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ABSTRACT

A new spacecraft sensor alignment estimation ap-
proach based on the Unscented filter is derived. Basic
six-state attitude estimation is widely implemented in
actual spacecraft missions. However, more stringent
spacecraft pointing accuracy requires sensor alignment
calibration to be performed post-launch to accommo-
date in-space disturbances and launch shock vibra-
tion. Sequential filtering is preferred since the cal-
ibration parameters could drift over time. It also
minimizes ground crew intervention and mission dis-
ruption. Simulated spacecraft data results shows that
the Unscented filter is more robust and more suitable
for on-board implementation than the traditional ex-
tended Kalman filter. Also, experimental results from
the Microwave Anisotropy Probe using the Unscented
filter are shown to test the performance of the algo-
rithm using real data.

INTRODUCTION

Precise attitude estimation is crucial to most space-
craft missions today. The traditional six-state ex-
tended Kalman filter (EKF) estimates the current
attitude and gyro biases simultaneously. This filter
assumes unvarying alignment of the sensors involved
in attitude estimation. However, sensor misalignment
is inevitable and would contribute to unreliable at-
titude estimates.1 More stringent attitude pointing
accuracy requires misalignments to be estimated and
implemented into the attitude estimator. It has been
noted in some recent papers2−4 of the importance of
proper calibration for use in fault detection or rate
derivation. Without in-space sequential calibration,
the sensors have to be re-calibrated on the ground from
time to time to improve residual characteristics.3
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Misalignment calibration is usually performed prior
to launch. However, launch shock often makes this pre-
launch calibration somewhat irrelevant and requires
post-launch alignment calibration before nominal mis-
sion mode. Thus in-flight alignment calibration is
needed to accommodate these unanticipated changes
in alignment. The ill effects of attitude estimation
using misaligned sensors are shown in Ref. [5]. On-
board real-time or sequential filtering is preferred since
misalignment parameters could drift, either due to
in-space disturbances (for example solar wind, aero-
dynamics, persistence thermal shock) or unattended
changes in the attitude sensor’s relative orientation, es-
pecially those with moving mechanisms. A sequential
filter constantly outputs the best estimate of the cal-
ibration parameters and can tolerate parameter drifts
in real-time with minimal ground crew intervention or
mission disruption. In this paper, we propose a new
real-time misalignment estimator using the Unscented
Filter (UF).6

This in-space calibration scheme would enhance the
degree of autonomy of the Attitude Determination and
Control System to reduce ground crew intervention for
an extended period of time. Specifically, autonomy
refers to a mode of ground system operation in which
manual human actions are not required to accomplish
desired functions. Autonomy refers to self-acting, self-
regulating systems on the spacecraft wherein functions
are delegated to the spacecraft systems. Because of op-
erational necessity, budget constraints, and technology
push a number of automation initiatives are underway
at NASA-Goddard Space Flight Center.8

The organization of this paper proceeds as follows.
First, the Unscented filtering and attitude kinematics
are briefly reviewed. Sensor models with misalign-
ments are then derived. These include a three-axis
orthogonal gyros, vector output star tracker and vec-
tor output payload. The gyro model also includes
asymmetric and symmetric scale factor errors and bias
drifts. Then, simulated spacecraft results and exper-
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imental data results from the Microwave Anisotropy
Probe (MAP) are presented.

UNSCENTED FILTERING

In this section the UF is reviewed. For more infor-
mation, please refer to Ref. [9]. The filter presented
in Ref. [10] is derived for discrete-time nonlinear equa-
tions, where the system model is given by

xk+1 = f(xk, k) +Gkwk (1a)

ỹk = h(xk, k) + vk (1b)

where xk is the n × 1 state vector and ỹk is the
m × 1 measurement vector. Note that a continuous-
time model can always be expressed in the form of
Eq. (1a) through an appropriate numerical integra-
tion scheme. We assume that the process noise wk

and measurement-error noise vk are zero-mean Gaus-
sian noise processes with covariances given by Qk and
Rk, respectively. The standard Kalman Filter update
equations are first rewritten as11

x̂+k = x̂−k +Kkυk (2a)

P+k = P−k −KkP
υυ
k KT

k (2b)

where x̂−k and P−k are the pre-update state estimate
and covariance, respectively, and x̂+k and P+k are the
post-update state estimate and covariance, respec-
tively. The innovation υk is given by

υk ≡ ỹk − ŷ−k = ỹk − h(x̂−k , k) (3)

The covariance of υk is denoted by P υυ
k . The gain Kk

is computed by

Kk = P xy
k (P υυ

k )−1 (4)

where P xy
k is the cross-correlation matrix between x̂−k

and ŷ−k .
The UF uses a different propagation than the stan-

dard EKF. Given an n× n covariance matrix P , a set
of 2n sigma points can be generated from the columns
of the matrices ±

√

(n+ λ)P , where
√
M is shorthand

notation for a matrix Z such that Z ZT = M . The
set of points is zero-mean, but if the distribution has
mean µ, then simply adding µ to each of the points
yields a symmetric set of 2n points having the desired
mean and covariance.10 Due to the symmetric nature
of this set, its odd central moments are zero, so its first
three moments are the same as the original Gaussian
distribution. The scalar λ is a convenient parameter
for exploiting knowledge (if available) about the higher
moments of the given distribution.11 In scalar systems
(i.e., for n = 1), a value of λ = 2 leads to errors in the
mean and variance that are sixth order. For higher-
dimensional systems choosing λ = 3−n minimizes the
mean-squared-error up to the fourth order.10 How-
ever, caution should be exercised when λ is negative

since a possibility exists that the predicted covariance
can become non-positive semi-definite. If this is a ma-
jor concern, then another approach can be used that
allows for scaling of the sigma points, which guaran-
tees a positive semi-definite covariance matrix. Also,
it can be shown that when n+λ tends to zero the mean
tends to that calculated by the truncated second-order
filter.12 This is the foundation for the UF.

A method for incorporating process noise in the UF
is shown in Ref. [13]. This approach generates a set
of points in [xk, wk] space that has the correct mean
and covariance, and propagates these points through
the model in Eq. (1a). The predicted mean and covari-
ance are also augmented to included the process noise,
but the basic structure of the their calculations remain
unchanged (see Ref. [13] for more details). Although
this approach may more fully utilize the capability of
the unscented transformation, it will be more compu-
tationally costly due to the extra required calculations
arising from the augmented system. For the basic six-
state attitude estimation problem, a set of six more
sigma points is required to implement this approach.
This significantly increases the computational burden,
which may prohibit its use for actual onboard imple-
mentations.

The general formulation for the propagation equa-
tions are given as follows. First, compute the following
set of sigma points:

σk ← 2n columns from ±
√

(n+ λ)[P+k + Q̄k] (5a)

χk(0) = x̂+k (5b)

χk(i) = σk(i) + x̂+k (5c)

where the matrix Q̄k is related to the process noise
covariance, which will be discussed shortly. One ef-
ficient method to compute the matrix square root is
the Cholesky decomposition. Alternatively, the sigma
points can be chosen to lie along the eigenvectors of the
covariance matrix. Note that there are a total of 2n
values for σk (the positive and negative square roots).
The transformed set of sigma points are evaluated for
each of the points by

χk+1(i) = f [χk(i), k] (6)

The predicted mean is given by

x̂−k+1 =
1

n+ λ

{

λχk+1(0) +
1

2

2n
∑

i=1

χk+1(i)

}

(7)

The predicted covariance is given by

P−k+1 =
1

n+ λ

{

λ [χk+1(0)− x̂−k+1] [χk+1(0)− x̂−k+1]
T

+
1

2

2n
∑

i=1

[χk+1(i)− x̂−k+1] [χk+1(i)− x̂−k+1]
T

}

+ Q̄k

(8)
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The mean observation is given by

ŷ−k+1 =
1

n+ λ

{

λγk+1(0) +
1

2

2n
∑

i=1

γk+1(i)

}

(9)

where
γk+1(i) = h[χk+1(i), k] (10)

The output covariance is given by

P yy
k+1 =

1

n+ λ

{

λ [γk+1(0)− ŷ−k+1] [γk+1(0)− ŷ−k+1]
T

+
1

2

2n
∑

i=1

[γk+1(i)− ŷ−k+1] [γk+1(i)− ŷ−k+1]
T

}

(11)

Then, the innovation covariance is simply given by

P υυ
k+1 = P yy

k+1 +Rk+1 (12)

Finally, the cross-correlation matrix is determined us-
ing

P xy
k+1 =

1

n+ λ

{

λ [χk+1(0)− x̂−k+1] [γk+1(0)− ŷ−k+1]
T

+
1

2

2n
∑

i=1

[χk+1(i)− x̂−k+1] [γk+1(i)− ŷ−k+1]
T

}

(13)

The filter gain is then computed using Eq. (4), and
the state vector can now be updated using Eq. (2).
Even though 2n+ 1 propagations are required for the
UF, the computations may be comparable to the EKF,
especially if the continuous-time covariance equations
need to be integrated and a numerical Jacobian matrix
is evaluated. Since the propagations can be performed
in parallel, the UF is ideally suited for parallel com-
putation architectures.

Reference [13] states that if the process noise is
purely additive in the model, then its covariance can
simply be added using a simple addictive procedure.
Next, we expand upon this concept by incorporating
an approximation for the integration over the sampling
interval, which more closely follows the actual process.
Any process noise that is added to the state vector in
the UF is effectively multiplied by the state transition
matrix, Φ(∆t), which gives Φ(∆t)QkΦ

T (∆t) at the
end of the interval. This mapping is done automati-
cally by the state propagation, and does not need to
be explicitly accounted for in the propagation. How-
ever, adding equal process noise at the beginning and
end of the propagation might yield better results. The
total desired process noise follows

Φ(∆t) Q̄kΦ
T (∆t) + Q̄k = GkQkG

T
k (14)

where Q̄k is used in Eq. (5a) and in the calculation of
the predicted covariance in Eq. (8). This approach is

similar to a trapezoid rule for integration. An explicit
solution for Q̄k in the attitude estimation problem de-
pends on the attitude kinematics, which we next show.

Note that, in this paper we are not utilizing the Q̄k.
Simulation results indicate that the UF performance
is not greatly affected by this simple assumption. In-
stead, we would use the discrete process noise covari-
ance Qk only in Eq. (5a) and not Eq. (8).

ATTITUDE KINEMATICS

In this section a brief review of the attitude kine-
matics equation of motion using quaternions is shown.
For more information, please refer to Ref. [9]. Also, a
generalization of the Rodrigues parameters is briefly
discussed. Finally, gyro and attitude-vector sensor
models are shown. The quaternions is defined by
q ≡ [%T q4]

T , with % ≡ [q1 q2 q3]
T = ê sin(ϑ/2),

and q4 = cos(ϑ/2), where ê is the axis of rotation and
ϑ is the angle of rotation.14 Since a four-dimensional
vector is used to describe three dimensions, the quater-
nion components cannot be independent of each other.
The quaternion satisfies a single constraint given by
qTq = 1. The attitude matrix is related to the quater-
nion by

A(q) = ΞT (q)Ψ(q) (15)

with

Ξ(q) ≡
[

q4I3×3 + [%×]
−%T

]

(16)

Ψ(q) ≡
[

q4I3×3 − [%×]
−%T

]

(17)

where I3×3 is a 3 × 3 identity matrix and [%×] is a
cross product matrix since a× b = [a×]b, with

[a×] ≡





0 −a3 a2
a3 0 −a1
−a2 a1 0



 (18)

Successive rotations can be accomplished using quater-
nion multiplication. Here we adopt the convention
of Refs. [14] and [15] who multiply the quaternions
in the same order as the attitude matrix multiplica-
tion: A(q′)A(q) = A(q′ ⊗ q). The composition of the
quaternions is bilinear, with

q′ ⊗ q =
[

Ψ(q′)
... q′

]

q =
[

Ξ(q)
... q

]

q′

(19)
Also, the inverse quaternion is given by q−1 =
[%T q4]

T . The quaternion kinematics equation is given
by

q̇(t) =
1

2
Ξ[q(t)]ω(t) (20)

where ω is the 3× 1 angular velocity vector.
The local error-quaternion, denoted by δq ≡

[

δ%T δq4

]T

, which will be defined in the UF for-

mulation, is represented using a vector of generalized
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Rodrigues parameters:

δp ≡ f
δ%

a+ δq4
(21)

where a is a parameter from 0 to 1, and f is a scale
factor. Note when a = 0 and f = 1 then Eq. (21) gives
the Gibbs vector, and when a = f = 1 then Eq. (21)
gives the standard vector of Modified Rodrigues Pa-
rameters (MRPs). For small errors the attitude part
of the covariance is closely related to the attitude es-
timation errors for any rotation sequence, given by a
simple factor. For example, the Gibbs vector linearize
to half angles, and the vector of MRPs linearize to
quarter angles. We will choose f = 2(a + 1) so that
‖δp‖ is equal to ϑ for small errors. The inverse trans-
formation from δp to δq is given by

δq4 =
−a‖δp‖2 + f

√

f2 + (1− a2)‖δp‖2
f2 + ‖δp‖2 (22)

δ% = f−1(a+ δq4)δp (23)

Discrete-time attitude observations for a single sen-
sor are given by

b̃i = A(q)ri + νi (24)

where b̃i denotes the ith 3× 1 measurement vector, ri
is the ith known 3× 1 reference vector, and the sensor
error-vector νi is Gaussian which satisfies

E{νi} = 0 (25)

E{νiνTi } = σ2i I (26)

Where E{} denotes expectation. Note that if unit
measurement vectors are used then Eq. (26) should be
appropriately modified. Multiple (N) vector measure-
ments can be concatenated to form

ỹk =











A(q)r1
A(q)r1

...
A(q)rN











k

+











ν1
ν2
...
νN











k

(27)

Rk = diag[σ21 σ22 . . . σ2n] (28)

where diag denotes a diagonal matrix of appropriate
dimension. We should note that any attitude sen-
sor, such as a three-axis magnetometer, star tracker,
sun sensor, etc., can be put into the form given by
Eq. (24). However, most sensors only observe two
quantities, such as two angles in star trackers. The
resulting form in Eq. (24) for these type of sensors
has a unity norm constraint in the observation. How-
ever, the mean observation given by Eq. (9) may not
produce an estimate with unit norm. Therefore, it is
recommended that the original two quantity observa-
tion model be used for these types of sensors in the
UF.

A common sensor that measures the angular rate is
a rate-integrating gyro. For this sensor, a widely used
model is given by16

ω̃(t) = ω(t) + β(t) + ηv(t) (29)

β̇(t) = ηu(t) (30)

where ω̃(t) is the continuous-time measured angular
rate, and ηv(t) and ηu(t) are independent zero-mean
Gaussian white-noise processes with

E{ηv(t)ηv(τ)}T = I3×3σ
2
vδ(t− τ) (31)

E{ηu(t)ηu(τ)}T = I3×3σ
2
uδ(t− τ) (32)

where δ(t− τ) is the Dirac delta function.

In the standard, given a post-update estimate β̂
+

k ,
the post-update angular velocity and propagated gyro
bias follow

ω̂+k = ω̃k − β̂
+

k (33)

β̂
−

k+1 = β̂
−

k (34)

Given post-update estimates ω̂+k and q̂+k , the prop-
agated quaternion is found from the discrete-time
equivalent of Eq. (20):

q̂−k+1 = Ω(ω̂+k )q̂
+

k (35)

with

Ω(ω̂+k ) ≡
[

Zk ϕ̂+k
−ϕ̂+Tk cos(0.5‖ω̂+k ‖∆t)

]

(36)

Zk ≡ cos(0.5‖ω̂+k ‖∆t)I3×3 − [ϕ̂+k ×] (37)

ϕ̂+k ≡ sin(0.5‖ω̂+k ‖∆t)ω̂+k /‖ω̂+k ‖ (38)

where ∆t is the sampling interval in the gyro.

MISALIGNMENT SENSOR MODELS

In this section misalignment models for the gyros,
star tracker, and payload are presented. The gyro
model also includes bias and scale factor errors.

Gyro Model

The gyro model follows the development from
Ref. [5] and Ref. [7] with some modifications. The
gyro model from Eq. (29) with added misalignment
and scale factor errors is given by

ω̃ = (I − Λ̃− Ũ)(I − ∆̃)Tg0,bω + β + ηv (39)

where Λ̃ = diag[λx, λy, λz] is a matrix

of symmetric scale factor errors, Ũ =
diag[µxsign(ωx), µysign(ωy), µzsign(ωz)] is a ma-

trix of asymmetric scale factor errors, I − ∆̃ is a
non-orthogonal small angle misalignment matrix
(refer to §4.2 of Ref. [17] for more information; note
that the sign changes later as an approximation to the
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inverse of the matrix) and Tg0,b is the assumed-known
transformation matrix from body coordinates to
nominal (assumed or designed) gyro coordinates.
Note that β and ηv are now in the true (misaligned)
gyro coordinate system. Thus the true angular rate
in body coordinate is

ω = Tb,g0(I − ∆̃)−1(I − Λ̃− Ũ)−1(ω̃ − β − ηv)
' Tb,g0(I +∆)(I + Λ+ U)(ω̃ − β − ηv) (40)

with ∆ ' ∆̃, Λ ' Λ̃ and U ' Ũ using a small angle
approximation. Since each axis is assumed to be mis-
aligned independently we can sum up their orthogonal
small angle rotations of the angular rate about each
axis.5 Let’s temporarily define ω̄ = (I + Λ + U)(ω̃ −
β − ηv). From Eq. (40) we have

(I +∆)ω̄ =





1 −δxz δxy
δxz 1 0
−δxy 0 1









ω̄x
0
0





+





1 −δyz 0
δyz 1 −δyx
0 δyx 1









0
ω̄y
0





+





1 0 δzy
0 1 −δzx
−δzy δzx 1









0
0
ω̄z





=





1 −δyz δzy
δxz 1 −δzx
−δxy δyx 1



 ω̄ (41)

We then perform QR factorization so that I+∆ = QR,
where Q is orthogonal and R is upper triangle:

I +∆ = QR

= {I + [δ×]}R

=





1 −δz δy
δz 1 −δx
−δy δx 1









1 ξz ξy
0 1 ξx
0 0 1





'





1 −(δz − ξz) δy + ξy
δz 1 −(δx − ξx)
−δy δx 1



 (42)

Equating Eq. (42) with I +∆ from Eq. (41) leads to

δx = δyx ξx = δyx − δzx
δy = δxy ξy = δzy − δxy
δz = δxz ξz = δxz − δyz

(43)

Since the gyros are used as the “reference” sensors
for the calibration of other the sensors, the orthogonal
components of gyro misalignment are all set to zero.7

Thus δx = δy = δz = 0, which gives

ξx = −δzx
ξy = δzy
ξz = −δyz

and

I +∆ = R

=





1 ξz ξy
0 1 ξx
0 0 1



 (44)

From Eq. (40) we have

ω = Tb,g0(I +∆)(I + Λ+ U)(ω̃ − β − ηv)
' Tb,g0(I +∆+Λ+ U)(ω̃ − β − ηv) (45)

Let’s define M = ∆+Λ+U (which will be used later)
and ω̆ = ω̃−β. With the latter definition, the previous
equation becomes

ω = Tb,g0(I +∆+Λ+ U)(ω̆ − ηv)
= Tb,g0ω̆ − Tb,g0(I +∆+Λ+ U)ηv

+Tb,g0(∆ + Λ + U)ω̆

= Tb,g0ω̆ − Tb,g0(I +∆+Λ+ U)ηv + Tb,g0

×





0 ω̆z ω̆y ω̆x 0 0 |ω̆x| 0 0
ω̆x 0 0 0 ω̆y 0 0 |ω̆y| 0
0 0 0 0 0 ω̆z 0 0 |ω̆z|





× [ξx ξy ξz λx λy λz µx µy µz]
T

= Tb,g0ω̆ + Tb,g0Ωgκ

−Tb,g0(I +∆+Λ+ U)ηv (46)

The last three columns from the 3×9 matrix from the
equation above, |ω̆i| where i = x, y, z, are approxima-
tions of sign(ωi)ω̆i ' |ω̆i|. Also, Ωg and κ correspond
to the previous matrix of gyro measurement and vec-
tor of gyro misalignments and scale factor errors. Thus
our angular velocity estimate is

ω̂ = Tb,g0ω̆ + Tb,g0Ω̂gκ̂ (47)

where the hats correspond to their respective esti-
mated values. Note that ω̆ here is a function of both ω̃
(the uncompensated, measured gyro rate) and β̃ (the
estimated gyro bias).

Star Tracker Model

A vector star tracker model with misalignments is
presented here. This model is applicable to other
vector-based sensors too, for example Sun and Earth
sensors. The star tracker measurement model is given
by

S = {I − [ς×]}Ts0,bA(q)ps (48)

where ς is the tracker misalignment, Ts0,b is the trans-
formation matrix from the body to the nominal tracker
coordinate, and ps is a known vector in ECI coordi-
nates of the observed star from an ephemeris calcu-
lation. Here again we employ a small angle approxi-
mation for the star tracker misalignment matrix. The
estimated star tracker vector is given by

Ŝ = {I − [ς̂×]}Ts0,bA(q̂)ps (49)
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Payload Model

The model for the payload measurement is given by

P = Tp,bA(q)pp (50)

Again, Tp,b is the transformation matrix from the
body to the payload coordinate system, and pp could
be a known ground point described in ECI coordi-
nates. Since our misalignment calibration is relative
to the payload, there is no misalignment to the pay-
load model. The estimated vector is given by

P̂ = Tp,bA(q̂)pp (51)

UNSCENTED CALIBRATION

The Unscented Alignment Calibration filter is devel-
oped in this section. The filter is an extension of the
USQUE developed in Ref. [9] with inclusion of calibra-
tion parameters into its state vector. The continuous
attitude kinematics equation including calibration pa-
rameters is given by









δ%̇

δβ̇

δκ̇

δς̇









=









−[ω×] − 1
2
Tb,g0 − 1

2
Tb,g0Ωg 0

0 0 0 0
0 0 0 0
0 0 0 0

















δ%

δβ

δκ

δς









+









− 1
2
Tb,g0(I +M) 0 0 0

0 I 0 0
0 0 I 0
0 0 0 I

















ηv
ηu
ηκ
ης









(52)

where the continuous process noise covariance is given
by

Q = diag
[

σ2vI3×3 σ2uI3×3 σ2κI9×9 σ2ς I3×3
]

(53)

The first square matrix on the right hand side of
Eq. (52) is traditionally referred to as F (t) and the
second square matrix as G(t). This equation is gener-
ally not used to generate simulation data or for filter
propagation; however, we need the F (t) and G(t) ma-
trices to compute the discrete process noise covariance.
The discrete version of Eq. (52) with small angle ap-
proximation is given by









δ%

δβ

δκ

δς









k+1

'









I − 1
2
t Tb,g0 − 1

2
t Tb,g0Ωg 0

0 I 0 0
0 0 I 0
0 0 0 I









×









δ%

δβ

δκ

δς









k

+ Γkηk

(54)

where ηk is a discrete white process noise with
E(ηkη

T
k ) = I, and Γk(t) is a square root of the dis-

crete process noise that we are going to derive. The

first square matrix on the right hand side of the above
equation is traditionally referred to as the state tran-
sition matrix or Φ(t) matrix.

The discrete process noise is related to the continu-
ous process noise by

Qd =

∫ ∆T

0

Φ(t)G(t)Q(t)GT (t)ΦT (t) dt (55)

where ∆T is the filter update interval. Substituting
F (t), G(t) and Φ(t) with M ' 0 (small angle approx-
imation) into the above equation yields:5

Qd = <









ξ11 ξ12 ξ13 0
ξ21 ξ22 0 0
ξ31 ξ32 ξ33 0
0 0 0 ξ44









<T (56)

where

ξ11 =
1

4
∆Tσ2v +

1

12
∆T 3σ2u +

1

12
∆T 3Ωgσ

2
κΩ

T
g

ξ12 = −1

4
∆T 2σ2u

ξ13 = −1

4
∆T 2Ωgσ

2
κ

ξ21 = −1

4
∆T 2σ2u (57)

ξ22 = ∆Tσ2u

ξ31 = −1

4
∆T 2σ2κΩ

T
g

ξ33 = ∆Tσ2κ

ξ44 = ∆Tσ2ς

< =









Tb,g0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I









(58)

For the reasons described in Ref. [9], we choose to
propagate and update the quaternion using MRPs. We
begin with

χk(0) = x̂+k ≡









δp̂+k

β̂
+

k

κ̂+k
ς̂+k









(59)

Equation (5) is partitioned into two parts, the
attitude-error part and calibration parameters part:

χk(i) ≡













χ
δp
k (i)

. . . . . .

χ
β
k(i)
χκk(i)
χςk(i)













, i = 0, 1, ..., 36 (60)

where χβk is the gyro bias, χκk is the misalignment and
scale factor error vector, and χςk is the star tracker
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misalignment. First, a new quaternion is generated by
multiplying an error quaternion by the current esti-
mate:

q̂+k (0) = q̂+k (61)

q̂+k (i) = δq̂+k (i)⊗ q̂+k , i = 1, 2, ..., 36 (62)

where δq+k (i) ≡ [δ%+Tk (i) δq+
4,k(i)]

T is represented by
Eqs. (22) and (23):

δq+
4,k(i) =

−α‖χδpk (i)‖2 + f
√

f2 + (1− α2)‖χδpk (i)‖2

f2 + ‖χδpk (i)‖2
i = 1, 2, ..., 36 (63)

δ%+k (i) = f−1[α+ δq+
4,k(i)]χ

δp
k (i)

i = 1, 2, ..., 36 (64)

From Eq. (61), it clearly requires that χδpk (0) be zero.
Equation (62) is the propagated with

q̂−k+1(i) = Ω[ω̂+k (i)]q̂
+

k (i), i = 0, 1, ..., 36 (65)

where the estimated angular velocity from Eq. (46):

ω̂+k (i) = Tb,g0ω̃k − Tb,g0Ωgχ
κ
k(i)− (I + M̂(i))χβk(i)

i = 0, 1, ..., 36 (66)

The error quaternions are then propagated with

ω̂+k (i) = Tb,g0[I3×3 − M̂(i)][ω̃k − χβk(i)],
i = 0, 1, ..., 36 (67)

Note that δq−k+1(0) is the identity quaternion. We
then convert these propagated quaternions back into
sigma points with the MRPs representation using
Eq. (21):

χ
δp
k+1(0) = 0 (68)

χ
δp
k+1(i) = f

δ%−k+1(i)

a+ δq−
4,k+1(i)

i = 1, 2, ..., 36 (69)

The calibration parameters are expected to stay (due
to zero-mean process noises) at their previous values,
thus

χ
β
k+1(i) = χ

β
k(i)

χκk+1(i) = χκk(i)

χςk+1(i) = χςk(i)

i = 0, 1, ..., 36 (70)

The procedure in UF alignment calibration is as
follows. First, we are given initial estimates of
attitude (q̂+0 ), gyro bias (β+0 ), gyro misalignment
and scale factor (κ+0 ), and star tracker misalign-
ment (ς+0 ) with their respective initial error covari-
ances. The UF initial state vector is set to x̂+0 =

[0T3×1 β
+T
0 κ+T0 ς+T0 ]T . The sigma points are then

calculated with Eq. (5). The attitude part of the
sigma points (the first 3 components of each column of
sigma points) is then converted back into quaternion
with Eqs. (23) and (22) and propagated with Eq. (65).
The propagated error quaternion is calculated using
Eq. (67) and then transformed to propagated attitude
sigma points using Eqs. (68) and (69). The propagated
quaternions are used again later to find the mean ob-
servations using Eqs. (9) and (10) with

γk+1(i) =

[

[I − χςk+1(i)×]Ts0,bA(q̂−k+1(i))ps
Tp,bA(q̂−k+1(i))pp

]

i = 0, 1, ..., 36 (71)

The output covariance, innovation covariance and
cross-correlation matrix are computed using Eqs. (11),
(12), and (13). The predicted mean and error covari-
ance can now be computed using Eqs. (7) and (8).
The state vector and covariance are then updated us-

ing Eq. (2) with x̂+k+1 ≡ [δp̂+Tk+1 β̂
+T

k+1 κ̂
+T
k+1 ς̂

+T
k+1]

T .

Then, δp̂+Tk+1 is then converted to δq̂+Tk+1 using
Eqs. (22) and (23), and the updated quaternion us-
ing

q̂+k+1 = δq+k+1 ⊗ q̂−k+1(0) (72)

Finally, δp̂+k+1 is reset to zero for the next propagation.

RESULTS

In this section we compare the performance of the
EKF to the UF using simulated data. Then, results
with actual data from the MAP spacecraft are shown
using the UF. The parameters used in this simula-
tion are: Star tracker misalignment: −20,−20,+20
arc-s; Initial gyro bias: 0.2, 0.3, 0.2 deg/hr for each
axis; Gyro misalignment: δxz = δxy = δyx = 0, δzx =
400, δzy = 300, δyz = 200 arc-s; Gyro symmetric scale
factor error: λx = 500, λy = 500, λz = 500 ppm;
Gyro asymmetric scale factor error: µx = 100, µy =
100, µz = 100 ppm; Calibration maneuver: 0.09 des/s
sinusoidal in each axis at (0.0006, 0.0007, 0.0008) Hz;
Gyro measurement is simulated with σu = 1.3036 ×
10−3µrad/sec3/2 and σv = 1.45444µrad/sec1/2; Initial
estimate of all calibration parameters are zero with
standard deviation of 5 deg for attitude, 0.5 deg/hr
for gyro bias, 500 arc-s for gyro misalignments, 500
ppm for scale factors, 50 arc-s for star tracker mis-
alignments; Star tracker accuracy: 5, 5, 5 arc-s; and
Payload measurement accuracy: 0.5, 0.5, 0.5 arc-s.

The simulation is performed on a Intel Pentium
III 933 Mhz with 256MB RDRAM system. In our
simulation, we assume no a priori knowledge of the
calibration parameters. The parameter λ in the UF is
chosen to be a small positive number, because a neg-
ative λ yields a non-positive semi-definite predicted
covariance. Also, a = 1 and f = 4 are chosen as in
USQUE.9
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Table 1 Filter Interval and Completion Time

Filter Filter Interval, Completion Time,
sec sec

UF 0.2 4231
UF 2.0 486
EKF 0.2 1141
EKF 0.5 472
EKF 1.0 260
EKF 2.0 120
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Fig. 1 EKF, ∆t = 2.0, Attitude Error

Table 1 shows the time required for a few simulation
runs with the UF and EKF for relative performance
comparisons. Clearly, the UF requires more stringent
computational power for the same filter update inter-
val compared to the EKF. For the filter update interval
of 0.2 sec, filter convergence of UF and EKF are com-
parable. However, due to linearization, the EKF does
not work well with a higher filter update interval. The
UF is shown to be able to converge even at an update
interval of 2 sec with slight sacrifice to the filter per-
formance. Compared to the EKF running at 0.2 sec
interval, the UF running at 2 sec is even less compu-
tational intensive. Furthermore, the UF paves way to
multiprocessing possibility that could further decrease
the computational time. Lower filter update rates also
lighten the burden on data telemetry and memory con-
sumption in between update times. At higher update
interval of 2.0 sec, Figures (1) to (5) clearly show that
the EKF does not produce acceptable performance.
However, as shown in Figures (6) to (10), the UF with
a 2.0 sec update interval is still able to converge rea-
sonably well.

Note that the simulations are performed without
misalignments to the payload when it was used as
an attitude sensor. Since we are performing abso-
lute alignment calibration with respect to the gyros,
the payload may be treated as an misaligned attitude
sensor using an appropriate modification to Eqs. (50)
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and (51) with the addition of misalignment parame-
ters. Also, Eq. (71) should be appropriately modified.
As a result, the size of the state vector and the sigma
points propagation become larger too.

Experimental results from the MAP spacecraft using
the UF are now shown in order to test the performance
of the algorithm using real data. The spacecraft per-
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forms several spacecraft maneuvers during a 6 hour
data run, as shown in Figure 11. The measurements
are given with a sampling interval of 1 sec. As with the
simulation runs, it is assumed that no a priori infor-
mation exists in the initial misalignment parameters.
Plots of the estimated gyro nonorthogonal misalign-
ments and star tracker misalignments are shown in
Figures 12 and 13, respectively. Clearly, the UF con-
verges to reasonable steady-state values. A plot of the
3σ bounds for the attitude errors is shown in Figure 14,
which indicates that the attitude solutions converge to
about 0.005 deg. Plots of the 3σ bounds for the gyro
and star tracker misalignment errors are shown in Fig-
ures 15 and 15, respectively. These indicate that the
estimated solutions converge to accurate values. Al-
though a “truth” is not available with experimental
data, these results indicate that the UF provides good
convergence with reasonable alignment estimation.

CONCLUSIONS

Proper alignment calibration is of prime impor-
tance. It reduces fault detection and correction that
may cause an inadvertent trip into Sun Acquisition or
Safehold mode, disrupting nominal spacecraft mission
capabilities. Using an onboard filter to determine mis-
alignments is useful since parameter estimation can be
accomplished in real time. In this paper, an Unscented
filter has been developed from real-time alignment cal-
ibration. Simulated data results indicated that the
Unscented filter proves to be more robust with re-
spect to larger sampling intervals than the extended
Kalman filter. Prolong loss of signal from attitude
sensors can easily cause divergence in the extended
Kalman filter. Experimental data from the Microwave
Anisotropy Probe shows good convergence character-
istics of the Unscented filter with accurate alignment
estimation.
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