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ABSTRACT

A new spacecraft attitude estimation approach
based on the Unscented Filter is derived. For nonlin-
ear systems the Unscented Filter uses a carefully se-
lected set of sample points to more accurately map the
probability distribution than the linearization of the
standard Extended Kalman Filter, leading to faster
convergence from inaccurate initial conditions in at-
titude estimation problems. The filter formulation is
based on standard attitude-vector measurements us-
ing a gyro-based model for attitude propagation. The
global attitude parameterization is given by a quater-
nion, while a generalized three-dimensional attitude
representation is used to define the local attitude error.
A multiplicative quaternion-error approach is derived
from the local attitude error, which guarantees that
quaternion normalization is maintained in the filter.
Simulation results indicate that the Unscented Filter
is more robust than the Extended Kalman Filter under
realistic initial attitude-error conditions.

INTRODUCTION

The Extended Kalman Filter (EKF) is widely used
in attitude estimation. Several parameterizations can
be used to represent the attitude, such as Euler an-
gles,1 quaternions,2 modified Rodrigues parameters,3

and even the rotation vector.4 Quaternions are es-
pecially appealing since no singularities are present
and the kinematics equation is bilinear. However,
the quaternion must obey a normalization constraint,
which can be violated by the linear measurement-
updates associated with the standard EKF approach.
The most common approach to overcome this short-
fall involves using a multiplicative error quaternion,
where after neglecting higher-order terms the four-
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component quaternion can effectively be replaced by
a three-component error vector.2 Under ideal circum-
stances, such as small attitude errors, this approach
works extremely well.

One interesting fact of the formulation presented in
Ref. [2] is that the 4 × 4 quaternion covariance is as-
sumed to have rank three, i.e., the 4 × 4 matrix can
be projected onto a 3 × 3 matrix without any loss
in information. But, this is only strictly valid when
the constraint is linear, which is not the case for the
quaternion.5 However, the covariance is nearly singu-
lar, and a linear computation such as the EKF can
make it exactly singular. This approach is justifiable
for small estimation errors, but may cause difficulties
outside the valid linear region, e.g., during the initial-
ization stage of the EKF.

Several approaches have addressed the issue of ini-
tialization for attitude estimation. Reference [6] ex-
plicitly includes the quaternion constraint in the mea-
surement update. This works well for large initial
condition errors; however, linearizations about the pre-
vious error estimate are required for the covariance
propagation and for the measurement updates, which
may produce biased estimates. Reference [7] breaks
the measurement update into two steps. The linear
first step uses a transformation of the desired states,
while the second step uses a non-recursive minimiza-
tion to recover the desired states. This also works
well; however, local iterations at each time-step on a
constrained minimization problem are required in the
second step.

In this paper a new attitude estimation approach,
based on a filter developed by Julier, Uhlmann and
Durrant-Whyte,8 is shown as an alternative to the
EKF. This filter approach, which they call the Un-
scented Filter9 (UF), has several advantages over the
EKF, including: 1) the expected error is lower than
the EKF, 2) the new filter can be applied to non-
differentiable functions, 3) the new filter avoids the
derivation of Jacobian matrices, and 4) the new filter
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is valid to higher-order expansions than the standard
EKF. The UF works on the premise that with a fixed
number of parameters it should be easier to approx-
imate a Gaussian distribution than to approximate
an arbitrary nonlinear function. Also, the UF uses
the standard Kalman form in the post-update, but
uses a different propagation of the covariance and pre-
measurement update with no local iterations.

As with the standard EKF, using the UF directly
with a quaternion parameterization of the attitude
yields a nonunit quaternion estimate. A linearized
model, such as the one used in Ref. [2], does not
take full advantage of the UF capabilities. An al-
ternative approach presented in this paper uses a
three-component attitude-error vector to represent the
quaternion error vector. Several three-component rep-
resentations are possible, including the Gibbs vector
(also known as the vector of Rodrigues parameters),
which has a singularity at 180◦ rotations, and the vec-
tor of modified Rodrigues parameters (MRPs), which
has a singularity at 360◦.10 Reference [11] proves that
four times the vector of MRPs and twice the Gibbs vec-
tor leads to the same second-order approximation. We
choose a generalized representation where the singular-
ity can be placed anywhere from 180◦ to 360◦.12 Since
we only use a three-component representation for the
attitude errors, the singularity is never encountered in
practice. The updates are performed using quaternion
multiplication, leading to a natural way of maintaining
the normalization constraint.

The organization of this paper proceeds as follows.
First, the UF is reviewed. Then, a brief review of
the quaternion attitude kinematics and gyro-model
is provided, followed by a review of the generalized
three-component error-vector representation. Then,
an UF is derived for attitude estimation using a multi-
plicative quaternion update with the three-component
error-vector representation. Finally, the new filter is
compared with the EKF using simulated three-axis
magnetometer and gyro measurements of the Tropi-
cal Rainfall Measurement Mission (TRMM).

UNSCENTED FILTERING

In this section the UF is reviewed. The filter pre-
sented in Ref. [13] is derived for discrete-time nonlinear
equations, where the system model is given by

xk+1 = f(xk, k) +Gkwk (1a)

ỹk = h(xk, k) + vk (1b)

where xk is the n × 1 state vector and ỹk is the
m × 1 measurement vector. Note that a continuous-
time model can always be expressed in the form of
Eq. (1a) through an appropriate numerical integra-
tion scheme. We assume that the process noise wk

and measurement-error noise vk are zero-mean Gaus-
sian noise processes with covariances given by Qk and

Rk, respectively. The standard Kalman Filter update
equations are first rewritten as14

x̂+

k = x̂−

k +Kkυk (2a)

P+

k = P−

k −KkP
υυ
k KT

k (2b)

where x̂−

k and P−

k are the pre-update state estimate
and covariance, respectively, and x̂+

k and P+

k are the
post-update state estimate and covariance, respec-
tively. The innovation υk is given by

υk ≡ ỹk − ŷ−

k = ỹk − h(x̂−

k , k) (3)

The covariance of υk is denoted by P υυ
k . The gain Kk

is computed by

Kk = P xy
k (P υυ

k )−1 (4)

where P xy
k is the cross-correlation matrix between x̂−

k

and ŷ−

k .
The UF uses a different propagation than the stan-

dard EKF. Given an n× n covariance matrix P , a set
of 2n sigma points can be generated from the columns
of the matrices ±

√

(n+ λ)P , where
√
M is shorthand

notation for a matrix Z such that Z ZT = M . The
set of points is zero-mean, but if the distribution has
mean µ, then simply adding µ to each of the points
yields a symmetric set of 2n points having the desired
mean and covariance.13 Due to the symmetric nature
of this set, its odd central moments are zero, so its first
three moments are the same as the original Gaussian
distribution. The scalar λ is a convenient parameter
for exploiting knowledge (if available) about the higher
moments of the given distribution.14 In scalar systems
(i.e., for n = 1), a value of λ = 2 leads to errors in the
mean and variance that are sixth order. For higher-
dimensional systems choosing λ = 3−n minimizes the
mean-squared-error up to the fourth order.13 However,
caution should be exercised when λ is negative since
a possibility exists that the predicted covariance can
become non-positive semi-definite. If this is a major
concern, then another approach can be used that al-
lows for scaling of the sigma points, which guarantees
a positive semi-definite covariance matrix.15 Also, it
can be shown that when n+ λ tends to zero the mean
tends to that calculated by the truncated second-order
filter.16 This is the foundation for the UF.

A method for incorporating process noise in the UF
is shown in Ref. [17]. This approach generates a set
of points in [xk, wk] space that has the correct mean
and covariance, and propagates these points through
the model in Eq. (1a). The predicted mean and covari-
ance are also augmented to included the process noise,
but the basic structure of the their calculations remain
unchanged (see Ref. [17] for more details). Although
this approach may more fully utilize the capability of
the unscented transformation, it will be more compu-
tationally costly due to the extra required calculations
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arising from the augmented system. For the attitude
estimation problem, a set of six more sigma points
is required to implement this approach. This signifi-
cantly increases the computational burden, which may
prohibit its use for actual onboard implementations.
Another approach based on a trapezoidal approxima-
tion will be shown in this paper.

The general formulation for the propagation equa-
tions is given as follows. First, compute the following
set of sigma points:

σk ← 2n columns from ±
√

(n+ λ)[P+

k + Q̄k] (5a)

χk(0) = x̂+

k (5b)

χk(i) = σk(i) + x̂+

k (5c)

where the matrix Q̄k is related to the process noise
covariance, which will be discussed shortly. One effi-
cient method to compute the matrix square root is the
Cholesky decomposition.18 Alternatively, the sigma
points can be chosen to lie along the eigenvectors of the
covariance matrix. Note that there are a total of 2n
values for σk (the positive and negative square roots).
The transformed set of sigma points are evaluated for
each of the points by

χk+1(i) = f [χk(i), k] (6)

The predicted mean is given by

x̂−k+1
=

1

n+ λ

{

λχk+1(0) +
1

2

2n
∑

i=1

χk+1(i)

}

(7)

The predicted covariance is given by

P−

k+1
=

1

n+ λ

{

λ [χk+1(0)− x̂−

k+1
] [χk+1(0)− x̂−

k+1
]T

+
1

2

2n
∑

i=1

[χk+1(i)− x̂−

k+1
] [χk+1(i)− x̂−

k+1
]T

}

+ Q̄k

(8)

The mean observation is given by

ŷ−

k+1
=

1

n+ λ

{

λγk+1(0) +
1

2

2n
∑

i=1

γk+1(i)

}

(9)

where
γk+1(i) = h[χk+1(i), k] (10)

The output covariance is given by

P yy
k+1

=
1

n+ λ

{

λ [γk+1(0)− ŷ−

k+1
] [γk+1(0)− ŷ−

k+1
]T

+
1

2

2n
∑

i=1

[γk+1(i)− ŷ−

k+1
] [γk+1(i)− ŷ−

k+1
]T

}

(11)

Then, the innovation covariance is simply given by

P υυ
k+1 = P yy

k+1
+Rk+1 (12)

Finally, the cross-correlation matrix is determined us-
ing

P xy
k+1

=
1

n+ λ

{

λ [χk+1(0)− x̂−

k+1
] [γk+1(0)− ŷ−

k+1
]T

+
1

2

2n
∑

i=1

[χk+1(i)− x̂−

k+1
] [γk+1(i)− ŷ−

k+1
]T

}

(13)

The filter gain is then computed using Eq. (4), and
the state vector can now be updated using Eq. (2).
Even though 2n+ 1 propagations are required for the
UF, the computations may be comparable to the EKF,
especially if the continuous-time covariance equations
need to be integrated and a numerical Jacobian matrix
is evaluated. Since the propagations can be performed
in parallel, the UF is ideally suited for parallel compu-
tation architectures. A square root implementation of
the UF has been developed.19 Although this promises
to have improved numerical properties, it will not be
considered in this paper.

Reference [17] states that if the process noise is
purely additive in the model, then its covariance can
simply be added using a simple additive procedure.
In this paper we expand upon this concept by in-
corporating an approximation for the integration over
the sampling interval, which more closely follows the
actual process. Any process noise that is added to
the state vector in the UF is effectively multiplied
by the state transition matrix, Φ(∆t), which gives
Φ(∆t)QkΦ

T (∆t) at the end of the interval. This map-
ping is done automatically by the state propagation,
and does not need to be explicitly accounted for in the
propagation. However, adding equal process noise at
the beginning and end of the propagation might yield
better results. The total desired process noise follows

Φ(∆t) Q̄kΦ
T (∆t) + Q̄k = GkQkG

T
k (14)

where Q̄k is used in Eq. (5a) and in the calculation of
the predicted covariance in Eq. (8). This approach is
similar to a trapezoid rule for integration. An explicit
solution for Q̄k in the attitude estimation problem de-
pends on the attitude kinematics, which we next show.

ATTITUDE KINEMATICS

In this section a brief review of the attitude kine-
matics equation of motion using quaternions is shown.
Also, a generalization of the Rodrigues parameters is
briefly discussed. Finally, gyro and attitude-vector
sensor models are shown. The quaternion is defined

by q ≡
[

%T q4

]T
, with % ≡ [q1 q2 q3]

T
= ê sin(ϑ/2)

and q4 = cos(ϑ/2), where ê is the axis of rotation and
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ϑ is the angle of rotation.10 Since a four-dimensional
vector is used to describe three dimensions, the quater-
nion components cannot be independent of each other.
The quaternion satisfies a single constraint given by
qTq = 1. The attitude matrix is related to the quater-
nion by

A(q) = ΞT (q)Ψ(q) (15)

with

Ξ(q) ≡
[

q4I3×3 + [%×]
−%T

]

(16a)

Ψ(q) ≡
[

q4I3×3 − [%×]
−%T

]

(16b)

where I3×3 is a 3 × 3 identity matrix and [%×] is a
cross product matrix since a× b = [a×]b, with

[a×] ≡





0 −a3 a2

a3 0 −a1

−a2 a1 0



 (17)

Successive rotations can be accomplished using quater-
nion multiplication. Here we adopt the convention
of Refs. [2] and [10] who multiply the quaternions
in the same order as the attitude matrix multiplica-
tion: A(q′)A(q) = A(q′ ⊗ q). The composition of the
quaternions is bilinear, with

q′ ⊗ q =
[

Ψ(q′)
... q′

]

q =
[

Ξ(q)
... q

]

q′ (18)

Also, the inverse quaternion is given by q−1 =
[

−%T q4

]T
. The quaternion kinematics equation is

given by

q̇(t) =
1

2
Ξ[q(t)]ω(t) (19)

where ω is the 3× 1 angular velocity vector.
The local error-quaternion, denoted by δq ≡

[

δ%T δq4

]T
, which will be defined in the UF for-

mulation, is represented using a vector of generalized
Rodrigues parameters:12

δp ≡ f
δ%

a+ δq4

(20)

where a is a parameter from 0 to 1, and f is a scale
factor. Note when a = 0 and f = 1 then Eq. (20) gives
the Gibbs vector, and when a = f = 1 then Eq. (20)
gives the standard vector of MRPs. For small errors
the attitude part of the covariance is closely related
to the attitude estimation errors for any rotation se-
quence, given by a simple factor.2 For example, the
Gibbs vector linearize to half angles, and the vector
of MRPs linearize to quarter angles. We will choose
f = 2(a+1) so that ||δp|| is equal to ϑ for small errors.
The inverse transformation from δp to δq is given by

δq4 =
−a ||δp||2 + f

√

f2 + (1− a2)||δp||2
f2 + ||δp||2 (21a)

δ% = f−1(a+ δq4) δp (21b)

Discrete-time attitude observations for a single sen-
sor are given by

b̃i = A(q)ri + νi (22)

where b̃i denotes the ith 3× 1 measurement vector, ri
is the ith known 3× 1 reference vector, and the sensor
error-vector νi is Gaussian which satisfies

E {νi} = 0 (23a)

E
{

νiν
T
i

}

= σ2
i I (23b)

where E { } denotes expectation. Note that if unit
measurement vectors are used then Eq. (23b) should
be appropriately modified.20 Multiple (N) vector mea-
surements can be concatenated to form

ỹk =











A(q)r1

A(q)r2

...
A(q)rN











k

+











ν1

ν2

...
νN











k

(24a)

Rk = diag
[

σ2
1 σ2

2 . . . σ2
N

]

(24b)

where diag denotes a diagonal matrix of appropriate
dimension. We should note that any attitude sen-
sor, such as a three-axis magnetometer, star tracker,
sun sensor, etc., can be put into the form given by
Eq. (22). However, most sensors only observe two
quantities, such as two angles in star trackers. The
resulting form in Eq. (22) for these type of sensors has
a unity norm constraint in the observation.20 How-
ever, the mean observation given by Eq. (9) may not
produce an estimate with unit norm. Therefore, we
recommend that the original two quantity observation
model be used for these types of sensors in the UF.

A common sensor that measures the angular rate is
a rate-integrating gyro. For this sensor, a widely used
model is given by21

ω̃(t) = ω(t) + β(t) + ηv(t) (25a)

β̇(t) = ηu(t) (25b)

where ω̃(t) is the continuous-time measured angular
rate, and ηv(t) and ηu(t) are independent zero-mean
Gaussian white-noise processes with

E
{

ηv(t)η
T
v (τ)

}

= I3×3σ
2
vδ(t− τ) (26a)

E
{

ηu(t)η
T
u (τ)

}

= I3×3σ
2
uδ(t− τ) (26b)

where δ(t− τ) is the Dirac delta function.
In the standard EKF formulation, given a post-

update estimate β̂
+

k , the post-update angular velocity
and propagated gyro bias follow

ω̂+

k = ω̃k − β̂
+

k (27a)

β̂
−

k+1 = β̂
+

k (27b)
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Given post-update estimates ω̂+

k and q̂+

k , the prop-
agated quaternion is found from the discrete-time
equivalent of Eq. (19):

q̂−k+1
= Ω(ω̂+

k )q̂
+

k (28)

with

Ω(ω̂+

k ) ≡







Zk ψ̂
+

k

−ψ̂+T

k cos
(

0.5||ω̂+

k ||∆t
)






(29)

Zk ≡ cos
(

0.5||ω̂+

k ||∆t
)

I3×3 −
[

ψ̂
+

k ×
]

(30a)

ψ̂
+

k ≡ sin
(

0.5||ω̂+

k ||∆t
)

ω̂+

k /||ω̂+

k || (30b)

where ∆t is the sampling interval in the gyro.

UNSCENTED ATTITUDE FILTER

In this section an UF is derived for attitude estima-
tion. We call the new filter the UnScented QUaternion
Estimator, or USQUE, which is Latin for “all the way.”
One approach for the design of this filter involves using
the quaternion kinematics in Eq. (28) directly. How-
ever, this approach has a clear deficiency. Mainly, re-
ferring to Eq. (7), since the predicted quaternion mean
is derived using an averaged sum of quaternions, no
guarantees can be made that the resulting quaternion
will have unit norm. This makes the straightforward
implementation of the UF with quaternions undesir-
able. Still, a filter can be designed using this approach
where the quaternion is normalized by brute force. An
eigenvalue/eigenvector decomposition is recommended
to decompose the 7 × 7 covariance matrix, since this
decomposition produces orthogonal sigma points. Our
experience has shown that this approach can be suc-
cessfully accomplished using the aforementioned pro-
cedure. It works well for small bias errors since the
eigenvectors of the covariance matrix are nearly paral-
lel with the attitude update; however, we have found
that this approach does not work well when large bias
updates occur.

A better way involves using an unconstrained three-
component vector to represent an attitude error
quaternion. We begin by defining the following state
vector:

χk(0) = x̂+

k ≡
[

δp̂+

k

β̂
+

k

]

(31)

We will use δp̂k from Eq. (20) to propagate and update
a nominal quaternion. Since this three-dimensional
representation is unconstrained, the resulting overall
covariance matrix is a 6 × 6 matrix. Therefore, using
Eq. (7) poses no difficulties, which makes this an at-
tractive approach. First, the vector χk(i) in Eq. (5) is
partitioned into

χk(i) ≡
[

χ
δp
k (i)

χ
β
k(i)

]

, i = 0, 1, . . . , 12 (32)

where χδpk is from the attitude-error part and χβk is

from the gyro bias part. To describe χδpk we first define
a new quaternion generated by multiplying an error
quaternion by the current estimate. Using the nota-
tion in Eq. (5) we assume

q̂+

k (0) = q̂+

k (33a)

q̂+

k (i) = δq
+

k (i)⊗ q̂+

k , i = 1, 2, . . . , 12 (33b)

where δq+

k (i) ≡
[

δ%+T
k (i) δq+

4k
(i)

]T
is represented by

Eq. (21):

δq+
4k
(i) =

−a ||χδpk (i)||2 + f
√

f2 + (1− a2)||χδpk (i)||2

f2 + ||χδpk (i)||2
i = 1, 2 . . . , 12

(34a)

δ%+

k (i) = f−1
[

a+ δq+
4k
(i)

]

χ
δp
k (i), i = 1, 2, . . . , 12

(34b)

Equation (33a) clearly requires that χδpk (0) be zero.
This is due to the reset of the attitude error to zero
after the previous update, which is used to move in-
formation from one part of the estimate to another
part.11 This reset rotates the reference frame for the
covariance, so we might expect the covariance to be ro-
tated, even though no new information is added. But
the covariance depends on the assumed statistics of
the measurements, not on the actual measurements.
Therefore, since the update is zero-mean, the mean
rotation caused by the reset is actually zero, so the
covariance is in fact not affected by the reset. Next,
the updated quaternions are propagated forward using
Eq. (28), with

q̂−k+1
(i) = Ω

[

ω̂+

k (i)
]

q̂+

k (i), i = 0, 1, . . . , 12 (35)

where the estimated angular velocities are given by

ω̂+

k (i) = ω̃k − χβk(i), i = 0, 1, . . . , 12 (36)

Note that ω̂+

k (0) = ω̃k − χβk(0), where χ
β
k(0) is the

zeroth-bias sigma point given by the current estimate,

i.e., χβk(0) = β̂
+

k from Eq. (5b). The propagated error
quaternions are computed using

δq−k+1
(i) = q̂−

k+1
(i)⊗

[

q̂−k+1
(0)

]−1
, i = 0, 1, . . . , 12

(37)
Note that δq−

k+1
(0) is the identity quaternion. Finally,

the propagated sigma points can be computed using
the representation in Eq. (20):

χ
δp
k+1

(0) = 0 (38a)

χ
δp
k+1

(i) = f
δ%−k+1

(i)

a+ δq−4k+1
(i)

, i = 1, 2, . . . , 12 (38b)
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with
[

δ%−Tk+1
(i) δq−4k+1

(i)
]T

= δq−

k+1
(i). Further-

more, from Eq. (27b) we have

χ
β
k+1

(i) = χβk(i), i = 0, 1, . . . , 12 (39)

The predicted mean and covariance can now be com-
puted using Eqs. (7) and (8).

We now derive expressions for the matrices Gk and
Q̄k, which are used in Eq. (14). Our choice of f =
2(a + 1) leads to the following approximation of the
kinematics of the true attitude error:11

δṗ(t) = −ω̂(t)×δp(t)+δω(t)− 1

2
δω(t)×δp(t) (40)

where δω(t) ≡ ω(t) − ω̂(t). Equation (40) is valid to
second-order terms; higher-order terms have not been
shown since they all have terms that are functions of
δp(t). Since χδpk (0) = 0 for all k, then from Eq. (40)
the matrix Gk is simply given by the identity matrix.
We should note that the full version of the approxima-
tion in Eq. (40) can be used to directly propagate the
sigma points; however, we choose to propagate the er-
ror quaternions since closed-form solutions exist, given
by Eq. (35). The conversion back to the sigma points
using Eq. (38) requires fewer computations than using
a numerical integration routine to directly propagate
the sigma points. Still, in some cases the first-order
approximation, which has a closed-form solution, can
yield accurate results in the propagation. However,
this may not take full advantage of the true benefits
of the UF formulation, and suboptimal results may be
obtained by this approach.

The derivation of the matrix Q̄k assumes that the
approximation ||∆t ω̂+

k || << 1 is valid, which is gener-
ally adequate for computing process noise. With this
assumption the state transition matrix can be approx-
imated by

Φ(∆t) =

[

I3×3 −∆tI3×3

03×3 I3×3

]

(41)

The discrete process noise covariance is given by21

Qk =





(

σ2
v∆t+ 1

3
σ2
u∆t3

)

I3×3 −
(

1

2
σ2
u∆t2

)

I3×3

−
(

1

2
σ2
u∆t2

)

I3×3

(

σ2
u∆t

)

I3×3





(42)
Solving Eq. (14) for Q̄k gives

Q̄k =
∆t

2

[(

σ2
v − 1

6
σ2
u∆t2

)

I3×3 03×3

03×3 σ2
uI3×3

]

(43)

The correction term (1/6)σ2
u∆t2 is needed because the

trapezoid rule is exact for linear functions, but over-
estimates the integral of a quadratic, namely ∆t2σ2

u.
The new process noise in Eq. (43) is diagonal, which
seems to represent the physics more accurately. Simp-
son’s rule, which is exact for quadratics, would elim-
inate the need for the correction term. However, the

new process noise would have to be added at the mid-
point of the propagation, i.e., at ∆t/2, as well as at the
beginning and end. This requires us to recompute the
sigma points at time ∆t/2, which is less convenient to
implement than the trapezoid rule.

An exact closed-form solution of the state transition
matrix Φ(∆t) can be found using the discrete-time
methods shown in Ref. [22]. This should be used if
the sampling interval is above Nyquist’s limit.23 In
this case Q̄k can be determined by solving the gen-
eral form of the Lyapunov equation (also known as
the Sylvester equation24) in Eq. (14) using numerical
methods. From our experiences with the UF developed
in this paper, adding the matrix Q̄k at the beginning
and end of the propagation does not seem to produce
better results than using Qk at the beginning or end of
the propagation alone. Still, we favor the aesthetically
pleasing nature of the trapezoidal approximation.

The USQUE algorithm for attitude estimation
comes with a computational cost. An increased
amount of computation is required for the covari-
ance decomposition and sigma point propagations.
Our experience has shown that the USQUE algo-
rithm is about 2.5 times slower than the EKF in
Ref. [2]. One approach to help reduce the com-
putational load in USQUE takes advantage of us-
ing a lower-triangular Cholesky decomposition for the
square root in Eq. (5a). With a lower-triangular form,
only the first three columns have nonzero entries in the
attitude parts. Thus we can bypass the computation
of q̂+

k (i) in Eq. (33b) at the beginning of the propa-
gation for half of the sigma points. This results in a
savings of about 15% in the computational load. More
dramatic reductions would be seen for larger state vec-
tors, e.g., for gyroless attitude filtering with estimation
of system momentum, environmental torques, inertia
components, etc.

The procedure in USQUE is as follows. We are
given initial attitude quaternion (q̂+

0 ) and gyro-bias
(β+

0 ) estimates, as well as an initial 6 × 6 covariance
(P+

0 ), where the upper 3 × 3 partition of P+
0 corre-

sponds to attitude error angles, and gyro parameters
σu and σv. The initial state vector in USQUE is set

to x̂+
0 =

[

0T β+T
0

]T

. We choose the parameter a

and set f = 2(a + 1). Then, Q̄k is calculated using
Eq. (43), which will be used in Eqs. (5a) and (8). The
sigma points are then calculated using Eq. (5). Next,
the corresponding error quaternions are calculated us-
ing Eq. (34), where Eq. (33) is used to compute the
sigma-point quaternions from the error quaternions.
The quaternions are subsequently propagated forward
in time using Eq. (35). Then, the propagated error
quaternions are determined using Eq. (37), and the
propagated sigma points are calculated using Eqs. (38)
and (39). The predicted mean and covariance can now
be computed using Eqs. (7) and (8). Storing the prop-
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agated quaternions from Eq. (35) we then calculate
the mean observations using Eqs. (9) and (10), with

γk+1(i) =











A[q̂−(i)]r1

A[q̂−(i)]r2

...
A[q̂−(i)]rN











k+1

, i = 0, 1, . . . , 12

(44)
The output covariance, innovation covariance and
cross-correlation matrix are computed using Eqs. (11),
(12) and (13). Next, the state vector and co-
variance are updated using Eq. (2), with x̂+

k+1
≡

[

δp̂+T
k+1

β̂
+T

k+1

]T

. Then, the quaternion is updated us-

ing
q̂+

k+1
= δq+

k+1
⊗ q̂−

k+1
(0) (45)

where δq+

k+1
≡

[

δ%+T
k+1

δq+
4k+1

]T

is represented by

Eq. (21):

δq+
4k+1

=
−a ||δp̂+

k+1
||2 + f

√

f2 + (1− a2)||δp̂+

k+1
||2

f2 + ||δp̂+

k+1
||2

(46a)

δ%+

k+1
= f−1

[

a+ δq+
4k+1

]

δp̂+

k+1
(46b)

Finally, δp̂+

k+1
is reset to zero for the next propagation.

SIMULATION EXAMPLES

In this section several performance comparisons be-
tween USQUE and the EKF are made through simu-
lated examples using a realistic spacecraft model. The
TRMM spacecraft is a representative Earth-pointing
spacecraft in a near-circular 90 min (350 km) or-
bit with an inclination of 35◦. The nominal Earth-
pointing mission mode requires a rotation once per
orbit about the spacecraft’s y-axis. The attitude deter-
mination hardware consists of an Earth sensor assem-
bly, digital sun sensors, coarse sun sensors, a three-axis
magnetometer (TAM), and gyroscopic rate sensors.
All simulations shown here assume only TAM and
gyro measurements. The magnetic field reference is
modeled using a 10th-order International Geomagnetic
Reference Field model.25 TAM sensor noise is modeled
by a zero-mean Gaussian white-noise process with a
standard deviation of 50 nT. We note that the actual
magnetic field errors have systematic components,26

but these are not relevant to the present filter com-
parisons. The gyro measurements are simulated using
Eq. (25) with σu = 3.1623 × 10−4 µrad/sec3/2 and
σv = 0.31623 µrad/sec1/2, and an initial bias of 0.1
deg/hr on each axis.

For the first simulation both USQUE and the EKF
are executed with no initial attitude errors, but with
initial bias estimates set to zero. The initial covari-
ance P+

0 is diagonal with attitude error elements set
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to Patt = (0.5 deg)2 and bias error elements set to
Pbias = (0.2 deg/hr)2. The gyro and TAM measure-
ments are both sampled at 10 sec intervals. Also, in
USQUE a = 1 with f = 4, which gives four times the
vector of MRPs for the error representation, and λ = 1
(the optimality of this value will be discussed shortly).
For this simulated run both USQUE and the EKF at-
titude errors agree to within 1 µrad. This indicates
that no advantages to using USQUE with small errors
can be seen.

In the next simulation, errors of −50◦, 50◦ and 160◦

for each axis, respectively, are added into the initial-
condition attitude estimate, with initial bias estimates
set to zero. The initial attitude covariance is set to
(50 deg)2 and the initial bias covariance is unchanged.
The chosen attitude covariance gives a one standard-
deviation error of 50◦. Choosing a = 1 with f = 4
gives an MRP error of 4 tan−1[(50 × π)/(4 × 180)] =
49.23◦. Therefore, the same value for Patt can be
used in USQUE and the EKF without loss in accuracy
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(note that two times the Gibbs vector gives 47.15◦).
This simulation illustrates a possible realistic scenario
where only a TAM and a gyro exist with an unknown
attitude estimate. A plot of the norm of the attitude
errors for this simulation case is shown in Figure 1.
The EKF takes almost 8 hours to converge to a value
below 0.1◦, while USQUE converges to this value in
under 30 min. Also, the EKF attitude errors do not
converge to within their respective 3σ error bounds
until well after 8 hours. However, as shown in Figure
2, the USQUE attitude errors do converge to within
their respective 3σ well within 8 hours, which indicates
that USQUE is performing in a near optimal fashion.

A more dramatic situation is given by using the
same attitude errors and Patt, but setting the initial
y-axis bias estimate to 20 deg/hr. For both filters the
initial bias covariance is set to (20 deg/hr)2. A plot
of the norm of the attitude errors for this simulation
case is shown in Figure 3. The EKF never converges
for this case since the first-order approximation cannot
adequately capture the large initial condition errors.
However, USQUE does converge to less than 0.1◦ in
about 3.5 orbits. This clearly shows the importance of
the higher-order terms used in the UF for convergence.

We now investigate the performance of USQUE for
various values of a and λ. The first scenario includes
initial attitude errors of −50◦, 50◦ and 160◦ for each
axis, respectively, with initial bias estimates set to
zero. The second scenario also includes a large initial
bias error, consistent with the previous simulations.
For these simulations a is allowed to be greater than
1. Any a with absolute value greater than 1 risks the
appearance of square roots of negative numbers, which
is analogous to using the vector part of the quaternion
error as the three-dimensional representation, i.e., the
limit of infinite a. Still, values of a larger than 1 are
worthy of study, due to the nonlinear nature of the es-
timation problem. In order to quantify the simulation

Table 1 Averaged J Values: Initial Attitude Er-

rors Only

a = 0 a = 1 a = 2 a = 3

λ = −3 18.98 14.98 10.02 10.06

λ = −1 5.97 4.28 4.63 4.70

λ = 0 4.73 4.68 5.22 6.69

λ = 1 5.30 4.08 9.29 6.60

λ = 3 8.00 5.32 4.58 ∞

Table 2 Averaged J Values: Initial Attitude and

Bias Errors

a = 0 a = 1 a = 2 a = 3

λ = −3 25.94 21.84 13.95 16.07

λ = −1 21.06 18.75 19.17 18.30

λ = 0 20.71 19.49 20.59 22.97

λ = 1 21.76 16.60 23.09 14.68

λ = 3 25.77 13.87 11.94 ∞

results, the norm of the attitude errors are numerically
integrated over the 8 hour simulation run, given by

J =

∫ 8

0

||e(t)|| dt (47)

where e(t) denotes the roll, pitch and yaw errors in
degrees. Finally, Eq. (47) is averaged over 20 runs
(i.e., a Monte-Carlo type simulation is performed).

Table 1 gives the averaged results of this integration
for various values of a and λ using the first scenario
of errors (i.e., large initial attitude errors only). The
case with a = 3 and λ = 3 is unstable because the
covariance does not remain positive definite. The best
results are obtained with a = 1 and λ = 1. Other good
results are obtained with a = 1 and λ = 0 or λ = −1,
and a = 2 and λ = −1. The recommendation of us-
ing λ = 3 − n is based an the approximation of the
Gaussian distribution up to fourth-order terms. How-
ever, the Gaussian assumption is only valid through
the first pass of the filter, since the nonlinear transfor-
mation causes a non-Gaussian distribution. Therefore,
it is not surprising that values other than λ = 3 − n
yield better results.

Table 2 gives the averaged results of this integration
for various values of a and λ using the second scenario
of errors (i.e., large initial attitude and bias errors).
For these initial errors, the best results are obtained
with a = 2 and λ = 3. Even though the performance
is better with a > 1, we do not recommend a value
larger than 1, since the error vector has no physical
meaning. A plot of the norm of the attitude errors for
a = 0 to a = 2 with λ = −3 is shown in Figure 4. Note
that the attitude errors asymptotically approach the
same value. This is a typical result for various values
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Fig. 4 Norm of Attitude Errors for λ = −3 and a

Varying from 0 to 2

of a with constant values of λ. The performance then
decreases as a becomes larger than 2 (not shown in the
plot). The case with a = 3 and λ = 3 gives unstable
filter results for this scenario, also. This can be over-
come by using the scaled unscented transformation.15

But, this is not required since a = 3 should not be
used in practice.

From Tables 1 and 2 there exists a number of combi-
nations for a and λ that yield approximately the same
performance. The conclusion from these combinations
is that the performance of USQUE is independent of
the Gibbs vector or vector of MRPs formulations as
long as the parameter λ is well chosen. Figure 5 shows
the norm of the attitude errors with both large initial
attitude and bias errors for various values of a and
λ. Also, comparing Table 1 to Table 2 indicates a
lack of some consistency for these two simulation sce-
narios. For example, from Table 1 when a = 2 the
performance is better with λ = −1 than with λ = −3,
while from Table 2 when a = 2 the performance is
better with λ = −3 than with λ = −1. Also, a more
dramatic performance increase is given when λ varies
from −3 to −1 for all values of a in Table 1 than in
Table 2. These findings are most likely due to the non-
linear nature of the problem. A further examination of
Tables 1 and 2 indicates that λ = 1 seems to provide
a good overall performance. Moreover, all reasonable
values for a and λ outperform the standard EKF in all
test scenarios for large initial condition errors.

CONCLUSIONS

In this paper a new approach for attitude estimation
using the Unscented Filter formulation was derived.
The new filter is based on a quaternion parameteri-
zation of the attitude. However, straightforward im-
plementation of the Unscented Filter using quaternion
kinematics did not produce a unit quaternion estimate.
To overcome this difficulty the quaternion was rep-
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Fig. 5 Norm of Attitude Errors for Variations in

Both a and λ

resented by a three-dimensional vector of generalized
Rodrigues parameters, which also reduced the size the
covariance matrix. Simulation results indicated that
the performance of the new filter far exceeds the stan-
dard Extended Kalman Filter for large initialization
errors.
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