
International Space Station Leak Localization Using
Attitude Disturbance Estimation

Jong-Woo Kim, John L. Crassidis
Department of Mechanical and Aerospace Engineering
University at Buffalo, The State University of New York

Amherst, NY 14260-4400
716-645-2593 ext. 2246

jk45@eng.buffalo.edu, johnc@eng.buffalo.edu

Srinivas R. Vadali
Department of Aerospace Engineering

Texas A&M University
College Station, TX 77843-3141

979-845-6051
svadali@aero.tamu.edu

Adam L. Dershowitz
United Space Alliance

NASA Johnson Space Center, Code DF64
Houston, TX 77058

281-483-5410
adam.dershowitz1@jsc.nasa.gov

Abstract—In this paper we present a new method to local-
ize air leaks on the International Space Station based on the
spacecraft attitude and rate behavior produced by a mass ex-
pulsion force of the leaking air. Thrust arising from the leak
generates a disturbance torque, which is estimated using a
real-time filter with a dynamical model (including external
disturbances such as aerodynamic drag and gravity-gradient).
The leak location can be found by estimating the moment
arm of the estimated disturbance torque, assuming that leakis
caused by only one hole. Knowledge of the leak thrust mag-
nitude and its resulting disturbance torque are needed to esti-
mate the moment arm. The leak thrust direction is assumed
to be perpendicular to the structure surface and its magnitude
is determined using a Kalman filter with a nozzle dynamics
model. There may be multiple leak locations for a given re-
sponse, but the actual geometric structure of the space station
eliminates many of the possible solutions. Numerical results
show that the leak localization method is very efficient when
used with the conventional sequential hatch closure or airflow
induction sensor system.
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1. INTRODUCTION

The International Space Station (ISS) is orbiting in a 51.6◦

inclination near-circular Low-Earth-Orbit (LEO) with an al-
titude between 370 and 460 km, and is expected to have a
minimum operational lifetime of 15 years. Because of the
large structure, long lifetime and orbit characteristics [1], the
ISS may be subject to impacts of hyper velocity particles such
as micro-meteorites and space debris that can severely dam-
age the station. This damage may threaten the safety of the
crew if the pressurized wall of a module is perforated, which
may result in significant air loss. Collisions with other objects
are another possible cause of a leak, as occurred in the Rus-
sian Space Station Mir in 1997. To protect the ISS from the
impact damages, various debris shields have been designed.
Heavy shields are placed in the forward facing area which is
likely to be hit frequently, and fewer shields are used in the
nadir-facing and aft area [2].

Perforations in a pressurized module will result in a rapid
temperature and pressure decrease. Therefore fast determi-
nation of the extent and location of the leak is needed to
maintain the operational status in order to provide safety for
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the crew. The first indication of a leak in the ISS is the de-
pressurization of a module. The leak size can be calculated
by measuring the internal pressure and its depressurization
rate. Based on the extent of leak it is possible to calculate
the “reserve time” left until a crew evacuation is required.
Depending on the reserve time operational decisions must be
made, including: 1) whether or not to perform a leak isolation
to patch the leak, or 2) evacuate the ISS. Leak localization
should be performed first to find the leaking module. Then
the exact location within the leaking module for repair pur-
poses can be determined.

Conventional methods to locate air leaks on the ISS include
the sequential module leak isolation process for the US seg-
ment (prior to assembly stage 10A) and the airflow induc-
tion sensor system for the Russian segment. The sequential
module leak isolation process involves having the crew close
hatches sequentially while monitoring the pressure difference
across each hatch. A drawback of this process is very small
pressure differences can keep a closed hatch from being open
again, which significantly reduces the reserve time and can
pose an immediate risk to the crew. Thus, safety dictates that
the hatches be closed in an order that will never trap a crew
member away from the escape vehicle. This may significantly
inhibit the leak isolation process if the leaking module is not
located within the first few hatch closures.

The airflow induction sensor system employs hot-wire
anenometers situated in hatchways to measure the air flow
direction and its rate. The hot-wire anenometer operates by
air passing across a wire with a current running through it to
maintain a constant temperature in the wire. These devices
are installed at all hatchways of the Russian segments. How-
ever, the airflow induction sensor system designed for the ISS
has several limitations for the following reasons. The sensors
are not mounted at all hatchways of the US segment (only at
Node-2 and Node-3 of the US segment). Therefore the se-
quential module isolation process is still needed to determine
which module leaks in the US segments. Since the sensors are
very sensitive to the air circulation inside, the venting system
and the movement of the crew must be stopped for several
minutes, which may waste time in an emergency situation.
Because these sensors are situated in hatchways, the location
of the leak within the suspected leaking module cannot be
found for repair purposes without using other inspection pro-
cesses (this is also true for the sequential isolation process).
Therefore a more efficient localization system is needed to
locate the leaks.

The new method presented in this paper uses the attitude re-
sponse of the ISS caused by the leak reaction force of the
air flowing through a perforated hole. The vent thrust can
yield a strong reaction torque depending on the size and lo-
cation of the leak. A leak hole on the surface of a pres-
surized module can be modeled as a short nozzle with the
leaking air as the propellant. We assume that the line of ac-
tion of the vent thrust is perpendicular to the cross section

area of the leak hole. This assumption is reasonable due to
the relatively thin skin of each module. Based on the noz-
zle dynamics, an extended Kalman filter (EKF) algorithm is
used to estimate the vent thrust magnitude with the internal
pressure measurements. The venting torque is estimated by
the Unscented Filter (UF) developed by Julier and Uhlman
[3]. Since the external attitude-dependent disturbance torque
(gravity-gradient and aerodynamic torque) are functions of
the attitude of the spacecraft, a new attitude filtering approach
called the Unscented Quaternion Estimator (USQUE) devel-
oped by Crassidis and Markley [4] is employed. The advan-
tages of the UF are: 1) it captures the posterior mean and co-
variance of a random variable accurately to the second-order
Taylor series expansion for any nonlinearity by choosing a
minimal set of sample points and propagating them through
the original nonlinear system, 2) it is derivative-free, i.e. no
Jacobian and Hessian calculations need to be evaluated for
the computation which enable the UF to be applied to any
complex dynamical system and to non-differentiable func-
tions [5]. The vent torque, which is not explicitly modeled
in the attitude dynamics, shows up as a residual disturbance
torque when the spacecraft angular rate measurement under-
goes a filtering process. In the disturbance torque estimation
algorithm, the filter state vector is augmented to include the
unknown parameters as additional states, resulting in a total
of six states, where three states are for the angular rate or
angular momentum of the spacecraft and the remaining three
states are for the 3-axis components of the disturbance torque.
But problems arise when the unmodeled dynamics (besides
the vent torque) dominate the residual torque.

Among the external disturbances, the gravity-gradient torque
can be treated as a well-known quantity if the inertia of the
spacecraft is well known, whereas the aerodynamic torque
has large uncertainties in its parameters. Also, problems may
arise in the accuracy of the vent torque estimates when sig-
nificant inertia modeling errors of the spacecraft are present.
Therefore parameter estimation methods should be employed
to estimate these uncertainties when we know that there is
not a venting leak acting on the spacecraft. A real-time pa-
rameter estimation algorithm to estimate the inertia and the
aerodynamic torque is developed in this paper by employing
the UF approach. But the parameter estimation performance
depends heavily on the observability of the parameters of in-
terest. Therefore some simple observability tests are done
to measure the relative observability of the unknown param-
eters. It is shown that the complete inertia parameters are
unobservable when the space station attitude is in its torque
equilibrium attitude (TEA), which is the nominal ISS opera-
tional attitude. But the inertia observability can be strength-
ened with the presence of attitude maneuvers. Problems in
estimating uncertain inertia and external disturbance torque
for the ISS are investigated in several papers such as Refs. [6]
and [7]. In Ref. [8], small sinusoidal probing signals are used
to enhance the observability of the inertia by causing attitude
motion about the TEA. Also in Ref. [7], the estimation algo-
rithm to determine the mass and aerodynamic torque proper-
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ties of the ISS in Low-Earth Orbit (LEO) based on the least-
square method has been derived with the use of an indirect
adaptive control algorithm to enhance the observability ofthe
unknown parameters. This method uses a smoothing method
to estimate the unmeasured angular acceleration.

The possible locations of the air leak are then calculated us-
ing the estimated vent torque, vent thrust magnitude, and the
actual geometric structure of the pressurized segments. For
simplicity, the disturbance torque caused by the pressure of
the impingement of the leaking air plume on nearby surfaces
is neglected. Also, we assume that the leak is caused by a
single leak hole. There may be single or multiple leak loca-
tions that produce the same attitude response. To reduce the
number of possible solutions, conventional methods are com-
bined with the new leak localization method. This approach
reduces the number of possible solutions, so that fewer hatch
closures are required to uniquely determine the leak location.
Advantages of the attitude response method include:

1. No other devices are needed besides pressure gauges to
measure the air pressure, and spacecraft attitude and rate sen-
sors.

2. Relatively fast leak localization can be achieved compared
to the conventional leak localization method proposed for the
ISS.

3. The new method not only determines the possible leak-
ing modules but also determines the possible locations of the
leak hole within those modules. This may be critical to allow
for repairs rather than sealing off a module or performing a
station evacuation.

The remainder of paper is organized as follows. First, a sum-
mary of the attitude kinematics and dynamics for the ISS
is given. Next, using the isentropic nozzle theory, the vent
thrust is calculated using the isentropic and isothermal air de-
pressurization models. Then derivations are shown for the
estimations of vent thrust, attitude and vent torque. Finally
numerical simulations for the leak localization are presented
and an example of the shuttle airlock depressurization effect
on the ISS is shown using actual data.

2. PRELIMINARIES

Spacecraft Attitude Kinematics

In this section the attitude kinematics and dynamics of the ISS
in the presence of external disturbances in LEO are derived.
For the attitude kinematics, the quaternion is used to specify
the attitude of the ISS [9]. The quaternion is defined as

q ≡
[

q13

q4

]

(1)

where the vector partq13 is

q13 ≡





q1

q2

q3



 = n̂ sin

(

θ

2

)

(2)

and the scalar partq4 is

q4 = cos

(

θ

2

)

(3)

wheren̂ is a unit vector indicating the principal rotation axis
andθ is the principal rotation angle. The quaternion compo-
nents satisfy the following normalization constraint

qT q = q2
1 + q2

2 + q2
3 + q2

4 = 1 (4)

The quaternion kinematic equations of motion are given by

q̇ =
1

2
Ω (ω) q (5)

whereω is the angular velocity andΩ is defined as

Ω(ω) ≡









− [ω×]
... ω

. . . . . . . . . . . . .

−ωT
... 0









(6)

where[ω×] represents the skew-symmetric matrix, defined
by

[ω×] ≡





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (7)

If the attitude quaternionq represents the orientation of the
body reference frame with respect to the Local-Vertical-
Local-Horizontal (LVLH) orbital reference frame then the ve-
locity vectorω = ωB/L is given by

ωB/L = ωB/N + nC2(q) (8)

whereωB/N is the angular velocity with respect to an inertial
frame,Ci is theith column of the coordinate transformation
matrix from the LVLH orbital reference frame to the body ref-
erence frame, andn is the orbital frequency of the spacecraft
[10].

Spacecraft Attitude Dynamics

The dynamic equations of rotational motion of a rigid space-
craft in a LEO environment are given by Euler’s equation:

Ḣ = −
[

J−1 (H − h)
]

×H+Ndrag+Ngrav+dvent (9)

whereH is the total angular momentum of the spacecraft sat-
isfying

H = Jω + h (10)

andJ is the inertia matrix,Ndrag is the aerodynamic torque,
Ngrav is the gravity gradient torque,h is the angular momen-
tum of the control moment gyroscopes (CMGs), anddvent is
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Figure 1. Air Flow Through Leak Hole

the torque due to a vent. Other environmental effects such
as solar radiation and Earth’s albedo are neglected. The ef-
fects caused by solar arrays rotations are omitted since they
have little effects on the attitude dynamics but note that the re-
sultant aerodynamic torques produced by the arrays rotations
may be significant.

The gravity-gradient torque for a circular orbiting spacecraft
is given by

Ngrav = 3n2C3(q) × J C3(q) (11)

The aerodynamic torqueNdrag is modelled such that the
drag force and the center of pressure location are functions
of the attitude of the spacecraft:

Ndrag = −1

2
ρav2

aCDS
[

ρcp × C1(q)
]

(12)

whereva is the magnitude of the atmospheric velocity with
respect to the spacecraft, which can be approximated as the
circular orbital speed. The atmospheric densityρa is cal-
culated using Marshall Engineering Thermosphere (MET)
model which accounts the seasonal and diurnal heating ef-
fects of the Earth’s atmosphere. The drag coefficientCD is
assumed to be constant for a given orientation of the space-
craft. Also,S is the attitude dependent frontal area andρcp

is the attitude dependent center of pressure location. The at-
titude dependent aerodynamic parameters are calculated with
the method developed in [10], where the reference area and
the center of pressure are calculated for any orientation by
defining interpolation functions. The projected area and the
center of pressure for the three orthogonal body reference
axes of the ISS are given in [1] for each assembly stage.

The vent torque is modelled by

dvent = rvent × F vent (13)

wherervent is the moment arm of a vent torque from the cen-
ter of mass of the spacecraft to a leak location, andF vent is a
vent thrust. The vent torque is unknown and will be estimated
by treating it as a state in the real-time filter algorithm.

Vent Thrust

A leak hole perforated on the surface of a pressurized module
will behave like a short length nozzle. The dynamic proper-
ties of the air flow through the leak hole are analyzed using
one dimensional isentropic and isothermal nozzle dynamic
models. Fig. 1 shows the diagram of the air flow through the
leak hole on the pressurized module, whereT ∗ andP ∗ are
the temperature and pressure of the air in the leak hole, re-
spectively,T andP are the temperature and pressure of the
inside of the pressurized module, respectively,F vent is the
vent thrust, andPB is the back pressure. The mass flow rate
in a leak hole is given by [11]

ṁ = −AP ∗v∗

RT ∗
(14)

whereA is the area of the hole,R is the ideal gas constant
(287 N-m/Kg-K), andv∗ is the exhaust velocity of the air
satisfying

v∗ =
√

γRT ∗ (15)

whereγ is the specific heat ratio, withγ = 1.4 for an ideal
gas. The mass flow ratėm can be expressed as a function of
the air inside the pressurized module. This is accomplished
by substituting the following expressions into Eq. (14):

P ∗ = P

(

2

γ + 1

)

γ

γ−1

(16a)

T ∗ = T

(

2

γ + 1

)

(16b)

yielding

ṁ = −AP
√

γ√
RT

(

2

1 + γ

)

1+γ

2(γ−1)

(17)

The actual mass flow rate can be calculated by multiplyingṁ
in Eq. (14) by the discharge coefficientCD. Using the thrust
equation the vent thrust magnitude is given by

|F vent| = CDṁv∗ + (P ∗ − Pa)A (18)

wherePa is the ambient pressure which is approximately zero
for the vacuum of space. Substituting Eqs. (14), (15) and (16)
into Eq. (18), and simplifying yields

|F vent| = AP (CDγ + 1)

(

2

γ + 1

)

γ

γ−1

(19)

Note that the magnitude of the vent thrust is proportional to
the pressure inside the module and to the area of the leak hole.
This expression is very useful since the vent thrust magnitude
is a direct function of the internal pressureP , which can be
measured by a pressure sensor. For the calculation of the hole
areaA the following approach is used. The indication of an
air leak in a pressurized module is the depressurization of the
air. The air inside the module follows the ideal gas law, given
by

P =
mRT

V
(20)
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Figure 2. Internal Pressure

whereV is the volume of the air. Differentiating Eq. (20) with
respect to time and usinġm from Eq. (17) gives a depress
rate model. Two kinds of depressurization process models
are used, depending on the temperature characteristics of the
air. For an isentropic air model, whereP andT is related by

T = T0

(

P

P0

)

γ−1
γ

(21)

the depressurization ratėP is

Ṗ = −k1AP k2 (22a)

k1 =
γ
√

RT0γ

V
P

1−γ

2γ

0

(

2

γ + 1

)

γ+1
2(γ−1)

CD (22b)

k2 =
3γ − 1

2γ
(22c)

For an isothermal process,T is treated as a constant in
Eq. (20). Therefore the depressurization rateṖ can be de-
rived as

Ṗ = −k3AP0 (23a)

k3 =

√
RT0γ

V

(

2

1 + γ

)

1+γ

2(γ−1)

CD (23b)

where the subscript0 stands for the initial value and,k1, k2

andk3 are constants. Now, we can calculate the hole areaA
by measuring the internal pressureP and its depress ratėP .

Comparisons between the isentropic and isothermal gas
model are shown in Figs. 2 and 3, using the ISS assembly
Stage 16A with a leak hole radius of0.3 inch. From Fig. 2,
the isentropic gas model gives a faster pressure drop in the in-
ternal pressure than the isothermal gas model. Therefore the
reserve timetres, which is a measure of the time it takes for
the current pressureP to reach the minimum habitable pres-
surePmin ≈ 490 mmHg, is shorter using the isentropic gas
model than using the isothermal gas model. The reserve time
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Figure 3. Vent Thrust Magnitude

tres can be obtained by integrating Eq. (22b) for the isen-
tropic process and Eq. (23a) for the isothermal process. The
reserve time for the isentropic process is

tres =

(

Pmin

P

)

1−γ

2γ − 1

γ−1
2

A
V

√
RTγ

(

2
γ+1

)

γ+1
2(γ−1)

CD

(24)

where the internal temperatureT can be substituted byP
from Eq. (21). From Fig. 3 the vent thrust magnitude is
larger using the isothermal gas model, meaning the isother-
mal gas model produces a greater torque than the isentropic
gas model. If the leak area hole size is small then the isother-
mal model can be used (since the temperature will remain
fairly constant), otherwise the isentropic model should be
used.

3. ESTIMATION OF VENT THRUST MAGNITUDE

Since the actual internal pressure measurements are corrupted
by noise, the Kalman filter is used to estimate the hole area
which is needed to calculate the magnitude of vent thrust with
Eq. (19). The state equations for the depressurization process
have the following form

ẋ(t) = f [x(t), t] + η(t) (25)

where the statex(t) = [P (t), A(t)]T and

f [x(t), t] =

[

−k1AP k2

0

]

(26)

for an isentropic process model, and

f [x(t), t] =

[

−k3AP
0

]

(27)

for isothermal process model. The vectorη = [η1, η2]
T is

the process noise vector, whereη1 andη2 are Gaussian white-
noise processes with

E {ηi(t)} = 0 (28a)

E {ηi(t)ηj(t
′)} = Qiδi,j(t − t′) (28b)
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with i, j = 1, 2. The matrixQi has the following form

Q =

[

σ2
1 0
0 σ2

2

]

(29)

where the termsσ2
1 andσ2

2 are the variances ofη1 andη2,
respectively. The internal pressure measurement is modelled
as

z̃k = hk [x(tk)] + vk, k = 1, 2, . . . , m (30a)

hk [x(tk)] = Pk, k = 1, 2, . . . , m (30b)

wherem is the number of measurements andvk is the mea-
surement noise which satisfies a discrete Gaussian white-
noise process with

E {vk} = 0 (31a)

E {vkvk′} = Rkδk,k′ (31b)

The propagation of the state satisfies

˙̂x(t) = f [x̂(t), t] (32a)

ẑk = hk [x̂(tk)] (32b)

wherex̂(t) = [P̂ (t), Â(t)]T is the state estimate vector. The
error covariance propagation matrixP satisfies

Ṗ(t) = F [x̂(t), t]P(t) + P(t)F [x̂(t), t]
T

+ Q (33)

whereF [x̂(t), t] is given by

F [x̂(t), t] =
∂f [x(t), t]

∂x(t)

∣

∣

∣

∣

∣

x=x̂

(34a)

=

[

−k1k2ÂP̂ k2−1 −k1P̂
k2

0 0

]

(34b)

for an isentropic process, and

F [x̂(t), t] =
∂f [x(t), t]

∂x(t)

∣

∣

∣

∣

∣

x=x̂

(35a)

=

[

−k3Â −k1P̂
0 0

]

(35b)

for an isothermal process.

The state estimate and error covariance updates are given by

x̂
+
k = x̂

−

k + Kk

[

z̃k − hk(x̂−

k )
]

(36a)

P+
k =

[

I − KkHk(x̂−

k )
]

P−

k (36b)

where the superscript (+) stands for the updated value and
(−) stands for the a priori value. The Kalman gain matrix is
given by

Kk = P−

k Hk(x̂−

k )T
[

Hk(x̂−

k )P−

k Hk(x̂−

k )T + Rk

]−1
(37)

whereHk(x̂−) is the measurement sensitivity matrix, given
by

Hk(x̂−

k ) =
∂hk(x(tk)

−
)

∂x(tk)

∣

∣

∣

∣

∣

x=x̂

=
[

1 0
]

(38)

Thus with the use of the internal pressure measurements the
EKF algorithm can be used to estimate the leak hole area.
Then the magnitude of vent thrust can be calculated by sub-
stituting the estimated values of̂P andÂ into Eq. (19).

4. UNSCENTEDFILTER

An unscented filtering approach is considered here as an alter-
native to the EKF for the attitude and angular rate estimation
of the ISS. The Unscented Filter (UF) has first been proposed
by Julier and Uhlman in [3]. Unlike the EKF, the UF cap-
tures the posterior mean and covariance of a random variable
accurately to the second-order Taylor series expansion forany
nonlinearity by choosing a minimal set of sample points and
propagating them through the original nonlinear system. Also
it is derivative-free, i.e. no Jacobian and Hessian calculations
need to be evaluated for the computation. Therefore it can
be easily applied to any complex dynamical system and to
non-differentiable functions [5]. A detailed descriptionof
the error performance of the UF over EKF can be found in
Refs. [3], [5] and [12]. The general formulation of the UF in
discrete-time is described here.

Let the discrete-time nonlinear system and observation model
be

xk+1 = f (xk,uk, k) + wk (39a)

ỹk+1 = h (xk+1,uk+1, k + 1) + vk+1 (39b)

wherexk+1 andyk+1 is ann dimensional state vector and
observation vector respectively,f and h are the nonlinear
models,uk is a deterministic input, andwk and vk+1 are
zero mean Gaussian process and measurement noise, respec-
tively. The process noisewk and measurement noisevk are
assumed to be uncorrelated with covariances

E
[

wiw
T
j

]

= δijQ (j) (40a)

E
[

viv
T
j

]

= δijR (j) (40b)

E
[

wiv
T
j

]

= 0,∀ i, j (40c)

Note that using a numerical integration scheme, a continuous
system model can always be expressed in the discrete form
equations. In the EKF, problems arise because the predictions
are approximated simply as functions of the previous state
estimates:

x̂−

k+1 = E [f (xk,uk, k)] ≈ f (x̂k,uk, k) (41)

ŷk+1 = E [h (xk,uk, k)] ≈ h (x̂k,uk, k) (42)

But if the estimated state is nearby the true value, then the
filter usually has a good convergence.
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The UF state and error covariance updates are given as

x̂+
k = x̂−

k + Kkυk (43)

υk = ỹk − ŷ−

k = ỹk − h
(

x̂−

k ,uk, k
)

(44)

P+
k = P−

k − KkP υυ
k KT

k (45)

Kk = P xy
k (P υυ

k )
−1 (46)

whereυk is the innovation andP υυ
k is the covariance ofυk.

The filter gain isKk andP xy
k is the cross-correlation matrix

between̂x−

k andŷ−

k . The set of2n σ-points are computed as
follows:

σk (i) = ±
√

(n + λ) [Pk + Qk]i wherei = 1, 2, . . . , n

(47)
whereλ is the weighting factor which scales the distribution
of the points. The vector

√

(n + λ) [Pk + Qk]i representsith

column of the matrix square-root
√

(n + λ) [Pk + Qk]. The
matrix square-root can be calculated directly by a lower tri-
angular Cholesky factorization method.

Theseσk (i) points translate the mean̂x+
k as

χ (0) = x̂+
k , χ (i) = x̂+

k + σk (i) (48)

The transformed set ofχ points are propagated tok + 1 for
each of the2n + 1 points by

χk+1 (0) = f (χk (0) ,uk, k)

χk+1 (i) = f (χk (i) ,uk, k) (49)

The predicted mean is

x̂−

k+1 =
1

n + λ

{

λχk+1 (0) +
1

2

2n
∑

i=1

χk+1 (i)

}

(50)

and the predicted covariance is

P−

k+1 =
1

n + λ

{

λ
[

χk+1 (0) − x̂−

k+1

] [

χk+1 (0) − x̂−

k+1

]T

+
1

2

2n
∑

i=1

[

χk+1 (i) − x̂−

k+1

] [

χk+1 (i) − x̂−

k+1

]T

}

(51)

The predicted observation is calculated as

ŷ−

k+1 =
1

n + λ

{

λγk+1 (0) +
1

2

2n
∑

i=1

γk+1 (i)

}

(52)

where

γk+1 (i) = h
(

χk+1 (i) ,uk+1, k + 1
)

(53)

The output covariance is given by

P yy
k+1 =

1

n + λ

{

λ
[

γk+1 (0) − ŷ−

k+1

] [

γk+1 (0) − ŷ−

k+1

]T

+
1

2

2n
∑

i=1

[

γk+1 (i) − ŷ−

k+1

] [

γk+1 (i) − ŷ−

k+1

]T

}

(54)

then the innovation covariance is given by

P vv
k+1 = P yy

k+1 + Rk+1 (55)

Finally the cross correlation matrix is

P xy
k+1 =

1

n + λ

{

λ
[

χk+1 (0) − x̂−

k+1

] [

γk+1 (0) − ŷ−

k+1

]T

+
1

2

2n
∑

i=1

[

χk+1 (i) − x̂−

k+1

] [

γk+1 (i) − ŷ−

k+1

]T

}

(56)

The filter gain, the state and error covariance update is then
computed using Eqs. (43) and (46). The weightλ can be
chosen asλ = 3−n if the statex is assumed to belong to the
Gaussian distribution [13]. Althoughλ can be either positive
or negative, negative values may lead to a nonpositive semi-
definite covariance matrix. In this case a modified form of the
state covariance can be used [12], given by

P−

k+1 = 1
2(n+λ)

∑2n
i=1

[

χk+1 (i) − x̂−

k+1

]

×
[

χk+1 (i) − x̂−

k+1

]T
(57)

Note that in higher-order systems the computational load of
the UF may be comparable to that of the EKF (especially if
complex Jacobian computations need to be performed) but
studies to date [4], [5], [12] and [13] indicate we can expect
an improved filter performance.

Attitude Estimation Using USQUE Approach

The main topic in this section is a new attitude filtering ap-
proach called the Unscented Quaternion Estimator (USQUE)
developed by Crassidis and Markley [4]. Many of the conven-
tional attitude estimation methods process the attitude sensor
data by employing the EKF method (see [14]). In the method
derived in Ref. [14], the attitude propagation is done by using
the attitude and the angular rate data from the gyros mea-
surement. The biases in the gyroscopes are estimated during
the attitude filtering process by treating them as augmented
filter states. However the angular rate is not treated as a fil-
ter state but the angular rate measurement noise appears as
a process noise in the filter equations. This approach avoids
the use of the complex attitude dynamics, which may be sub-
ject to large uncertainties. The attitude is represented using a
singularity-free quaternion whose kinematics equation has a
bilinear form. But a singularity arises in the filter covariance
matrix because the four components of the quaternion satisfy
the normalization constraint. To avoid the difficulty of numer-
ically maintaining this singularity, the four components of the
quaternion are replaced by three-component error vector for
the state error covariance propagation. This approach has a
good convergence when the true attitude trajectory is near the
estimate state since it uses the linearized attitude kinematics
equation.

On the other hand, the USQUE algorithm does not need
any linearization procedure when deriving the filter equations
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since the state undergoes the unscented transform process
(see [13]). But this algorithm is not directly suited to be used
with the quaternion since its estimated value is derived us-
ing an average sum of the quaternions. Instead, a modified
method employing the combination of the quaternion with
the generalized Rodrigues parameters is used [4]. This at-
titude estimation method uses the inertial quaternion for the
state propagation and employs the generalized Rodrigues pa-
rameters to calculate the mean, the state error covariance and
the cross-correlation matrix with a vector output sensor mea-
surement. This algorithm is modified in this paper to incorpo-
rate the sensor output measurement represented by the quater-
nion which represents the orientation of the body frame with
respect to LVLH frame. A comparison of the USQUE and
the conventional method [14] will be discussed at the end
by showing numerical simulation results. The USQUE al-
gorithm derivation explained here is based on Ref. [4].

The attitude kinematics of the ISS can be expressed in terms
of the quaternion by substituting Eqs. (5) into (8) giving

q̇ =
1

2
Ω

(

ωB/N + nC2(q)
)

q (58)

whereq is the attitude quaternion expressing the orientation
of the body frame with respect to the orbital LVLH frame.
For notational convenience let us define the angular rate of the
body frame with respect to LVLH asω = ωB/N + nC2(q).
But note that the circular orbital frequency,n, is a well-known
quantity which can be easily calculated for a circular orbit.
The error quaternion in this paper is defined as [14]

δq ≡ q ⊗ q̂
−1 = C(q)C(q̂−1) (59)

whereC is the direction cosine matrix and̂q−1 is the inverse
quaternion of the estimated values defined as

q̂
−1 ≡

[

−q̂13

q̂4

]

(60)

The error quaternion can be represented by [4]

δp ≡ f
δq13

a + δq4
(61)

whereδp is a generalized Rodrigues parameters [15],δq13

andδq4 are the vector part and scalar part ofδq, respectively,
a is a parameter from 0 to 1, andf is a scale factor. Note that
for a Gibbs vector,a = 0 andf = 1, but whenf = 2(a + 1),
||p|| is equal to the rotational angle about the Euler axis. The
inverse transform fromp to q can be written as [4]

δq4 =
−a‖|δp||2 + f

√

f2 + (1 − a2)||δp||2
f2 + ||δp||2 (62a)

δq13 = f−1(a + δq4)δp (62b)

The sensor output measurement model is given by

ỹ(k + 1) = δqv(k + 1) ⊗ q(k + 1) (63)

whereδqv(k + 1) is the unit quaternion which represents a
perturbation in attitude corresponding to the Gaussian sensor
noise satisfying Eq. (40b).

The gyroscope measurement outputω̃ is modeled as [16]

ω̃ = ω + b + η1 (64a)

ḃ = η2 (64b)

whereω is the true spacecraft angular rate,η1 andη2 are
zero-mean Gaussian white-noise process andb is a gyro bias
error. The post-update estimates ofω andb are given by

ω̂
+
k = ω̃ − b+

k (65a)

b−

k+1 = b+
k (65b)

The quaternion can then be propagated in discrete-form with
[4]

q̂
−

k+1 = Ω
(

ω̂
+
k

)

q̂
+
k (66)

where

Ω
(

ω̂
+
k

)

≡




cos(0.5||ω̂+
k ||∆t)I3×3 −

[

ψ̂
+

k ×
]

ψ̂
+

k

−ψ̂
+T

k cos(0.5||ω̂+
k ||∆t)





(67)

whereψ̂
+

k = sin(0.5||ω̂+
k ||∆t)ω̂+

k /||ω̂+
k || and∆t is the sam-

pling interval of the gyro measurement.

In the USQUE algorithm, the state is defined as

x̂
+
k = χk(0) ≡

[

δp̂+
k

b̂
+

k

]

(68)

Therefore, a 3-dimensional attitude representation is possi-
ble making the 6-dimensional covariance matrix nonsingu-
lar. The 12σ-points can be calculated using Eq. (47) with
λ = −3 since the six-component state errors are assumed to
follow the Gaussian distribution. Then by adding these 12
σ-points to the mean value obtained in Eq. (68) gives the 12
translatedχk(i) points around the mean value (see Eq. (48)),
yielding

χk(i) ≡
[

χ
p
k(i)

χb
k(i)

]

wherei = 0, 1, 2, . . . , 12 (69)

whereχ
p
k andχb

k are the Rodrigues and gyro bias part of the
state vector, respectively. Note that the mean value is also
included in Eq. (69). These scattered points are then con-
verted to an error quaternion for the propagation tok + 1.
The conversion of from theχk(i) points to the error quater-
nion is done using Eq. (62a) and (62b) for eachχ

p
k point.

Then the resulting 13 error quaternions are converted to the
current quaternion estimates by

q̂
+
k (0) = q̂

+
k (70a)

q̂
+
k (i) = δq+

k (i) ⊗ q̂
+
k wherei = 1, 2, . . . , 12 (70b)
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Then these quaternions are propagated tok+1 using Eq. (71)
as

q̂
−

k+1(i) = Ω
(

ω̂
+
k (i)

)

q̂
+
k (i) (71)

where the estimated angular rate satisfies

ω̂
+
k (i) = ω̃k − b+

k (i) wherei = 0, 1, . . . , 12 (72)

The reason whyδp is not propagated directly using its kine-
matic equation is that the quaternion kinematics equation has
a closed-form solution, as given in Eq. (71), and also it is
computationally more efficient [4]. Then atk + 1 the propa-
gated quaternion is reconverted to a error quaternion using

δq−

k+1(i) = q̂
−

k+1(i)⊗
[

q̂
−

k+1(0)
]−1

wherei = 0, 1, . . . , 12
(73)

Next, the 13χp
k+1(i) points are again calculated by convert-

ing the error quaternion intoδp, and then the state covari-
ance is calculated using Eq. (51). Since the measurement is
a quaternion, the mean of the observation atk + 1 is calcu-
lated again by the Rodrigues parameters as was done for the
calculation of the mean attitude state. For this purpose, the
following output error quaternion should be calculated first:

δqk+1 = q̃k+1 ⊗
[

q̂
−

k+1(0)
]−1

(74)

Then δqk+1 is converted to a Rodrigues parameter and the
output and the cross-correlation covariance are calculated us-
ing Eqs. (54) and (56). The filter gain is obtained using
Eq. (46).

For the calculation of the discrete process noise matrixQk in
Eq. (47), an expression for theδp(t) propagation equation is
needed, although the quaternion is propagated instead. From
Refs. [4] and [17], the propagation for theδp(t) whenf =
2(a + 1) can be expressed approximately as

δṗ(t) = −ω̂(t) × δp(t) + δω(t) − 1

2
δω(t) × δp(t)

+
1

2f
[δω(t) · δp(t)] δp(t) +

(

1

4f
− 1

8

)

[δp(t) · δp(t)] δω(t)

(75)

Then after some manipulations, the discrete covariance ma-
trix Qk can be obtained [4]

Qk =
∆t

2

[

(σ2
1 − 1

6σ2
2∆t2)I3×3 03×3

03×3 σ2
2I3×3

]

(76)

whereσ2
1 andσ2

2 are the power spectral density of the noise
covarianceη1 andη2, respectively.

Computer simulations for both USQUE and EKF are per-
formed. The simulation parameters of the attitude sensor
noise standard deviation is0.5◦, the gyroscope true rate bias
is [2.0626, 4.1253, 6.1879]T ◦/hr, the gyro rate output stan-
dard deviation is2.3 × 10−4 ◦/sec, measurement sampling
rate of 1 Hz, and a small initial attitude estimate error and
initial bias estimate of0◦/hr for each axis. Note that the true
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rate bias assumed in this simulation is not equivalent to that
of the actual gyroscopes mounted on the ISS, but is chosen
only to illustrate the performance of the USQUE algorithm.
The USQUE attitude estimation errors for roll, pitch and yaw
are shown in Fig. 4 with their 3-σ error bounds. We can see
from the figure that the attitude estimates are within 0.5◦ for
roll, pitch and yaw of their true values. In Fig. 5, the bias
estimates using USQUE are plotted with their 3-σ confidence
bounds. The superior performance of USQUE over the con-
ventional EKF approach is not so obvious when the initial
attitude estimate error is small (both filters have equivalent
performances). But if there is large uncertainties in the initial
estimates then the USQUE algorithm yields much better re-
sults compared to the conventional EKF method as shown in
Fig. 6, where the initial attitude errors of 90◦ are used for each
axis with the same rate bias as the previous case (values cor-
responding to the USQUE algorithm is plotted in wider solid
line). We can see that the USQUE algorithm converges faster
than the EKF method. Therefore in the presence of large un-
certainties in the initial conditions, the USQUE algorithmis
more optimal than the conventional EKF approach.

Residual Disturbance Torque Estimation

The vent torque, which is not explicitly modeled in the at-
titude dynamics, shows up as a residual disturbance torque
when the spacecraft angular rate measurement undergoes a
filtering process. In the disturbance torque estimation algo-
rithm, the filter state vector is augmented to include the un-
known parameters as additional states, resulting in a totalof
6 filter states, where 3 states are for the angular rate or an-
gular momentum of the spacecraft and the rest 3 states are
for the 3-axis components of the disturbance torque. Note
that the attitude quaternion, which is needed to determine the
gravity-gradient and aerodynamic torque in the disturbance
torque estimation algorithm, is estimated separately by the
USQUE method described in the previous subsection. In this
subsection the disturbance estimation algorithm using theUF
approach is shown.

The state system model for the torque estimation filter with
x = [H, dvent]

T can be expressed as
[

Ḣ

ḋvent

]

=

[

fH(H,dvent)
fd(H,dvent)

]

+

[

ηH

ηd

]

=

[

−J−1 (H − h) × H + L + dvent

03×1

]

+

[

ηH

ηd

]

(77)

where dvent is the vent disturbance torque,ηH and ηd

are zero-mean Gaussian process noises which correspond
roughly to the possible range of the disturbance variations.
The quantityL is the external disturbance torque vector
which can be expressed as

L = Ndrag + Ngrav (78)

The quantityL is treated as a deterministic input in the filter
equations. Also the CMG control inputh should be low pass
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filtered because of the presence of high-frequency noise when
measuring the CMG wheel speed. Note that the vent torque
dvent is treated as a random walk process. The gyroscope
output measurement model is

ỹ = ω + η1

= J−1 (H − h) + η1 (79)

Unlike the EKF, the UF approach does not need any deriva-
tion of the Jacobian and the sensitivity matrices. For the UF
we need only the original nonlinear equation and measure-
ment model. In the disturbance estimation algorithm, the UF
approach may be especially more robust than the EKF be-
cause the initial conditions for the angular rate components
may be fairly accurate within the uncertainties of the gyro-
scope, but the initial guess of the disturbance torque, which is
not measured, may be far from the true value.

Numerical simulations for the UF cases are performed with
the angular rate noise standard deviation of2.3 × 10−4 ◦/sec
(σ1 = 4× 10−6 rad/sec) and the sampling frequency of 1 Hz
for the ISS assembly stage UF1. It is assumed that the space-
craft attitude is maintaining the TEA when suddenly after
5.7556 hr (20720 sec) a vent torque of 66.07 Nm is applied
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in each body axis of the spacecraft. The disturbance torque
estimate results after the vent are shown in Fig. 7, where the
dashed lines correspond to the true values. We can see that
the vent torque estimates converge to the true values around
10 seconds after the leak. When an air leak occurs, the state
covariance of the filter is reset to a large value to incorporate
the variation of the disturbance torque at the instant when leak
occurs (remember that we know when leak occurs by sensing
the air depress inside the crew cabin). In this way the filter
converges much faster than that of the filter algorithm with-
out a covariance reset. The estimation errors for each compo-
nent of the disturbance torque are shown in Fig. 8 with their
3σ-bound lines.

5. PARAMETER ESTIMATION

Parameter estimation is a process of extracting information
about a system from measured input and output data. For
the ISS, the uncertainty in the aerodynamic torque may af-
fect the vent torque estimation results if they have the same
order of magnitude. Also, uncertainties in the inertia matrix
components may contribute to the residual disturbance to a
certain degree when the spacecraft attitude is under accelera-
tion due to a large vent torque. For the ISS, the inertia param-
eters for each configuration is pre-calculated on the ground
with CAD tools. But these values may not be precise since
the ISS is made up of multiple rigid bodies interconnected to
each other and undergoes several configuration changes dur-
ing its lifetime. Also the calculated atmosphere density with
MET model has uncertainty of 15% (standard deviation) [18].
Although the center of pressure is pre-calculated with some
sophisticated software on the ground, its precise value may
be inaccurate since its values is measured from the center of
mass of the spacecraft which itself includes uncertainties. But
the projected areas of the spacecraft are relatively well-known
compared to other aerodynamic parameters mentioned above.
Therefore, online parameter estimation method may be em-
ployed to estimate these slowly changing parameters in real-
time when we know that there is not a venting leak acting
on the spacecraft. But the parameter estimation performance
depends heavily on the observability of the parameters of in-
terest. Usually in the parameter estimation problem, the state
vector is extended by adjoining it with the vector of unknown
parameters, as we have done for the vent torque estimation al-
gorithm. In this section, online parameter estimation methods
using the least-square approach are derived and the relative
observability of the inertia components are investigated.

When the ISS attitude is near the LVLH, the inertia matrix are
unobservable even though there are some slight attitude vari-
ations due to the time varying aerodynamic torque. Assuming
that the aerodynamic parameters are known, the inertia ma-
trix observability in an ideal LVLH fixed mode can be shown
from the following equations:

J23 =
1

4n2
(τaero 1 − u1)

J13 =
1

3n2
(u2 − τaero 2)

J12 =
1

n2
(u3 − τaero 3) (80)

where the constant angular rateω = [0 −n 0]T and the con-
stant attitude quaternionq = [0 0 0 1]T are substituted in the
rotational Euler equations of motion. The quantitiesτaero i

andui are theith component of the aerodynamic torque and
the control torque input, respectively, andJij is the ijth in-
ertia matrix element. The spacecraft is assumed to be rotat-
ing in an Earth-pointing mode with a constant attitude an-
gular raten = 0.0011 rad/sec. We can see from Eqs. (80)
that among the six inertia components, only the products of
inertia (J23, J13 and J12) show up due to the presence of
the gravity-gradient torque. But note that the control input u

and the aerodynamic torqueτ aero have small values with the
same order of magnitude. Therefore, exact knowledge of the
aerodynamic and control input torque are needed to directly
calculate the product of inertias, which is not feasible in areal
world.

A numerical test is done with the batch least-square method
to check the observability conditions in the LVLH fixed at-
titude mode. The assumptions are: 1) perfect measurements
of the attitude, angular rate, control input and the angularac-
celeration are available, 2) perfect knowledge of the aerody-
namic torque, 3) no other disturbances besides aerodynamic
and gravity-gradient torque are present. The solution of the
least-square method for the estimation of the inertia matrix is
as follows:

x̂ = (HT H)−1HT ỹ (81)

wherex̂ is a 6-dimensional vector containing the elements of
the inertia matrix as

x̂ = J = [J11 J22 J33 J23 J13 J12]
T (82)

and theH and theỹ are quantities known from the measure-
ments and the control inputs. Note that a linear parametriza-
tion of the equations of motion is needed to use the batch
least-square method. The Euler equations can be linearly pa-
rameterized with respect to the unknown inertia components
as

−u + τ aero = Jω̇ + ω × Jω − 3n2C3 × JC3

= [D1(ω̇) + D3(ω) − 3n2D3(C3)]J

ỹ = HJ (83)

where the matricesD1 andD3 are defined as in [7].

The quantityHT H should be strictly positive definite since
its inverse appears in Eq. (81) to solve the unknown parame-
tersx̂. In practice, we requireHT H to be well-conditioned,
a useful measure of the condition of a matrix is the condition
number. The condition number varies from 1 for an orthog-
onal matrix to infinity for a singular matrix. From a numeri-
cal simulation, when all six components of inertia matrix are
solved using the Eq. (81), the condition number of theHT H
is 1.7 × 1010 resulting in the divergence of the solution. The
relative observability among the inertia components is ana-
lyzed using the eigenvalue and eigenvector decomposition of
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theHT H matrix, which is shown in Fig. 9. In this figure we
can see the relative observability of the inertia components.
For example,J11 is the maximum component of the eigen-
vector which corresponds to the eigenvalue around10−15.
As expected the three products of inertia, which have their
eigenvalues near10−6 are the most observable components
among the elements, whereas the three moments of inertia
have their magnitude near10−15 which is10−9 smaller than
those of the products of inertia. A simulation has been done
to estimate the product of inertia with a batch least-square
method, and the results are shown in Fig. 10 (where the re-
sults are calculated at regular instant of time with the cumu-
lative measurements). The three components converge very
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fast within an orbit to its true values as expected. The cor-
responding condition number is 16 which is much smaller
than the previous simulation case revealing that theHT H is
now a well-conditioned matrix. But note that the presence of
noise in the measurements makes the products of inertia un-
observable. For the real-time estimation of the inertia, the UF
approach is preferred over the EKF since the expected error
is lower and it avoids the derivation of complicated Jacobian
matrices with its robustness in the presence of large initial

state uncertainty. Also, the inertia estimation should be per-
formed only when an attitude maneuver is present to enhance
the observability of the parameters.

6. LEAK LOCALIZATION

Once a vent torquedvent is estimated by the real-time filter,
the next step involves determining the position vectorrvent,
which is the moment arm of the vent torque satisfying

dvent = rvent × F vent (84)

In the above equation, the vent torquedvent and the magni-
tude ofF vent are known by the estimation algorithms. The
overall steps for locating a leak on the ISS are as follows:

1. Model the 3 dimensional geometric surfaces of the pres-
surized parts of the spacecraft.
2. Estimate the vent torque and magnitude of the vent thrust.
3. Slice the 3-D surfaces of the pressurized modules with
a plane perpendicular to the direction of the vent torque so
that this plane comprises the center of mass of the spacecraft.
From the fundamental definition of torque, a torque about the
center of mass of a rigid body is perpendicular to the plane
comprising the vectorsrvent andF vent. So, rvent, F vent

and the center of mass are all in the same plane normal to
the direction of the vent torque. Denote this plane byτ . The
intersection between the planeτ and the surface of the space-
craft produces contours.
4. With the assumption that the vent thrust is normal to the
tangent plane of the partial section on the ISS surface where
the leak occurs, calculate the gradient vectors (directionnor-
mal vectors) of the points that make up the sliced contours
obtained in Step 3.
5. Multiply the magnitude of the vent thrust estimated in Step
1 with all gradient vectors calculated in Step 4.
6. Since the position and gradient vectors of all the points
making the sliced contours are known, calculate the resulting
torque at each point on the contours.
7. From the torques obtained for each point in Step 6, select
the torques that are closest to the estimated torque (withinan
error bound) and check their points on the contours.

The actual geometric structure of the station eliminates many
of the possible solutions; however, multiple solutions may
still exist. In this case further assumptions can be made, such
as the probability of impacts by the debris or small meteorites
is low on the aft and nadir facing surfaces since these surfaces
are shaded by other structures. Also, the leak localization
method based on the attitude response may be combined with
the conventional leak localization methods. For example, if
the solution shows two leaks situated at two different modules
then only one hatch closure between any of these modules is
needed to check which one of the two modules leaks. Further-
more, visual inspections by the crew may narrow the possible
leak solutions.
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Figure 11. ISS Assembly Stage 16A

7. NUMERICAL SIMULATION

A numerical algorithm coded in MATLAB has been devel-
oped to test the performance of the leak localization method
for various situations. For the simulation, the ISS assembly
Stage 16A is considered (see Fig. 11). In this research, MAT-
LAB 3-D surface models of the pressurized segment of the
ISS Stage from 4R to UF-7 have been developed based on
the data provided in Ref. [1]. The isentropic depressurization
process of the air inside the ISS is assumed. The mass and
aerodynamic properties of the ISS are provided in Ref. [1].
The inertiaJ is given by

J =





127908568 3141229 7709108
3141229 107362480 1345279
7709108 1345279 200432320



 (kg m)2

(85)

The centers of pressure areρcpx = [0,−0.355,−0.927]T m,
ρcpy = [−7.94, 0,−1.1]T m andρcpz = [1.12, 0.247, 0]T

m in the Space Station Analysis Coordinate System (SSACS)
with respect to the center of mass. The componentsx, y and
z represent the three orthogonal axes of the ISS body fixed
frame [1]. The reference projected areas areSx = 967 m2,
Sy = 799 m2 andSz = 3525 m2.

The Global Positioning System (GPS) attitude-sensor
measurement-error standard deviation is given byσq = 0.5
deg, and the ring-laser gyro sensor measurement-error stan-
dard deviation is given byσω = 4 × 10−6 deg/sec [19]. The
measurement-error standard deviation of the internal pressure
is given byσ = 0.1 mmHg. For the depressurization of the air
inside, the initial internal temperature and pressure are set to
T0 = 21o C andP0 = 1 atm, respectively. The back pressure
is assumed to bePB = 0 atm, and the volume of the entire
pressurized system for ISS 16A isV = 867.2 m3. Finally, an
inertia uncertainty of 3% is added to the trueJ .

Simulations are done for 100 seconds from the start of the
leak. Figure 12 shows the estimate of the leak hole area us-
ing the Kalman filter algorithm. The true leak hole areaA
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Figure 12. Vent Thrust Magnitude and Hole Area Estimate

Figure 13. Slicing 3-D Surface Model with Planeτ

is 1.8241 × 10−4 m2. As seen from this figure the Kalman
filter accurately estimates the leak hole area. The vent thrust
magnitude is then computed with the internal pressure mea-
surement and the estimate of the hole area.

For the first simulation a leak is assumed on a module shown
in Fig. 13. The sliced planeτ with contours in 3-D is shown in
Fig. 14. Using the leak localization approach a single leak has
been determined for this simulated case, depicted in Fig. 15.
The estimated position is marked with a◦, the true position
of a leak is marked with a∗ for comparison, and the center
of mass is marked with a⋆ on the planeτ . Slicing of the 3-D
surface is performed at the end of the simulation (t = 100
sec). If no errors are present in the assumed model and if the
assumptions made so far are perfectly satisfied, then the clos-
est torque yielding the point to the estimated vent torque is
the true leak point. But because of sensor inaccuracies and
modelling errors in the inertia, the estimated vent torque may
deviate from the true value. Therefore, an upper error-bound
should be set when selecting points that yield the torque clos-
est to the estimated vent torque. For the case shown in Fig. 15,
we conclude that the leak occurs on the contour line labelled
8, which corresponds to the Kibo JEM pressurized module.
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In this simulated case, the leak location is well estimated us-
ing the new localization method.

Another simulation has been done where multiple locations
may result from the given estimated vent torque. In this case
the estimated leak locations are spread over several modules,
as shown in Fig. 16. The locationsP1, P2 andP3 are possi-
ble leak candidates (the true leak point is situated nearP1).
But sinceP1 andP2 are on the same module, a crew person
only needs to close one hatch between the module labelled
20 and the module labelled 19 to verify which one of the two
modules has a leak. This is accomplished by measuring the
internal pressure drop rate or using visual inspections of the
estimated leak points. If the leak hole is due to space debrisor
small meteorite punctures, then the aft and nadir facing sur-
faces of the ISS have little possibility to be impacted. This
is also true for locations where regions are protected by other
structures, as is the case for pointP3. Therefore this point is
not a likely candidate for the leak.

Initial results indicate that the leak localization methodmay
be sensitive to modelling errors, such as the spacecraft mass
properties and aerodynamic parameters. Also the effect of the
disturbance torque caused by the pressure of the impingement
of the leaking air plume on nearby surfaces may be a critical
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Figure 16. Contours on Planeτ with 3 Possible Leaks

source of disturbance when a leak occurs. Because of inher-
ent complexities, analyzing these effects may be difficult.

8. EXPERIMENTAL VALIDATION

In this chapter, we will show the effects of the air vent with
the actual measurements taken from the ISS. A direct test of
the current leak localization method is not possible, but itis
still useful to test the actual influence of the vent torque onthe
ISS attitude for an airlock depressurization, which occurred
during the Extravehicular Activity (EVA) when the shuttle
was docked with the ISS in February 2001. The first part
of this chapter will show the results of the disturbance torque
estimation with the actual attitude data of the ISS in the TEA
mode taken in January 2002. Next, we will show the Space
Shuttle airlock depressurization effects on the attitude with
the actual data taken in February 2001.

Disturbance Estimation Test

In this section, the disturbance estimation algorithm tests us-
ing the UF and the EKF are done for the actual attitude and
rate data downloaded in January 2002 for the ISS assembly
stage UF1. The quality of the raw data is not ideal to check
the disturbance estimation algorithm because of the presence
of large measurement gaps within several portions of orbits.
These data gaps problem can be avoided if the disturbance
estimation algorithm operates online onboard the ISS. All the
data gaps in the actual data are interpolated at 1 Hz for the
estimation purpose. Figures 17 and 18 show the attitude and
the CMG control input measurements profile of the ISS, re-
spectively. From Fig. 17, we can see that the TEA is about
-1◦ for roll, -8◦ for pitch and -10◦ for yaw axis, also note that
the attitude sensor noise is much smaller than the GPS atti-
tude noise standard deviation of 0.5◦ since the attitude were
measured by the Russian star tracker (the GPS attitude data
were not available for the ISS assembly stage UF1). From
Fig. 18, the CMG momentum buildup does not occur in all
three axes, meaning that the spacecraft attitude is in the TEA
mode. Figures 19 show the noisy angular rate measurement.
In the attitude dynamics model, the aerodynamic torque is in-
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Figure 18. CMG Angular Momentum

tentionally omitted, so that the aerodynamic torque prevails
the residual torque. To test the performance of the current
disturbance torque estimation approach, the residual torque
is calculated using a finite-difference method as

df (t) =
H(t + ∆t) − H(t)

∆t
+ J−1[H(t) − h(t)] × H(t)

− 3n2C3(q(t)) × JC3(q(t))

(86)

where∆t is the sampling time which is 1 sec. In Eq. (86)
all the quantities come directly from the measurement with-
out any filtering process. The resultingdf (t) is shown in
Fig. 20 where we can clearly see the interpolated part of the
measurement data. But by looking at this figure not much
information can be obtained since the plots are too noisy to
analyze. Figure 21 is the residual torque estimated using the
UF approach where much of high frequency noises is filtered
out compared to Fig. 20. But since the true residual torque
is unknown, the Fast-Fourier Transform (FFT) method is em-
ployed to extract the magnitudes and their corresponding fre-
quencies fromdf (t). Figure 22 shows the comparison be-
tween the FFT of thedf (t) and the FFT of the estimated
value,d̂(t), using the UF. In this figure, it is hard to discern
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the two lines since they overlap perfectly each other, mean-
ing that the low frequency components are all extracted from
the noisy measurements without any significant attenuationin
their signal powers. Every component of the residual distur-
bances constitute of a bias plus some signals whose frequen-
cies are multiples of the orbital frequency (0.00113 rad/s).
The bias plus signals up to 2 times of the orbital frequency
are dominant ford2 andd3. But for d1, periodic signals with
frequency up to 5 times the orbital frequency have equivalent
magnitude compared to each other. Since the inertia uncer-
tainty error has little effect on the attitude dynamics in the
TEA mode, the residual torque can be thought as the aero-
dynamic torque plus some small magnitude of unmodeled
disturbances. The frequency at one-time of the orbital fre-
quency is caused by the diurnal bulge of the atmosphere den-
sity, whereas the two-times of orbital frequency componentis
produced by the seasonal effects, which is latitude dependent,
and the solar arrays rotational effects. But in the ISS UF1
only one of two U.S. solar arrays was fully functional because
one of the solar arrayα gimbal had a mechanical problem.
The cyclic residual torque shown in Fig. 21 can be fitted to
the polynomials at integer multiples of the orbital frequency,
n, by using the batch least-square or real-time Kalman filter.
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The polynomial equations can be expressed as follows:

d(t) = c + a1 cos(nt) + b1 sin(nt) + a2 cos(2nt)

+ b2 sin(2nt) + a3 cos(3nt) + b3 sin(3nt)

+ a4 cos(4nt) + b4 sin(4nt)

= c + m1 cos(nt + φ1) + m2 cos(2nt + φ2)

+ m3 cos(3nt + φ3) + m4 cos(4nt + φ4) (87)

wherem1 ∼ m4 for each elementi = 1, 2, 3 are defined as

m1(i) =
√

a1(i)2 + b1(i)2 (88)

m2(i) =
√

a2(i)2 + b2(i)2 (89)

m3(i) =
√

a3(i)2 + b3(i)2 (90)

m4(i) =
√

a4(i)2 + b4(i)2 (91)

The estimation results ofm1 ∼ m4 using the KF are shown
in Figs. 23, 24 and 25. We can see that the estimate results
of c andm1 ∼ m4 are consistent with the results shown in
Fig. 22. Note thatm1 ∼ m4 should be multiplied by two
when comparing with the results of the FFT. The quantities
of second components ofm3 andm4 are not as prominent
as can be seen from the second plot of Fig. 22. Thesec and
m1 ∼ m4 can be subtracted from the overall residual torque
when a vent torque is present. But an assumption should be
made that the spacecraft does not deviate much from the atti-
tude wherem1 ∼ m4 are estimated.

A proposed method involves determining a residual model
error, which includes all the aforementioned effects, using the
UF filter when it is known that a leak does not occur. Then,
assuming that the residual error is small for the next orbit,this
model error is subtracted from the new estimated model error
in the next orbital pass. If no leak is determined, then a new
residual error is determined and the process continues until a
leak is found.

Airlock Depressurization

The effects of the air vent on the attitude of the ISS assem-
bly Stage 5A with the mated Space Shuttle (STS-98) is in-
vestigated in this subsection (see Fig. 26 adapted from [1]).
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AIRLOCK 

Figure 26. ISS mated with Space Shuttle Atlantis, Stage 5A
Intermediate 2

The purpose of this section is to estimate the torque and the
magnitude of the thrust caused by the air vent from the de-
pressurization of the Space Shuttle airlock for the preparation
of extravehicular activity (EVA) of the crew. The actual data
are recorded from 2001, 045, 09 h 30 min (GMT) through
2001, 045, 15 h 40 min (GMT), and airlock depressurization
started around 14 h 30 min. Because a T-shaped valve is used
(see Fig. 27), where air is vented on opposite sides of the
valve structure in the direction of±z (third) body axis, the
net thrust should be nullified in theory. But if the expelled air
is not uniform at both openings a net thrust may occur. In the
present case, from Fig. 28, the CMG momentum buildup oc-
curs during the pressurization process which means that the
net thrust is not cancelled.

In preparation for an EVA, two stages are needed to depres-
surize the Space Shuttle external airlock:

1. The airlock is depressurized from 703 hPa to 345 hPa.
The valve is open until 345 hPa is reached and then closed

Figure 27. External Airlock of Space Shuttle and Depress
Valve

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

4000

4500

5000

5500

6000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

−15000

−10000

−5000

0

5000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

1000

2000

3000

4000

h
1

(N
m

s)
h

2
(N

m
s)

h
3

(N
m

s)
time (orbit)

Figure 28. CMG Angular Momentum

to maintain 345 hPa.
2. The valve is reopened with the valve diameter increased to
depressurize the airlock from 345 hPa to 0 hPa.

The first plot of Fig. 29 shows the temperature measurement
and the pressure profile in the airlock. The airlock depressur-
ization occurs at t = 18400 sec (note that t = 0 corresponds to
t = 2001, 045, 00 h 00 min 00 sec in GMT). The magnitude
of the thrust caused by the venting air is estimated based on
the following assumptions:

1. Depressurization of the airlock follows an isothermal pro-
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Figure 30. Attitude in Roll, Pitch and Yaw

cess based on the internal temperature history.
2. A single straight opening valve is used (although a T-
shaped valve is used in reality).
3. No air flow decelerations occur inside the valve (dA = 0),
but the hole areaA is not required to be a constant.

Only the upper bound magnitude of the vent thrust can be
given because of the assumption made in 2. We can as-
sume that the temperature inside the airlock is nearly constant
around 18o C based on the temperature measurement taken
inside the airlock. Therefore, we can infer that the isother-
mal air model is a better representation of the physics of the
air depressurization inside the airlock. Figure 29 shows the
results obtained from the EKF algorithm. The figures are re-
scaled to show the depressurization part in detail. The pres-
sure data closely follows the predicted depress process of the
EVA explained earlier. The estimated hole area varies be-
tween1 × 10−4 m2 to 3 × 10−4 m2, which corresponds to
0.56 cm (0.22 in) and 1 cm (0.4 in) in hole radius, respec-
tively. Note that the computed valve area does not reveal the
actual one because of the assumptions made in 2. Therefore
from the results shown in Fig. 29, only an upper bound of the
exit area of the valve can be obtained. Figures 30 shows the
attitude measurements profile of the ISS. The angular rate
measurement and its estimated value using the UF approach
are shown in Figs. 31 and 32, respectively.

The vent torque estimation results using the UF approach is
shown in Fig. 33. In this figure, we can see that negative
torques occur ind1 andd2, and a positive torque arises ind3.
It may be the results of the plume impingement effects of the
venting air on the nearby surfaces of the spacecraft structures.
For the analyses of the plume impingement effects, a compu-
tational fluid dynamics (CFD) method should be performed
which is outside of the scope of this paper. But we can infer
from Fig. 27 that the presence of the radiator (in the direction
of they body axis) on the left-hand side of the figure might
have impinged with the venting plume reflected by the Shuttle
bay.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

1

2
x 10

−4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

−1.25

−1.2

−1.15

−1.1

−1.05

x 10
−3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

−2

−1

0

1

2
x 10

−4

ω
1

(r
ad

/s
)

ω
2

(r
ad

/s
)

ω
3

(r
ad

/s
)

time (orbit)

Figure 31. Angular Rate Measurement
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Figure 32. Angular Rate Estimate
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Figure 33. Disturbance Torque Estimate
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This is not ideal case to test the leak localization method since
the external airlock of the Space Shuttle is situated insidethe
Space Shuttle cargo bay with the depressurization valve at its
bottom part (valve location:[10.34 0.865 10.568]T m),
which probably interacted with surfaces near the airlock
valve. The computation of the stream of the vent plume in-
side the shuttle cargo bay can only be performed with the
traditional computational fluid dynamics (CFD) which is out
of scope of this paper. Furthermore the geometry of the T-
shaped valve makes the analysis more complicated. However,
the obtained results are consistent with intuitive assumptions.

9. CONCLUSIONS

In this paper a new leak localization method using the attitude
response is developed for the ISS. The reaction thrust arising
from a vent due to air leak are calculated using the isentropic
nozzle theory. Also, the isentropic and isothermal depressur-
ization models have been considered to describe the depres-
surization process of the pressurized module. Based on these
models, the vent thrust magnitude is estimated by employ-
ing the KF. The UF approach is used for the purpose of esti-
mating the attitude and residual disturbance torque. The UF
approach is preferred over the EKF since the expected error
is lower and it avoids the derivation of complicated Jacobian
matrices. The superior performance of the USQUE over the
conventional EKF approach in the attitude estimation prob-
lem has been shown when the initial attitude estimate error
has large uncertainties.

In the ISS, an incorrect inertia may be the primary source of
uncertainty in estimating the vent torque. Also, unlike thede-
terministic gravity-gradient, the precise determinationof the
aerodynamic torque is very difficult due to the lack of the
knowledge of the drag mechanism in rarefied atmosphere ac-
tivities. But since the upper bound of the aerodynamic torque
is known, the vent torque which is much larger than the aero-
dynamic torque has no much effect on the vent torque esti-
mation results. It has been shown with the batch least-square
analysis that the inertia matrix is unobservable when the ISS
is near the LVLH. Therefore, to enhance the observability of
the unknown parameters, an appropriate attitude maneuver
should be performed. For the real-time inertia parameter esti-
mation, the robustness in the presence of large initial state un-
certainty and no necessities of the Jacobian derivations may
make the UF approach attractive.

The actual geometric structure of the station eliminates many
of the possible solutions; however, multiple solutions may
still exist. In this case further assumptions should be made,
such as the probability of impacts by the debris or small me-
teorites is low on the aft, nadir facing surfaces and some parts
of the surfaces which is not likely to have leak. Also, the
leak localization method based on the attitude response may
be combined with the conventional leak localization methods.
For example, if the solution shows two leaks situated at two
different modules then only one hatch closure between any of
these modules is needed to check which one of the two mod-

ules leaks. Furthermore, visual inspections by the crew may
narrow the possible leak solutions.

Numerical results showed that the proposed leak localiza-
tion method determines the location of the leak rapidly and
precisely. Furthermore, actual test data from a depressuriza-
tion of the Space Shuttle airlock indicates that the proposed
method has the potential to accurately estimate the leak hole
size and venting force magnitude.

The advantages of this localization method are: no other
devices are needed besides pressure gauges, spacecraft atti-
tude and rate sensors, and relatively fast leak localization can
be achieved compared to the conventional leak localization
method proposed for the ISS. Also this localization method
not only determines the possible leaking modules but also the
possible locations of a leak hole within the surfaces of the
modules, which may be critical to allow for repairs rather than
sealing off the module or performing a station evacuation.
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