
Real Time Attitude Independent

GPS Integer Ambiguity Resolution∗

E. Glenn Lightsey† and John L. Crassidis‡

Abstract

In this paper, a new motion-based approach for Global Positioning System (GPS) integer

ambiguity resolution is derived. The approach first represents the GPS sightline vectors in

the body frame or the baseline vectors in the reference frame. The solution to this problem is

always available as long as at least three non-coplanar baseline or sightline vectors exist. The

body-frame sightline or reference-frame baseline observations are the sum of two vectors, one

depending on the phase measurements and the other on the unknown integers. The vector

containing the integer phases is then converted into an attitude independent observation

using scalar checking, which leads to a problem that treats the integers as to-be-determined

biases. The bias estimation problem is typically solved by using a batch process. In this

paper, simple real time algorithms are developed based on both the extended Kalman filter

and Unscented filter. Simulation results indicate that both algorithms provide accurate

integer resolution in real time, but the Unscented filter is more robust to large initial condition

errors and slow vehicle motions than the extended Kalman filter.

Introduction

When used as a sensor on moving objects, a Global Positioning System (GPS) receiver

provides a wealth of information about the vehicle’s dynamic state. These data may be used

in real time to monitor and potentially control the vehicle’s trajectory. The most widely used
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dynamic states that are provided by GPS receivers are three dimensional position and veloc-

ity along with accurate time measurements. However, GPS receivers have also demonstrated

the potential to provide attitude and rotation rate information for the vehicle. The existence

of a single low cost sensor that provides both translational and rotational information and

is well suited to electronic miniaturization enables numerous real time control applications

that were previously considered to be impossible or impractical.

Although vehicle attitude determination using GPS has been demonstrated in some im-

portant examples, such as on the International Space Station,1 it has not gained widespread

acceptance as an alternative to more traditional attitude sensors. The main reason for this

reluctance has been a lack of robustness of the attitude solution. Other reasons include a

lower attitude accuracy, as compared to other attitude sensors, and a strong dependence

of the GPS attitude accuracy on the length of the baselines and their rigidity. The most

common method for performing GPS based attitude determination of objects with relatively

small dimensions (less than tens of meters) is to measure the difference in the carrier phase

signal between multiple antennae which are placed on the object and perform interferome-

try using the measurements.2 The carrier phase signal is used because it has approximately

two orders of magnitude greater measurement precision than the GPS code signal. If the

separation vector between each of the antennae is known in the object’s body frame, then

the attitude of the object may be determined with respect to the external reference frame

using the differential carrier phase measurements. These operations are reviewed in more

detail in the GPS Sensor Model section.

The separation distance between the antennae is almost always greater than one GPS

L1 carrier phase wavelength of 19.04 centimeters. Since each antenna measures just the

fractional portion of the carrier phase angle, the integer number of wavelengths in the mea-

surement between the two antennae must be determined to convert the differential carrier

phase measurement into a differential range measurement. This classic problem in GPS

attitude determination is known as the carrier phase integer ambiguity problem, and it has
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been much studied in GPS research.3,4 Solving the integer ambiguity is known as integer

resolution, and it is this critical step that enables attitude determination to be performed.

Once the integers are known, new measurements may be easily incorporated by using the

estimated attitude to back-solve for the integers from a newly visible GPS satellite. Using

systems of this type, attitude solution accuracies of better than 1 degree are possible with

antenna separation distances of only a few meters.2

The trouble is that integer resolution is a computationally intense and error prone process,

especially in the presence of noisy and/or weak signal measurement environments. Although

many algorithms may work relatively well during strong signal and low noise conditions,

many of these algorithms break down when the measurement conditions degrade. In these

cases, the integer resolution process may go through long periods without a solution or may

even report an incorrect solution. The problem is compounded by the fact that it is precisely

in these poor measurement environments that the integer resolution algorithm will be called

more frequently, due to a lack of available measurements and the presence of cycle slips.

This has caused the GPS based attitude determination sensor to display a lack of robustness

in some cases. Figure 1 demonstrates this robustness issue using on-orbit data collected in

1996.5 Although there are many correct attitude solutions during the primary data collection

from t = 75 to 275 minutes, there are also data dropouts of several minutes, lasting more

than 10 minutes in some cases. There is also an incorrect solution reported at approximately

t = 175 minutes.

The problem is made more challenging by the real time nature of the sensor requirements.

There are examples of carrier phase integer resolution methods which have been successfully

applied to position and attitude determination applications.6 However, integer resolution

integrity is still an important consideration for real time control applications. Data in the

future are not available, and data dropouts and incorrect solutions may produce unacceptable

control.

The objective of this paper is to present and compare two sequential integer resolution
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algorithms that are suitable for real time attitude determination applications. The algo-

rithms are attitude independent in the sense that they do not require any prior knowledge

of the vehicle attitude to work. The first algorithm uses an extended Kalman filter (EKF)

approach that is developed with commonly employed estimation techniques. The second

algorithm uses an Unscented filter (UF) approach which offers very good results for robust

integer resolution in poor measurement conditions.

Prior Art

Although many different algorithms have been proposed for integer resolution, most may

generally be categorized as one of two types. The first type is known as the search method.

Algorithms using the search method attempt to resolve the integers by considering the full

set of possible values and picking the best solution for the current measurement sample.7,8

A simple implementation of the search method would calculate the solution residual for

every possible integer and report the integer set with the minimum overall solution residual.

The main appeal of search method algorithms is that they can be very fast under good

measurement conditions, often yielding a solution in just a few samples.

Some of the problems with search methods are that they are computationally intense and

prone to report no solution or an erroneous solution under poor measurement conditions.

The reason that they are computationally intense is that the full set of possible integers can

be extremely large even for modestly sized objects of a few meters. It is very difficult to

consider all of the possible solutions in a real time application without introducing significant

computational latency. However, many search method algorithms have developed innovative

techniques to discard families of solutions and thus reduce the computation load.9 In some

cases, the range of possible attitude solutions is restricted to further reduce the search space.

This can help if there is a priori information about the attitude of the vehicle, but it limits

the range of operation.

A more fundamental limitation of the search method algorithms is their performance

under poor measurement conditions. When measurement error is large, due to multipath
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for example, impostor solutions may masquerade as the correct solution by having a lower

solution residual. Since multipath error is geometry dependent, these erroneous solutions

will persist until the geometric conditions change enough to allow the correct solution to be

revealed. Therefore, a search method algorithm may possibly report the erroneous solution

as the correct solution. Additional robustness may be brought into the algorithm by waiting

a predetermined amount of time to ensure that the candidate solution is not erroneous, but

in this case, the main advantage of the search method has been lost (its quick resolution).

Another mechanism for robustness is to require that the solution residual of the candidate

solution be much lower than the next best solution, since it is unlikely that an erroneous

solution would have such a large separation over the next best solution. In poor measurement

conditions, however, this may lead to no solution at all, because the correct solution may

never experience such a large separation in residual over the next best solution.

The other type of integer resolution algorithm is known as the motion method. Mo-

tion methods rely on the geometry between the antenna array and the GPS satellites to

change while the integers remain constant. Therefore, the biases in the measurements may

be attributed to the integers and the problem of integer resolution reduces to one of bias

determination. The main appeal of the motion method is that the possibility of obtaining

an incorrect solution becomes very small as the range of geometric motion becomes large.

There are some problems with motion methods as well. The first is that the geometric

motion between the array and the GPS satellites may be very slow in some cases. This

reduces the observability of the problem and requires the user to wait longer to obtain a

solution. This delay may not be acceptable in a real time control application. If it is

not possible to somehow increase the amount of geometric motion (by performing a vehicle

rotation, for example), then the algorithm must be designed to work in marginally observable

conditions.

If the motion method algorithm is a batch algorithm, then all the measurements must

be retained and a single batch solution is sought over the entire data collection. While
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techniques that use this approach have been implemented for attitude determination,10 one

problem that frequently occurs is the inversion of a very large matrix to obtain a solution.

Therefore, it is highly desirable to obtain a sequential formulation of the motion method, if

possible, instead of a batch solution.

An attitude independent approach using motion methods is shown in Ref. [11]. This ap-

proach represents the GPS sightline vectors in the body frame as the sum of two vectors, one

depending on the phase measurements and the other on the unknown integers. The vector

containing the integer phases is found using a procedure developed to solve for magnetometer

biases,12 which leads to a linear least squares solution that can also be implemented in real

time. In this paper, two new sequential attitude independent integer resolution algorithms

are developed using motion methods. These algorithms are also suitable for implementation

in real time attitude determination applications. The first algorithm, using an extended

Kalman filter approach, is simpler to implement but it does not perform as well under poor

measurement conditions. The second algorithm, using an Unscented filter approach, is de-

signed specifically for poor measurement environments and low observability conditions. The

algorithms are compared to demonstrate the performance differences.

GPS Sensor Model

In this section, a brief background of the GPS phase difference measurement is shown.

The main measurement used for GPS attitude determination is the phase difference of the

signal received from two antennae separated by a baseline. The essential geometry of the

wavefront angle and wavelength, which is used to develop a phase difference, is illustrated

in Figure 2. The phase difference measurement is obtained by

bl cos θ = λ(∆φ− n) (1)

where bl is the baseline length (in cm), θ is the angle between the baseline and the line-of-

sight to the GPS spacecraft, n is the number of integer wavelengths between two antennae,
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∆φ is the phase difference (in cycles), and λ is the wavelength (in cm) of the GPS signal.

The two GPS frequency carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz. As of this

writing, non-military applications generally use the L1 frequency, which corresponds to a

wavelength of λ = 19.04 cm. The measurement model can be expressed by

∆φ̃ = bTA s + n+ w (2)

where ∆φ̃ denotes the single-difference phase measurement, s ∈ ℜ3 is the normalized sightline

vector to the GPS spacecraft in a reference frame, typically Earth-Centered-Earth-Fixed

(ECEF),13 b ∈ ℜ3 is the baseline vector (in wavelengths), which is the relative position

vector from one antenna to another, A ∈ ℜ3×3 is the (proper and orthogonal) attitude matrix

that maps the reference frame to the body frame, and w represents a zero-mean Gaussian

measurement error with standard deviation ̟, which is (0.5 cm)/λ = 0.026 wavelengths for

typical phase noise.2 Note that other error sources, such as line biases, may exist in the single-

difference phase measurement. Line biases can be eliminated by using double-differenced

phase measurements, but the effects of noise are increased. The algorithms presented here

are valid for both single and double differenced measurements. At each epoch it is assumed

that M baselines and N sightlines exist. The minimum number of baselines and sightlines

required to determine the attitude within an ambiguity (arising from an intersection of two

cones) is two baselines and two sightlines.14 This ambiguity can be easily resolved from

the geometry of the sensor array to the GPS satellites though. A mathematically unique

attitude solution exists if any additional number of baselines or sightlines are available at a

given epoch.

Attitude Independent Observation

In this section, the attitude independent observation derived from GPS phase difference

measurements is reviewed (see Ref. [11] for more details). The case of processing multiple

baselines and one sightline at a time to resolve the integer ambiguities (solving for M integers

Lightsey and Crassidis 7 of 31



for each sightline) is considered first. Other sightlines can be processed in parallel. When

at least two sightlines have been processed with multiple baselines, then an attitude can be

determined. The derivation of the attitude independent observation begins by representing

the available sightline vector in the body frame, A s, as the sum of two components. The first

component s̄ is a function of the measured fractional phase measurements, and the second

c depends on the unknown integer phase differences:11

A s = s̄− c (3a)

s̄ = B−1

[

M
∑

i=1

̟−2
i ∆φ̃ibi

]

(3b)

c = B−1

[

M
∑

i=1

̟−2
i nibi

]

(3c)

B =
M

∑

i=1

̟−2
i bib

T
i (3d)

where the subscript i denotes the ith baseline. Since the measurements are not perfect,

Eq. (3a) is replaced by the measurement model

s̄ = A s + c + ǫ (4)

where c is a constant bias since the baselines are assumed constant, and ǫ is a zero-mean

Gaussian process with covariance R = B−1. The three-baseline case will be considered,

which is the most common in practice. If more baselines are available, then a three-baseline

subset can always be chosen. After the integer phases have been determined using this

subset, a refined attitude estimate can be computed using all baselines (i.e., three baselines

are sufficient to determine an attitude, which may then be used to resolve the integers

corresponding to the other baselines).

To eliminate the dependence on the attitude, the orthogonality of A and Eq. (4) are used
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to give

||s||2 = ||A s||2 = ||s̄− c− ǫ||2

= ||s̄||2 − 2 sTc + ||c||2 − 2 (s̄− c)T
ǫ + ||ǫ||2

(5)

Next, following Alonso and Shuster,12 the following effective (scalar) measurement and noise

are defined:

z ≡ ||s̄||2 − ||s||2 (6a)

v ≡ 2 (s̄− c)T
ǫ− ||ǫ||2 (6b)

Then the effective measurement model is

z = 2 s̄Tc− ||c||2 + v (7)

where v is approximately Gaussian for small ǫ with mean and variance given by, respectively,

µ ≡ E {v} = −Tr(R) (8)

and

σ2 ≡ E
{

v2
}

− µ2 = 4 (s̄− c)TR (s̄− c) + 2 Tr(R2) (9)

Note that the variance in Eq. (9) is a function of the unknown bias vector c. Equation (6a)

is used to compute the actual effective measurement (determined from the known quantities

in Eqs. (3b), (3d) and the GPS sightline vector), while Eq. (7) represents the effective

measurement model as a function of the unknown bias vector c. Equations (6)-(9) define an

attitude independent set of equations because they do not contain the attitude matrix A.

Reference [11] shows a statistically correct centered estimate algorithm12 to determine the

bias vector c (and thus the integers) based on linear least squares, and also shows a linear
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sequential algorithm to determine the bias vector in real time.

If coplanar baselines exist, then another approach using multiple sightlines and one base-

line can be used to determine an attitude independent effective measurement. This approach

converts the baseline vector into the reference frame:

ATb = b̄− c (10a)

b̄ = S−1

[

N
∑

j=1

̟−2
j ∆φ̃jsj

]

(10b)

c = S−1

[

N
∑

j=1

̟−2
j njsj

]

(10c)

S =
N

∑

j=1

̟−2
j sjs

T
j (10d)

where the subscript j denotes the jth sightline. The new effective measurement and noise

now follow

z ≡ ||b̄||2 − ||b||2 (11a)

v ≡ 2 (b̄− c)T
ǫ− ||ǫ||2 (11b)

where the covariance of ǫ is now given by R = S−1. The new effective measurement model

is

z = 2 b̄Tc− ||c||2 + v (12)

where v is approximately Gaussian for small ǫ with mean and variance given by, respectively,

µ ≡ E {v} = −Tr(R) (13)

and

σ2 ≡ E
{

v2
}

− µ2 = 4 (b̄− c)TR (b̄− c) + 2 Tr(R2) (14)
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This approach has the advantage of determining the integers using one baseline at a time

(thus the non-coplanar baseline requirement of the previous approach is not required);

however, at least three GPS sightlines must be available until the integer solutions have

converged. Also, note that the vector c is no longer constant, but unlike the approach shown

in Ref. [11], this poses no difficulties in the EKF and UF formulations.

Kalman Filter Formulation

In this section, an extended Kalman filter (EKF) is derived to determine the integers in

real time. A review of the EKF equations can be found in Ref. [15]. The filter output and

state dynamics for the GPS integer ambiguity problem are straightforward. The output is

given by the effective measurement generated using Eq. (6a) and the state vector is defined as

a vector of the integers, so that x ≡ [n1 n2 n3]
T . Since this vector is known to be constant,

then the filter dynamics are given by

˙̂x = 0 (15)

where x̂ denotes an estimate of x. Since the goal is parameter estimation, then the pro-

cess noise covariance is simply zero. Therefore, the integers are strictly determined by the

discrete-time Kalman update equations, given by

x̂k+1 = x̂k +Kk[zk+1 − hk+1(x̂k)] (16a)

Pk+1 = [I3×3 −KkHk+1(x̂k)]Pk (16b)

Kk = PkH
T
k+1(x̂k)

[

Hk+1(x̂k)PkH
T
k+1(x̂k) + σ2

k+1(x̂k)
]

−1
(16c)
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where x̂k = [x̂1k
x̂2k

x̂3k
]T , which represents the estimates for n1, n2 and n3, Pk is the state

error-covariance, and

hk+1(x̂k) = 2 s̄T
k+1c(x̂k)− ||c(x̂k)||2 (17a)

c(x̂k) = B−1
(

̟−2
1 x̂1k

b1 +̟−2
2 x̂2k

b2 +̟−2
3 x̂3k

b3

)

(17b)

σ2
k+1(x̂k) = 4 [s̄k+1 − c(x̂k)]

T B−1 [s̄k+1 − c(x̂k)] + 2 Tr(B−2) (17c)

The 1 × 3 matrix Hk+1(x̂k) is derived by taking the partial of Eq. (7) with respect to x,

which gives

Hk+1(x̂k) = 2 [s̄k+1 − c(x̂k)]B
−1

[

̟−2
1 b1 ̟−2

2 b2 ̟−2
3 b3

]

(18)

The notations hk+1(x̂k), Hk+1(x̂k) and σ2
k+1(x̂k) denote an evaluation at the k+ 1 time-step

measurement using s̄k+1 and at the k time-step estimate using x̂k. As previously stated the

variance of the effective measurement error contains the unknown vector c. In order to im-

plement this condition in the EKF formulation it is assumed that the measurement variance

is given by σ2
k+1(x̂k), where the estimated bias vector is used at each update. Although this

approach is not truly “optimal” in the strictness sense, it is the simplest approach to imple-

ment in practice. Furthermore, simulation studies indicate that the EKF is not sensitive to

errors in the measurement variance when using the current estimate.

The implementation of the EKF for GPS integer ambiguity resolution proceeds as follows.

First, given three phase difference measurements associated with three baseline vectors and a

sightline vector, compute an effective measurement at time t0 using Eqs. (3b), (3d) and (6a).

Initialize the filter with some initial covariance estimate P0 and state estimate x0. Then,

use the current estimate to update the state and covariance at each measurement time by

the update equations shown in Eq. (16). At each time step a new effective measurement is

computed and the filter is executed in real time until convergence is achieved. We should note

that the estimates given by the filter are not explicitly integers. The integer ambiguities can

be resolved by rounding these estimates to the nearest integers. The diagonal elements of the
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covariance matrix, denoted by Pii (i = 1, 2, 3), can be used to develop a stopping criterion.

In particular, the procedure of rounding an estimate to the nearest integer can be shown to

have a 0.0013 probability of selecting the wrong integer when 3
√
Pii is less than one-half.11

This approach also has the advantage of checking “how close” the estimated values are to

their closest integer values. Multiple sightline vectors can be processed in parallel. When the

filter has converged for two or more sightlines, then an attitude can be computed, which can

be used to instantaneously resolve the integer ambiguities associated with other sightlines.

If coplanar baselines exist, then the baselines can be converted into the reference frame us-

ing Eqs. (10b) and (10d), which requires that three non-coplanar sightlines exist throughout

the entire time span. This approach uses Eq. (11a) to compute the effective measurement.

The quantities in the EKF of Eq. (16) now are given by

hk+1(x̂k) = 2 b̄T
k+1ck+1(x̂k)− ||ck+1(x̂k)||2 (19a)

ck+1(x̂k) = S−1
k+1

(

̟−2
1 x̂1k

s1k+1
+̟−2

2 x̂2k
s2k+1

+̟−2
3 x̂3k

s3k+1

)

(19b)

σ2
k+1(x̂k) = 4

[

b̄k+1 − ck+1(x̂k)
]T
S−1

k+1

[

b̄k+1 − ck+1(x̂k)
]

+ 2 Tr(S−2
k+1) (19c)

The 1 × 3 matrix Hk+1(x̂k) is derived by taking the partial of Eq. (12) with respect to x,

which gives

Hk+1(x̂k) = 2
[

b̄k+1 − ck+1(x̂k)
]

S−1
k+1

[

̟−2
1 s1k+1

̟−2
2 s2k+1

̟−2
3 s3k+1

]

(20)

Note that the matrix S is time-varying. Therefore, a 3× 3 matrix inverse is required at each

measurement update to use this approach.

The EKF formulation presented here is different than the sequential least squares process

of Ref. [11], where a centering algorithm is first used to remove the nonlinearities in the

derived cost function, which then yields a simple linear least squares solution. This, in turn,

can easily be executed in real time using a sequential process. The linear sequential process

works well when sufficient vehicle or GPS satellite motion is present; however, as shown by
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simulation results, the sequential least squares process may produce erroneous results when

the motion is marginally observable in the presence of measurement noise. Furthermore, the

approach of Ref. [11] requires that the vector c be constant, which is only true when using

the sightline vector in the body frame to create the effective measurement. The EKF is used

to estimate the integers directly, so c need not be constant. This clearly has advantages

when three coplanar baselines exist.

Unscented Filter Formulation

In this section a new approach, developed by Julier, Uhlmann and Durrant-Whyte,16 is

discussed as an alternative to the EKF. This approach, which they called the Unscented

filter (UF), works on the premise that with a fixed number of parameters it should be

easier to approximate a Gaussian distribution than to approximate an arbitrary nonlinear

function. The Unscented filter uses a different propagation than the form given by the

standard extended Kalman filter. Given an n × n covariance matrix P , a set of order n

points can be generated from the columns (or rows) of the matrices ±
√
nP . The set of

points is zero-mean, but if the distribution has mean µ, then simply adding µ to each of the

points yields a symmetric set of 2n points having the desired mean and covariance. Due to

the symmetric nature of this set, its odd central moments are zero, so its first three moments

are the same as the original Gaussian distribution (see Ref. [17] for more details).

The implementation of the UF for real-time GPS integer ambiguity resolution is straight-

forward. First, the following set of sigma points are computed from Pk:

σk ← 2n columns from ±γ
√

Pk (21a)

χk(0) = x̂k (21b)

χk(i) = σk(i) + x̂k, i = 1, 2, . . . , 2n (21c)

The parameter γ is given by γ =
√
n+ λ, where the composite scaling parameter, λ, is given

by λ = α2(n + κ) − n. The constant α determines the spread of the sigma points and is
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usually set to a small positive value (e.g. 1 × 10−4 ≤ α ≤ 1).17 Also, the parameter κ is

usually given by κ = 3 − n. Efficient methods to compute the matrix square root can be

found by using the Cholesky decomposition.18 The following weights are now defined:

Wmean
0 =

λ

n+ λ
(22a)

W cov
0 =

λ

n+ λ
+ (1− α2 + β) (22b)

Wmean
i = W cov

i =
1

2(n+ λ)
, i = 1, 2, . . . , 2n (22c)

where β is used to incorporate prior knowledge of the distribution (for Gaussian distributions

β = 2 is optimal).

Since the state model estimate is given by ˙̂x = 0, then the propagated values for the

state and covariance are given by their respective updated values, which significantly reduces

the computational requirements in the UF. Hence, the only essential difference between the

EKF and UF formulations is in the computation of the innovations covariance, where the

EKF uses a first-order expansion to compute this quantity, while the UF uses a nonlinear

transformation to compute this quantity. For the GPS integer ambiguity algorithm using

the UF, the state estimate is calculated by

x̂k+1 = x̂k +Kk [zk+1 − ẑk+1(χk)] (23)

where ẑk+1(χk) is the mean observation, given by

ẑk+1(χk) =
2n
∑

i=0

Wmean
i hk+1 [χk(i)] (24)

where hk+1 [χk(i)] is defined by Eq. (17a) or Eq. (19a), depending on the approach taken.

The gain Kk is computed by

Kk = P xz
k [P zz

k + σ2
k+1(x̂k)]

−1 (25)

Lightsey and Crassidis 15 of 31



where P xz
k is the cross-correlation matrix between x̂k and ẑk+1(χk), given by

P xz
k =

2n
∑

i=0

W cov
i {χx

k(i)− x̂k} {hk+1 [χk(i)]− ẑk+1(χk)}T (26)

and P zz
k is the output covariance, given by

P zz
k =

2n
∑

i=0

W cov
i {hk+1 [χk(i)]− ẑk+1(χk)} {hk+1 [χk(i)]− ẑk+1(χk)}T (27)

Finally, the propagated covariance is given by

Pk+1 = Pk −Kk[P
zz
k + σ2

k+1(x̂k)]K
T
k (28)

New sigma points can now be calculated using Pk+1 for the sequential UF process.

The implementation of the UF for GPS integer ambiguity resolution proceeds as follows.

For brevity only the body-frame (sightline) effective measurement is discussed here. The

only essential difference between the EKF and UF formulations is in the computation of the

innovations covariance, where the EKF uses a first-order expansion to compute this quantity,

while the UF uses a nonlinear transformation to compute this quantity. Another approach

for the UF uses the measurement noise model of Eq. (9) with an augmented vector given

by the state and ǫ. Therefore, a decomposition of a 6 × 6 matrix is now required. In the

strictest sense this approach is more optimal than the first approach because the effect of

the nonlinear-appearing measurement noise is directly used in the UF. But, the computa-

tional requirements are vastly increased due to the decomposition of a higher dimensional

augmented matrix. Also, from numerous simulation trials no apparent advantages to using

the augmented approach in the UF is seen. More details on this UF formulation for GPS

integer ambiguity resolution can be found in Ref. [19].
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Simulation Results

In this section, simulation results involving various ground vehicle motions are shown to

demonstrate the performance of the new EKF and UF algorithms for GPS integer ambiguity

resolution. Figure 3 shows the coordinates systems used to generate simulated data. The

Earth-Centered-Earth-Fixed (ECEF) coordinate system has its z axis through the true north

pole (i.e., along the Earth’s spin axis) and its x axis through the intersection of the prime

meridian (0◦ longitude) and the equator (0◦ latitude). The ECEF y axis completes the right-

handed coordinate system. The North-East-Down (NED) coordinate system (also known as

the local navigation frame) is defined by fitting a tangent plane onto the surface of the

Earth at the particular point of interest. The plane remains fixed about this point and this

point becomes the origin of the frame. The NED x axis points to true north, the y axis

points east and the z axis points towards the center of the Earth. The body coordinate

system is assumed to be rigidly attached to the vehicle undergoing motion. The body x axis

points forward, the z axis points down, and the y axis completes the right-handed coordinate

system. The heading angle, ψ, in Figure 3 is the angle from the NED x axis to the body x

axis. The transformation from the ECEF frame to the body frame is given by20


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

x

y

z













BODY

= [ANED2BODY] [AECEF2NED]








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

x

y

z




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





ECEF

(29)

Lightsey and Crassidis 17 of 31



with

[ANED2BODY] =













cosψ sinψ 0

− sinψ cosψ 0

0 0 1













(30a)

[AECEF2NED] =













− sinλ cosφ − sinλ sinφ cosλ

sinφ cosφ 0

− cosλ cosφ − cosλ sinφ − sinλ













(30b)

where λ is the latitude and φ is the longitude.

The vehicle is assumed to have coordinates of 38◦N and 77◦W (i.e., in Washington,

DC). The GPS constellation is simulated using GPS week 137 and a time of applicability

of 61440.0000 seconds (see Ref. [21] for an explanation of GPS time).∗ The available GPS

satellites are determined using a 15◦ cutoff.21 A 60 minute simulation is conducted and

measurements are sampled at 1 second intervals. Several GPS sightline vectors are available

throughout the entire simulation interval. Two vehicle motions are assumed. The first has

the vehicle turning at a fairly fast rate of ψ̇ = 10 deg/sec, while the second has the vehicle

turning at a much slower rate of ψ̇ = 1 deg/sec. The GPS attitude sensor frame is assumed

to coincide with the body frame. The GPS baseline vectors in wavelengths are assumed to

be given by

b1 =
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
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
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

, b3 =













0

−2

6













(31)

The true integers for all simulations are given by n1 = 1, n2 = −2 and n3 = 3. Measurements

are generated by adding zero-mean Gaussian white-noise, with a standard deviation of ̟ =

0.026 wavelengths, to the true phase difference observations. Also, multipath errors are

introduced using a simple Markov process with time constant of 5 minutes and standard

∗The U.S. Coast Guard Navigation Center maintains a website that contains GPS almanacs, and as of
this writing this website is given by http://www.navcen.uscg.gov/.
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deviation of 0.25, which is 10 times the amount used in the simulations of Ref. [11].

For the first simulation the fast rate of ψ̇ = 10 deg/sec is used. For this simulation the

initial covariance for both the UF and EKF is given by P0 = (16/9)I3×3, which assumes a

3σ error-bound of the integers of 4 cycles. The parameters used in the UF are α = 0.1,

β = 2, κ = 3− L, and L = 3 when the 3× 3 matrix decomposition approach is used (L = 6

for the augmented approach). For this simulation run no noticeable differences between the

results of the EKF and UF are seen. Also, the two UF approaches (one uses the current

state estimate in the measurement-error variance calculation, which requires a 3× 3 matrix

decomposition, while the other appends the state vector to include the measurement noise,

which requires a 6×6 matrix decomposition) give identical results. Therefore, only the EKF

results are shown. Plots of the integer errors and 3σ integer bounds are shown in Figure

4. The top plot of Figure 4(i) shows the estimated solutions minus the true integers, while

the bottom plot shows the errors rounded to the nearest integer. The top plot of Figure

4(i) shows that the EKF and UF algorithms can handle large multipath errors well because

the errors converge to very small values, which is not the case with the sequential process of

Ref. [11]. From Figure 4(ii) the 3σ integers bounds fall below 1/2 at around the 30 second

point, which coincide with the converged solutions shown by Figure 4(i). Several runs with

different random noise seeds have also been executed (i.e., a Monte Carlo type simulation),

which all yield the same results shown here. Therefore, both the EKF and UF algorithms

work well when the vehicle exhibits moderately fast motions.

For the second simulation the slower rate of ψ̇ = 1 deg/sec is used. For this simulation

the initial covariance for both the UF and EKF is given by P0 = 4I3×3, which assumes a

3σ error-bound of the integers of 6 cycles. This essentially assumes that the initial integer

estimates are completely unknown, which may range over the entire length of a baseline (e.g.,

||b1|| = 6). The parameters for the UF are the same as the ones used in first simulation. For

this current simulation run, the results of the EKF solutions and UF solutions are different.

The two UF approaches still give identical results, so no apparent advantages of appending
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the state vector to include the nonlinear-appearing measurement noise are seen for this

simulation either. Plots of the EKF and UF integer errors and 3σ integer bounds are shown

in Figure 5. From Figure 5(i), the EKF solutions converge in about 5 minutes, while the UF

solutions converge in less time (about 1 minute less). Figure 5(ii) shows the errors rounded

to the nearest integer. The integer associated with the third baseline takes the most time to

converge because this baseline vector is closest to the axis of the vehicle’s rotation. In other

cases, using different random noise seeds, the EKF never converges to the correct solution (4

out of 100 Monte Carlo passes did not converge). This is due to the fact that the first-order

approximation in the EKF cannot adequately capture the large errors introduced by the

initial covariance and the small observability of the system due to the slower rate motion of

the vehicle. The sequential least squares process of Ref. [11] does not converge either using

the same simulation parameters and data. The UF outperforms the EKF and sequential

least squares process in every simulated test case.

The biggest concern with the EKF results is the confidence of the integer solutions dic-

tated by the 3σ bounds, shown by the top plot of Figure 5(iii). These bounds indicate

that the EKF solutions have converged almost immediately, which is clearly incorrect. For-

tunately, the UF 3σ bounds, shown by the bottom plot of Figure 5(iii), fall below 1/2 at

around the 4 minute point, which coincide with the correctly converged solutions shown by

Figure 5(ii). However, the UF algorithm comes with a computational cost. An increased

amount of computation is required for the covariance decomposition and multiple output

calculations. In this study, the UF algorithm is about 1.5 times slower than the EKF al-

gorithm in execution speed. Still, the performance enhancements of the UF over the EKF

outweigh the increased computational costs.

The last simulation involves using three sightlines and one baseline to determine the

integers. Equation (11a) is used as the effective measurement for this case. Several sightlines

are available over a 10 minute span, and a subset of the three sightlines with the best

Geometric Dilution of Precision2 is chosen. For this simulation the fast rate of ψ̇ = 10
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deg/sec is used. Also, the initial covariance for the UF is given by P0 = 4I3×3. Baseline

b1 from Eq. (31) is chosen as the baseline for the effective measurement. A plot of the

rounded integer errors and 3σ bounds for the UF is shown in Figure 6. The UF is able

to accurately determine the integers for this case. However, the 3σ bounds indicate that

convergence takes longer than the results shown in Figure 4, which is most likely due to the

geometry of the sightlines leading to a less observable system for this simulation. Still, the

reference-frame baseline approach is useful when three coplanar baselines exist because the

integers associated with each baseline can be determined independently.

Conclusions

In this paper, two new real time algorithms based on the extended Kalman filter and

Unscented filter were developed for GPS integer ambiguity resolution. The algorithms have

several advantages over existing approaches, including: no a priori attitude knowledge is re-

quired, the algorithms can easily be modified to work with coplanar baselines, and a suitable

integrity check can be used to determine when the estimated values have converged to the

correct values. Two different approaches have also been shown in the Unscented filter design.

One uses the current state estimate in the measurement-error variance calculation, which

requires a 3 × 3 matrix decomposition, while the other appends the state vector to include

the nonlinear-appearing measurement noise, which requires a 6 × 6 matrix decomposition.

Simulation results indicated that for this problem, both Unscented filter approaches gave

identical results. So appending the state vector is not required, which significantly reduces

the computational requirements in the Unscented filter. Simulation test cases also indicated

that the performance of the Unscented filter is significantly better than the standard ex-

tended Kalman filter for large initialization errors and slow vehicle motions. Hence, the

Unscented filter algorithm is recommended for actual implementation.
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Figure 1: On-orbit GPS Carrier Phase Attitude Solutions (Data from GPS Attitude
and Navigation Experiment (GANE), May 1996)
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North

East

Down

NEDŷ
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Figure 4: Integer Errors and 3σ Integer Bounds
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Figure 5: EKF and UF Integer Errors and 3σ Integer Bounds
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Figure 6: Rounded Integer Errors and 3σ Integer Bounds for the UF
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