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A sigma-point Kalman filter is derived for integrating GPS measure-

ments with inertial measurements from gyros and accelerometers to deter-

mine both the position and the attitude of a moving vehicle. Sigma-point

filters use a carefully selected set of sample points to more accurately map

the probability distribution than the linearization of the standard extended

Kalman filter, leading to faster convergence from inaccurate initial condi-

tions in position/attitude estimation problems. The filter formulation is

based on standard inertial navigation equations. The global attitude para-

meterization is given by a quaternion, while a generalized three-dimensional

attitude representation is used to define the local attitude error. A mul-

tiplicative quaternion-error approach is used to guarantee that quaternion

normalization is maintained in the filter. Simulation and experimental re-

sults are shown to compare the performance of the sigma-point filter with

a standard extended Kalman filter approach.

I. Introduction

The integration of Global Positioning System (GPS) signals with Inertial Measurement

Units (IMUs) has become a standard approach for position and attitude determination of

a moving vehicle. An Inertial Navigation System (INS) is best described in the Preface

section of the excellent book by Chatfield,1 who states “Inertial navigation involves a blend

of inertial measurements, mathematics, control system design, and geodesy.” Historically,

INS’s were primarily used for military and commercial aircraft applications due to their high

cost. However, with the advent of cheaper sensors, especially micro-mechanical ones,2 several

new applications have become mainstream, including uninhabited air vehicles, micro-robots,
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and even guided munitions.† Although these cheaper sensors do not perform as well as

high-grade sensors in terms of drift and white-noise measurement errors, they can be used

to meet the requirements of several vehicle position/attitude knowledge specifications when

aided with GPS. This allows for an attractive approach since a completely self-contained

system can be used to calibrate IMUs online using GPS-determined position observations,

while also determining vehicle attitude and rates in realtime.

The extended Kalman filter (EKF) is widely used in practice to blend GPS measurements

with IMU data,5,9 but it has one well-known drawback. If the errors are not within the “linear

region,” then filter divergence may occur. This is especially a problem for an integrated

GPS/INS since, even though position is well known, attitude and IMU calibration parameters

may not be well known a prior. In fact to this day the most researched topic for an INS has

been initial alignment and attitude determination.1 Sigma-point Kalman filters (SPKFs),

such as the Unscented filter, essentially provide derivative-free higher-order approximations

by approximating a Gaussian distribution rather than approximating an arbitrary nonlinear

function as the EKF does.10 They can provide more accurate results than an EKF, especially

when accurate initial condition states are not well known. A sigma-point GPS/INS filter has

been presented in Ref. 17, which also includes a method to fuse latency lagged observations

in a theoretically consistent fashion. The attitude kinematics in that paper are based on the

quaternion, which must obey a normalization constraint that can be violated in the SPKF

since the predicted quaternion mean is derived using an averaged sum of quaternions. In this

current paper an unconstrained three-component attitude-error vector is used to represent

the quaternion error vector and the updates are performed using quaternion multiplication,

leading to a natural way of maintaining the normalization constraint. This approach is an

extension of the sigma-point attitude estimator, shown in Ref. 4, to the GPS/INS problem.

II. Attitude Kinematics

In this section the basic properties of attitude kinematics are summarized. The attitude

matrix involves a total of nine parameters, but they are clearly not independent. Vari-

ous parameterizations of the attitude matrix can be used: Euler angles, Euler axis and

rotation angle, quaternions, Rodrigues parameters, etc.16 One of the most useful attitude

parameterization is given by the quaternion,7 which is a four-dimensional vector, defined as

q ≡ [ρT q4]
T , with ρ ≡ [q1 q2 q3]

T = ê sin(ϑ/2) and q4 = cos(ϑ/2), where ê is the axis of

rotation and ϑ is the angle of rotation. Since a four-dimensional vector is used to describe

three dimensions, the quaternion components cannot be independent of each other. The

†See http://www.airpower.maxwell.af.mil/airchronicles/cc/pinker.html for recent contributions of
GPS/INS to Air Force competencies.
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quaternion satisfies a single constraint given by qTq = 1, which is analogous to requiring

that ê be a unit vector in the Euler axis/angle parameterization.16 The attitude matrix that

transforms the North-East-Down (NED) frame, N , to the body frame, B, is related to the

quaternion by

AB
N(q) = ΞT (q)Ψ(q) (1)

with

Ξ(q) ≡





q4I3×3 + [ρ×]

−ρT



 , Ψ(q) ≡





q4I3×3 − [ρ×]

−ρT



 (2)

where [ρ×] is the cross product matrix, defined in Ref. 11. An advantage to using quater-

nions is that the attitude matrix is quadratic in the parameters and also does not involve

transcendental functions.

The quaternion kinematics equation is given by

q̇ =
1

2
Ξ(q)ωB

B/N (3)

where ωB
B/N is angular velocity of the B frame relative to the N frame expressed in B

coordinates. A major advantage of using quaternions is that the kinematics equation is linear

in the quaternion and is also free of singularities. Another advantage of quaternions is that

successive rotations can be accomplished using quaternion multiplication. Here we adopt

the convention of Lefferts, Markley, and Shuster11 who multiply the quaternions in the same

order as the attitude matrix multiplication (in contrast to the usual convention established

by Hamilton7). Suppose we wish to perform a successive rotation. This can be written

using A(q′)A(q) = A(q′ ⊗ q). The composition of the quaternions is bilinear, with q′ ⊗ q =

[Ψ(q′) q′]q = [Ξ(q) q]q′. Also, the inverse quaternion is defined by q−1 ≡ [−ρT q4]
T . Note

that q ⊗ q−1 = [0 0 0 1]T , which is the identity quaternion. A computationally efficient

algorithm to extract the quaternion from the attitude matrix is given in Ref. 15.

III. Gyro and Accelerometer Models

The gyro measurement model is given by6

ω̃B
B/I = (I3×3 + Kg)ω

B
B/I + bg + ηgv (4a)

ḃg = ηgu (4b)

where ωB
B/I is the true angular velocity of the B frame relative to the inertial frame, I,

expressed in B coordinates, ω̃B
B/I is the gyro measurement, bg is the gyro “bias” derived

from a random walk process, Kg is a diagonal matrix of gyro scale factors, and ηgv and ηgu
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are zero-mean Gaussian white-noise processes with spectral densities given by σ2
gvI3×3 and

σ2
guI3×3, respectively. The accelerometer measurement model follows along the same lines

as the gyro model.9 Simulating gyro and accelerometer using computers is not easy since

continuous measurements cannot be generated using digital computers. A discrete-time

simulation is possible using the spectral densities though.3

IV. Sigma-Point GPS/INS Filter

A review of the GPS/INS equations can be found in Refs. 5 and 9. Also, a review of

the standard sigma-point filter equations, using symbols consistent with those in this paper,

can be found in Ref. 18. This filter is straightforward for GPS/INS applications, except

for the quaternion normalization. Since the predicted quaternion mean is derived using an

averaged sum of quaternions, no guarantees can be made that the resulting quaternion will

have unit norm. This makes straightforward implementation of the SPKF with quaternions

undesirable. A better way involves using an unconstrained three-component vector to rep-

resent an attitude error quaternion.4 We begin by defining the following state vector, where

the superscript + denotes an update:

χk(0) = x̂+
k ≡

[

(δŝ+
k )T (p̂+

k )T (v̂N+
k )T (b̂+

gk
)T (b̂+

ak
)T (k̂+

gk
)T (k̂+

ak
)T

]T

χk(i) ≡
[

[χδs
k (i)]T [χp

k(i)]
T [χV N

k (i)]T [χ
bg

k (i)]T [χba

k (i)]T [χ
Kg

k (i)]T [χKa

k (i)]T
]T

(5)

where δŝ+
k is used to propagate and update a nominal quaternion, p̂+

k is the estimated

position consisting of the latitude, λ, longitude, Φ, and height, h, v̂N+
k is the estimated

velocity vector, b̂+
gk

and b̂+
ak

are the estimated gyro and accelerometer biases, respectively,

and k̂+
gk

and k̂+
ak

are the the estimated gyro and accelerometer scale factors, respectively. The

vector χk(i) is derived from the “sigma points” taken from a decomposition of the error-

covariance matrix (see Ref. 18 for more details). Since the three-dimensional attitude-error

representation is unconstrained, the resulting overall covariance matrix is a 21 × 21 matrix.

The first three components of the vector χk(i) in Eq. (5) are defined by χδs
k (i). To describe

χδs
k we first define a new quaternion generated by multiplying an error quaternion by the

current estimate:

q̂+
k (0) = q̂+

k (6a)

q̂+
k (i) = δq+

k (i) ⊗ q̂+
k , i = 1, 2, . . . , 42 (6b)
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with δq+
k (i) ≡

[

δρ+T
k (i) δq+

4k
(i)

]T
represented by the generalized Rodrigues parameters:14

δq+
4k

(i) =
−c ||χδs

k (i)||2 + f
√

f 2 + (1 − c2)||χδs
k (i)||2

f 2 + ||χδs
k (i)||2

, i = 1, 2 . . . , 42 (7a)

δρ+
k (i) = f−1

[

c + δq+
4k

(i)
]

χδs
k (i), i = 1, 2, . . . , 42 (7b)

where c is a parameter from 0 to 1, and f is a scale factor chosen to be f = 2(c+1).4 Equation

(6a) clearly requires that χδs
k (0) be zero. This is due to the reset of the attitude error to zero

after the previous update, which is used to move information from one part of the estimate to

another part.12 This reset rotates the reference frame for the covariance, so we might expect

the covariance to be rotated, even though no new information is added. But the covariance

depends on the assumed statistics of the measurements, not on the actual measurements.

Therefore, since the update is zero-mean, the mean rotation caused by the reset is actually

zero, so the covariance is in fact not affected by the reset. Next, the updated quaternions are

propagated forward using Eq. (3) with the estimated angular velocities given by ω̂B
B/N (i) =

[I3×3 − χKg(i)]
[

ω̃B
B/I − χbg(i)

]

− AB
N [q̂(i)]ωN

N/I , i = 0, 1, . . . , 42, where χKg(i) and χbg(i)

are formed from the gyro scale-factor and bias sigma points, respectively. The propagated

error quaternions are computed using δq−
k+1(i) = q̂−

k+1(i) ⊗
[

q̂−
k+1(0)

]−1
, i = 0, 1, . . . , 42.

Note that δq−
k+1(0) is the identity quaternion. Finally, the propagated sigma points can be

computed using4

χδs
k+1(0) = 0 (8a)

χδs
k+1(i) = f

δρ−
k+1(i)

c + δq−4k+1
(i)

, i = 1, 2, . . . , 42 (8b)

with
[

δρ−T
k+1(i) δq−4k+1

(i)
]T

= δq−
k+1(i). The predicted mean and covariance can now be

computed using the standard SPKF equations. A flow chart for the quaternion update

process is shown in Figure 1 (see Ref. 3 for an explanation of the symbols).

V. Simulation Results

In this section simulation results are shown that estimate for a moving vehicle’s attitude,

position and velocity, as well as the gyro and accelerometer biases and scale factors. The

simulation parameters are shown in Table 1. A standard EKF with quaternions is used in the

comparisons.13 Note that all measurements (GPS pseudoranges, gyros and accelerometers)

are assumed to be sampled every 1 second, which isn’t true in practice. This further stresses

the performance of the filters for the comparisons between the EKF and SPKF. The total
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Figure 1: Flow Chart for Quaternion Update in the SPKF

time of the simulation is 8 minutes. The initial quaternion is given so that the vehicle body

frame is aligned with the local NED frame. The acceleration inputs are given by: zero for

the north and east accelerations, with the down acceleration set to the initial acceleration

of gravity. The rotational rate profile is given by: 5 deg/min rotation about the x axis for

the first 160 seconds and then zero for the final 320 seconds; no rotation about the y axis

for the first 160 seconds, then a 5 deg/min rotation for the next 160 seconds and zero for

the final 160 seconds; no rotation about the z axis for the first 320 seconds, then 5 deg/min

rotation for the final 160 seconds. The GPS constellation is simulated using GPS week 137

and a time of applicability of 61440.0000 seconds (see Ref. 8 for an explanation of GPS

time). Using the position profile the number of GPS satellites available can be computed

using a 15◦ elevation cutoff.8 The number of available GPS satellites over time ranges from a

minimum of 5 satellites to a maximum of 6 satellites. The clock-bias drift is modelled using

a random walk process: τ̇ = wτ , where the variance (in seconds) of wτ is given by 200. GPS

measurements are obtained using a standard deviation of 5 meters for the white-noise errors.

Using all available GPS pseudoranges a position in cartesian components is determined

using nonlinear least squares, which is then converted into longitude, latitude and height.

These quantities are used as “measurements” in the filters, where the covariance is computed

from the nonlinear least-squares solution. The approach corresponds to a “loose” GPS/INS

configuration. When the initial conditions are “close” to the true values, both the EKF and

SPKF gave identical results with good filter convergence. In general, position is very well

known but attitude is not. To test the robustness of the EKF an initial attitude error of

15 degrees is given in each axis. This error is not unrealistic for an actual application. The
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Table 1: Simulation Parameters

Sampling Interval ∆t = 1 sec

σgv = 2.9089 × 10−7 rad/sec1/2

Gyro
σgu = 9.1989 × 10−7 rad/sec3/2

σav = 9.8100 × 10−5 m/sec3/2

Accelerometer
σau = 6.0000 × 10−5 m/sec5/2

bg(t0) = 10 [1 1 1]T deg/hr
Initial Biases

ba(t0) = 0.003 [1 1 1]T m/s2

Kg = 0.01I3×3
Scale Factors

Ka = 0.005I3×3

Vehicle Origin λ(t0) = 38◦, Φ(t0) = −77◦, h(t0) = 0 m

Initial Attitude q(t0) = [0 0 0 1]T

Initial Velocity vN(t0) = [200 200 − 10]T m/s

initial covariance matrix P0 in the EKF is diagonal. For this case, the three attitude parts

of the initial covariance are each set to a 3σ bound of 15 degrees, i.e. [(15/3) × (π/180)]2

rad2. The initial estimates for position are set to the true latitude, longitude and height.

The initial variances for latitude and longitude are each given by (1 × 10−6)2 rad2. The

initial variance for height is given by (20/3)2 m2. To further stress the filters the initial

velocity is set to zero. For this case, the initial variances in the filters for the north and

east velocities are each set to (200/3)2 and the initial variance for down velocity is set to

(10/3)2. The initial gyro and accelerometer biases and scale factors are all set to zero. The

three gyro-bias parts of the initial covariance are each set to a 3σ bound of 30 degrees per

hour, i.e. [(30/3) × (π/(180 × 3600))]2. The three accelerometer-bias parts of the initial

covariance are each set to a 3σ bound of 0.005 meters per second-squared, i.e. (0.005/3)2.

The three gyro-scale factor parts of the initial covariance are each set to a 3σ bound of 0.015,

i.e. (0.015/3)2. Finally, the three accelerometer-scale factor parts of the initial covariance

are each set to a 3σ bound of 0.010, i.e. (0.010/3)2.

The resulting EKF attitude errors for a typical case are shown in Figure 2(a). The atti-

tude errors diverge and significantly drift outside their respective 3σ bounds, which indicates

that the EKF is performing in a subpar fashion. This is due to the large initial errors that

are not handled well in the linearization of the dynamic model in the EKF. However, the
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SPKF attitude errors are much closer to their respective 3σ bounds than the EKF attitude

errors, as shown in Figure 2(b). The larger errors in yaw are due to the fact that this angle

is the least observable state for the particular vehicle motion. The biggest concern with the

EKF solutions is the confidence of the results dictated by the 3σ bounds. In fact, if the

truth is not known a prior and we only had the covariance to assess filter performance, this

plot would indicate that the EKF is performing better than the SPKF. This can certainly

provide some misleading results when using the EKF with large initial condition errors. A

comparison of the gyro bias estimates between the EKF and SPKF is shown by Figures 2(c)

and 2(d), respectively. The errors for the EKF drift outside of their respected 3σ bounds

for every axis. However, the SPKF bias errors are much closer to their 3σ bounds than

the EKF bias errors, as shown in Figure 2(d). These simulation results indicate that the

SPKF is able to provide more robust characteristics than an EKF for GPS/INS applications.

Another simulation has been executed where the initial attitude and velocity are close to

their respective true values, but large initial bias values, e.g. 100 deg/hr for the gyros, have

been used. The performance characteristics of these results are similar to the results shown

in Figure 2, with the SPKF showing better convergence properties than the EKF.

Experimental data has been obtained from the inertial navigation system for the NC-131

Total In-Flight Simulator (TIFS) aircraft. The TIFS aircraft is a highly modified Convair-580

twin turboprop transport and its primary use has been in the development and evaluation

of new aircraft flying qualities, flight controls, and cockpit displays, as well as general flight

research. The GPS determined position is given in 1 second intervals, while the INS provides

gyro and accelerometer data at 0.01 second intervals. A 30 second data span is provided

under modest aircraft motions, as shown by the onboard filter solution given in Figure 3.

When the initial conditions provided from the onboard solution are used in the EKF and

SPKF algorithms, both filters provide nearly identical results as the onboard solution for all

states. In order to test the robustness of the EKF and SPKF algorithms, deviations of 5%

in the initial roll, pitch and yaw angles are provided. The three attitude parts of the initial

covariance are each set to a 3σ bound of 0.5 degrees, i.e. [(0.5/3) × (π/180)]2 rad2. Results

are compared with the onboard solutions for both filters. The most dramatic results are

given by the attitude differences. A plot of the pitch angle differences between the onboard

solution and the EKF/SPKF algorithms is shown in Figure 4. Note that only 30 updates

for the GPS measurements are given, due to the short data span. Still, the results indicate

that the SPKF has the ability to converge faster to the onboard computed solution, i.e. the

solution with no initial attitude errors, than the EKF. Similar results are obtained for roll

and yaw.
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(a) EKF Attitude Errors and 3σ Bounds
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(b) SPKF Attitude Errors and 3σ Bounds
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(c) EKF Gyro-Bias Errors and 3σ Bounds
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Figure 2: EKF and SPKF Results for Large Initial Errors

VI. Conclusions

In this paper a sigma-point filter formulation was shown for the purpose of GPS/INS

applications. The filter is based on a quaternion parameterization of the attitude. However,

straightforward implementation of the sigma-point filter using quaternion kinematics did

not produce a unit quaternion estimate. To overcome this difficulty the quaternion was

represented by a three-dimensional vector of generalized Rodrigues parameters, which also

reduced the size the covariance matrix. Simulation and experimental results indicated that

the performance of the sigma-point filter exceeds the standard extended Kalman filter for

large initialization errors.
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Figure 3: NED Position and Attitude
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