
their high cost can necessitate “gyroless” attitude estimation. The loss of gyro data can
result in unacceptably high propagation errors.

The problems related to spacecraft attitude estimation in loss of gyro data has been
discussed by Mook,1 and he proposed an estimation algorithm, which can in principle take
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care of both inaccurate rate data and inaccurate dynamic model. He suggested that the
Minimum Model Error (MME) approach to be used to obtain the most accurate state
estimate for poorly modelled dynamic systems by taking into account the error in model
dynamics. Afterwards these MME estimates may be used for model identification. Crassidis
and Markley2 have obtained accurate estimates for the SAMPEX spacecraft by using only
magnetometer sensor measurements. But the disadvantages with the MME based approach
is that it falls into the category of batch estimation (i.e., all the data should be processed
simultaneously), which significantly restricts its use in real time applications. The Kalman
filter is an ideal choice for real time applications. However, the accuracy of the Kalman filter
estimation depends in a complicated way upon the accuracy of dynamic model and tuning
of the process noise covariance matrix. So between two sets of measurements, the estimates
are still subjected to accumulation of model error. It should be noted that the Kalman
filter does consider model error, but virtually all implementations consider the model error
to be a “white noise random process”. This model usually inadequate to represent colored
(correlated) model errors; for the case of poorly known systematic (non-white) model errors,
the MME and related algorithms are more attractive. While MME methods enjoy some
theoretical advantages, both the Kalman filter and MME algorithms require tuning, however
the required artistic tuning of the Kalman filter algorithms are in a more mature state of
development. Fisher et. al.3 discussed the use of the Kalman filter for attitude and angular
rate determination using attitude sensor outputs alone.

Sufficient information about the body angular rates can be obtained from the attitude
sensor measurements, if attitude sensor data frequency is fast enough to capture the space-
craft motion. Star cameras are very accurate and, in view of recent active pixel sensor
cameras, star camera frame rates are increasingly high. This suggests the possibility of
deriving angular velocity measurements from “star motion” on the focal plane. In this pa-
per, two different sequential algorithms will be presented for spacecraft body angular rates
estimation in the absence of gyro rate data for a star tracker mission.

1. In the first approach, body angular rates of spacecraft will be estimated with spacecraft
attitude using the Kalman filter. This method uses a dynamical model in which,
external torques acting on spacecraft are modelled by random walk process. So the
performance of this algorithm will depend on the validity of assumed dynamical model
for the given case.

2. The second approach makes use of the rapid update rate of the star camera to ap-
proximate body angular velocity vector independent of attitude estimation. A time
derivative of star tracker body measurements is taken to establish “measurement equa-
tions” for estimating angular velocity. First order and second order finite difference
approaches will be used to approximate the time derivative of body measurements. A
sequential Least Squares algorithm is used to estimate the spacecraft angular rates.
This algorithm works fine, if the sampling interval of star data is well within Nyquist’s
limit for the actual motion of the spacecraft.

The structure of this paper proceeds as follows. First a brief review of star tracker
model is given. The subsequent section introduces the attitude dependent angular velocity
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Figure 1 Catalog Star Pair

estimation followed by the attitude independent approach. Finally, computer simulation
results are presented to test the algorithms.

Star Tracker Model

Star positions are a very accurate source as the reference system for the attitude deter-
mination problem as their position is fixed with respect to inertial system fixed to earth.
Spacecraft attitude is determined by taking the photographs of the star by a star camera.
Pixel formats of the order of 512×512 or larger are commonly used to provide good resolu-
tion pictures. The first stage in attitude determination is to identify the stars with reference
to on-board catalog. Star catalog contain the spherical co-ordinate angles of the stars (α is
the right ascension and δ is the declination, Figure 1) to a high accuracy.

Many algorithms have been developed for the star identification.4 All star identification
algorithms can be divided into three categories: 1) Direct match, 2) Angular separation
match, and 3) Phase match. Star identification algorithm based upon the Angular separa-
tion approach are very popular .5 After star identification is made, image plane coordinates
of the stars are given by using a pinhole camera model for the star camera. Photograph
image plane coordinates of jth star are given by following co-linearity equations:

xj = f
C11rxj + C12ryj + C13rzj

C13rxj + C32ryj + C33rzj

+ x0 (1)

yj = f
C21rxj + C22ryj + C23rzj

C13rxj + C32ryj + C33rzj

+ y0 (2)

where f is the effective focal length of the star camera and (x0, y0) are principal point
offsets, determined by the ground or on-orbit calibration, Cij are the direction cosines
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matrix elements, and the inertial vector rj is given by

rj =





rxj

ryj

rzj



 =





cos δj cosαj

cos δj sinαj

sin δj



 (3)

choosing the z-axis of the image coordinate system towards the boresight of the star camera
as shown in Figure 2, the measurement unit vector bj is given by following equation:

bj =
1√

x2
j + y2

j + f2




−(xj − x0)
−(yj − y0)

f



 (4)

The relationship between measured star direction vector bj in image space and their

Figure 2 Image Plane Star Pair

projection rj on the inertial frame is given by

bj = Crj + νj (5)

where C is the attitude direction cosine matrix denotes the mapping between image and
inertial frame and νj is a zero mean Gaussian white noise process with covariance Rj .

Attitude Dependent Angular Velocity Estimation Algorithm

In this approach, the spacecraft body angular rate are estimated with spacecraft atti-
tude using the Kalman filter. Actually, this algorithm has been derived from the attitude
determination algorithm presented in ref.6 The state vector of the Kalman filter consists of
3 component of angular velocity in place of the rate bias vector as in.6

x =
{

δq
ω

}
(6)

The angular acceleration of the spacecraft is modelled by first order random process.

τ = ω̇ = η2 (7)
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where η2 represents a Gaussian random variable with the following known statistical prop-
erties:

E(η2) = 0 (8)
(η2η

T
2 ) = σ2

vI (9)

Therefore, the state equations for new state vector are given as:

ẋ = Fx + Gw (10)

where w is a noise vector defined as:

w =
{

η1

η2

}
(11)

and matrix F and G are given by following equations.7

F =
[ −ω̃(t) −1

2I3×3

O3×3 O3×3

]
(12)

G =
[

1
2I3×3 O3×3

O3×3 I3×3

]
(13)

Adopting the procedure described in refs.,6,7 the state propagation and update equations
for Kalman filter can be written as:
Propagation Equations

q̂k+1 = [cos(
θk

2
)I4×4 + sin(

θk

2
)Ω(n̂k)]q̂k (14)

where
θk = ωn ∗ (tk+1 − tk) and ωn = ‖ω̂k‖ =

√
ω̂2

k1
+ ω̂2

k2
+ ω̂2

k3

Pk+1 = ΦkPkΦk + GQkG (15)
with

Φk =
[

Φ1k
Φ2k

O3×3 I3×3

]
(16)

Φ1k
= I3×3 +

ω̃T

ωn
sin θk + (

ω̃T

ωn
)2(1− cos θk) (17)

Φ2k
=

1
2
[I3×3∆t +

(ω̃T (1− cos θk))
ω2

n

+
ω̃ω̃(θk − sin θk)

ω3
n

] (18)

Update Equations

x̂+
k = x̂−k + Kk(ỹk −Hkx̂

−
k ) (19)

P+
k = (I−KkH)P−

k (20)
Kk = P−

k HT
k (HkP−

k HT
k + Rk)−1 (21)

where

Hk =
[

L O3×3

]
(22)

L = 2[b̂⊗] (23)
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Simulations

Using the J-2000 star catalog with stars of visual magnitude brighter than Mv ∼ 6.4,
assuming 80×80 FOV star camera and 17µ radian (for 1024×1024 pixel array) of centroiding
error, star data are simulated at a frame rate frequency of 10Hz. Three different test cases
were considered. For the first case the spacecraft is assumed to be in LEO orbit with true
angular velocity, ω =

{
0 0.0011 0

}T .
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Figure 3 Attitude Errors (rad) vs
Time (sec)
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Figure 6 Estimated Space-
craft Angular Velocity
(rad/sec) vs Time (sec)

Figures 3 and 4 show the plots of estimated spacecraft attitude and spacecraft angular
velocities, respectively. From Figure 4 it is clear that the algorithm is able to estimate
the angular velocity and attitude precisely, but the attitude estimates are somewhat less
accurate as compared to the estimates when angular rates are available.
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For the second test case, it is assumed that spacecraft angular velocity has small slowly
time varying oscillations about the x and z axes but has a constant velocity of 0.0011 rad/sec
about the y-axis. Figures 5 and 6 show the plots of estimated angular velocities and attitudes
of the spacecraft respectively. From the plots, we can infer that algorithm given in this
section is able to estimate the attitude and angular velocities of the spacecraft successfully
even in the absence of rate data. However, the estimates are sensitive to “dropout” when
sparse star regions are encountered, where star-id confidence may be too low.

For the third test case, it is assumed that spacecraft angular velocity has fast time
varying angular oscillations about the x and z axes but has a constant velocity of 0.0011
rad/second about the y-axis. But unfortunately, for third test case this algorithm fails, i.e.,
the estimated errors are significantly outside their 3σ bounds as the angular velocities are
rapidly changing with time.

The main disadvantage associated with this approach is that angular rate estimates are
subject to any error in spacecraft attitude estimates and vice-vera.

Attitude Independent Approach

In this section, a deterministic approach will be used to determine the spacecraft body
angular rate vector from the star tracker body measurements. This approach makes use of
the increasingly rapid update rates of modern star cameras and finite different analysis of
“image flow” trajectories of the measured star line of sight vectors in the sensor coordinate
system. Consider the following focal plane trajectory of line of sight vector for ith star bi(t):

bi(t) =
1√

xi(t)2 + yi(t)2 + f2




−(xi(t)− x0)
−(yi(t)− y0)

f



 (24)

where xi(t) and yi(t) dictate the focal plane trajectory of ith star. Now, the true flow
velocity measurement model is given by

dbi(t)
dt

=
dC(t)

dt
ri (25)

Using the fact that dC(t)
dt = −[ω(t)⊗]C(t), we can rewrite equation (25) as:

dbi(t)
dt

= −[ω(t)⊗]bi(t) (26)

The first order Taylor series expansion for line of sight vector for ith star at time tk is given
by:

bi(k) = bi(k − 1) +
dbi(t)

dt
|k−1∆t + O(∆t2) (27)

Using the fact that b̃i(k) = bi(k) + ν and substituting for dbi(t)
dt from equation (26), we

obtain the following finite difference approximation:

Yi(k) =
1

∆t
[b̃i(k)− b̃i(k − 1)] = [b̃i(k − 1)⊗]ω(k − 1) + wi(k) + O(∆t) (28)
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where the effective measurement error wi(k) of Yi(k) is:

wi(k) =
1

∆t
[νi(k)− νi(k − 1)] + [ω(k − 1)⊗]νi(k − 1) (29)

From equation (29), it is clear that new noise vector wi(k) is a function of angular rate vector
ω(k − 1). Assuming a stationary noise process for νi, the following covariance relationship
can be easily derived

E(wi(k)wT
i (k)) = [ω(k−1)⊗]Ri[ω(k−1)⊗]T +

1
∆t

[Ri[ω(k−1)⊗]− [ω(k−1)⊗]Ri]+
2

∆t2
Ri

(30)
If the sampling interval is well within Nyquist’s limit i.e. ‖ω‖∆t ≤ π, with a safety factor
of 10 then ‖ω‖∆t ≤ π

10 . Since, ‖[ω(k − 1)⊗]‖ ≈ ‖ω‖, then the following inequalities are
true

‖[ω(k − 1)⊗]Ri[ω(k − 1)⊗]T ‖ <
π2

100∆t2
‖Ri‖ <<

2
∆t2

‖Ri‖ (31)

‖ 1
∆t

[Ri[ω(k − 1)⊗]− [ω(k − 1)⊗]Ri]‖ <
2π

10∆t
‖Ri‖ <

2
∆t2

‖Ri‖ (32)

It should be noted that second term of noise covariance matrix vanishes for the isotropic
measurement errors (i.e. when Ri is scalar times identity matrix). Therefore the last term
in equation (30) dominates the first two terms, which can effectively be ignored. Equation
(28) can now be cast into a Kalman filter formulation, which leads to

ω̂(k)+ = ω̂(k)− + Kk(Yi(k)−Hkω̂(k)−) (33)

where

Yi(k) =
1

∆t
[b̃i(k)− b̃i(k − 1)] (34)

Hk = [b̃i(k − 1)⊗] (35)

To take care of time varying angular rates we need to propagate the error covariance matrix
according to the Ricatti equation. Therefore, again modelling the spacecraft angular rates
by a first order statistical process, we get following propagation equations

ω̇ = η & E(ηηT ) = σ2I (36)
P−

k = P+
k−1 + GQG (37)

where

G = I3×3 (38)
Q = σ2I3×3∆t (39)

Therefore, only knowledge of the body vector measurements and sampling time interval is
required to derive an angular velocity estimate.

We can improve the accuracy of spacecraft angular velocity estimates particularly for
higher angular rates by considering a higher order finite-difference where the Taylor series
truncation errors are of magnitude O(∆t2) as compared to O(∆t) in equation (28)

Yi(k) =
1

2∆t
[4b̃i(k−1)−3b̃i(k−2)− b̃i(k)] = [b̃i(k−2)⊗]ω(k−2)+wi(k)+O(∆t2) (40)
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where
wi(k) = [b̃i(k − 2)⊗]νi(k − 2) +

1
2∆t

[4νi(k − 1)− 3νi(k − 2)− νi(k)] (41)

Again assuming a stationary noise process for νi(k), the following covariance relationship
can be derived

E(wi(k)wT
i (k)) = [ω(k−2)⊗]Ri[ω(k−2)⊗]T +

3
2∆t

[Ri[ω(k−2)⊗]−[ω(k−2)⊗]Ri]+
13

2∆t2
Ri

(42)
If the sampling interval is well within Nyquist’s limit i.e. ‖ω‖∆t ≤ π, with a safety factor
of 10 then ‖ω‖∆t ≤ π

10 . Since, ‖[ω(k)⊗]‖ ≈ ‖ω‖, then the following inequalities are true

‖[ω(k − 2)⊗]Ri[ω(k − 2)⊗]T ‖ <
π2

100∆t2
‖Ri‖ <<

13
2∆t2

‖Ri‖ (43)

‖ 3
2∆t

[Ri[ω(k − 2)⊗]− [ω(k − 2)⊗]Ri]‖ <
6π

20∆t
‖Ri‖ <

13
2∆t2

‖Ri‖ (44)

again the second term vanishes for isotropic measurement errors and therefore the last term
in equation (42) dominates the first two terms, which can be ignored. Equation (40) can
also be cast into a Kalman filter formulation, which leads to

ω̂(k)+ = ω̂(k)− + Kk(Yi(k)−Hkω̂(k)−) (45)

where

Yi(k) =
1

2∆t
[4b̃i(k + 1)− 3b̃i(k)− b̃i(k + 2)] (46)

Hk = [b̃i(k)⊗] (47)

The covariance matrix P can be propagated according to equation (37).

It should be noted that the second order approach has a order of magnitude less Taylor
series truncation error than the first order approach but at the price of an increased standard
deviation in the effective measurement noise (by a factor of

√
13/2). But, the Kalman filter is

inadequate to represent the truncation error whereas it can treat the effective measurement
noise as “Gaussian white noise process”. Therefore, we expect second order approach to
give better results than the first order approach whenever truncation error dominate the
increase in effective measurement error which is the case for high angular velocities.

Simulations

Using the J-2000 star catalog with stars of magnitude up to 6.0, assuming 80 × 80 field
of view star camera and 17µ radian (for 1024× 1024 pixel array) of centroiding error, star
data are simulated at a frame rate frequency of 10Hz. Three different test cases defined
above were considered.

Figures 7 and 9 show the plots of the true angular velocity and the estimated spacecraft
angular velocities from the first order and second order approaches, respectively for the
first test case. Figures 8 and 10 show the plots of the corresponding spacecraft angular
velocity error with 3σ bounds for the first order and second order approaches, respectively.
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From these plots, it is clear that the second order approach is able to estimate the angular
velocity more accurately than the first order approach.

Similarly, Figures 11 and 13 show the plots of the true and estimated spacecraft angular
velocity for the second test case, by first and second order approach respectively. Figures
12 and 14 show the corresponding angular velocity error and 3σ bounds plots for first and
second order approach respectively. From these plots, it is again clear that the second
order approach is able to estimate the angular velocity more accurately than the first order
approach. This can be due to the fact that the extra information provided by the second
order approach for the star trajectory compensate for an increased standard deviation in
the estimate noise.

Figures 15 and 16 show the plots of the true and estimated spacecraft angular velocity
and spacecraft angular velocity error with 3σ bound by first order approach for the third
test case. From the plots, it is clear that for this test case the angular velocity errors
are significantly outside their 3σ bound when the magnitude of fairly changing angular
velocities is high. Where as, from figures 17 and 18, we can notice that second order
attitude independent algorithm works fine even for fairly high magnitude rapidly changing
angular velocities case. This can be due to the fact that the second order approach not only
gives better approximation of the star trajectory for rapidly changing angular velocity case
but also compensate for an increased standard deviation in the estimate noise.

From the plots, we can infer that algorithm based upon the second order approach
gives more accurate results for higher angular rates but surprisingly by, at the price of an
increased standard deviation in the estimate noise (by a factor of

√
13/2).

Concluding Remarks

The important issue in this paper is to address angular rate estimation for attitude
determination in case of gyro failure which increases the domain of practical applicability
of attitude estimation algorithms. As usual, the convergence of the Kalman Filter depends
jointly upon: 1) the accuracy of the dynamical model and process noise representation, 2)
the frequency and accuracy of the attitude measurements. For the attitude independent
approach, approximations of the derivatives of the“image flow” trajectories of individual
stars (imaged in high frame rate cameras) gives more accurate rate estimation results than
the usual Kalman filter with typical modelling errors. The main advantage of the attitude
independent algorithm is that now our spacecraft body rate estimates are free from any
error in attitude estimates. The second order attitude independent algorithm gives better
results than the first order approach for high magnitude angular rate case. However, the
second-order approach requires two time steps ahead to estimate the angular velocity at
the current time (i.e., knowledge of b̃i at the k + 2 step is required to estimate ω at the
k step). The first-order approach requires only one-time step ahead. For this reason the
first-order approach should be used when possible.
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tained by 2nd Order
Approach for Test Case
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Figure 18 Estimated Spacecraft
Angular Velocity Er-
rors and 3σ Bound
Obtained by 2nd Or-
der Approach for Test
Case 3
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