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Abstract

This paper presents a new method to localize air leaks on the International Space Station

based on the spacecraft attitude and rate behavior produced by a mass expulsion force

of the leaking air. Thrust arising from the leak generates a disturbance torque, which is

estimated using a real-time Unscented filter with a dynamical model, including external

disturbances such as aerodynamic drag and gravity-gradient. The leak location can be

found by estimating the moment arm of the estimated disturbance torque, assuming that

leak is caused by only one hole. Knowledge of the vent thrust magnitude and its resulting

disturbance torque are needed to estimate the moment arm. The vent thrust direction is

assumed to be perpendicular to the structure surface and its magnitude is determined using a

extended Kalman filter with a nozzle dynamics model. There may be multiple leak locations

for a given response, but the actual geometric structure of the space station eliminates many

of the possible solutions. Numerical results show that the leak localization method is very
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efficient when used with the conventional sequential hatch closure or airflow induction sensor

system.

Introduction

The International Space Station (ISS) is orbiting in a 51.6◦ inclination near-circular low-

Earth-orbit (LEO) with an altitude between 370 and 460 km, and is expected to have a

minimum operational lifetime of 15 years. Because of the large structure, long lifetime and

orbit characteristics,1 the ISS may be subject to impacts from hypervelocity particles such

as micro-meteorites and space debris that can severely damage the station. This damage

may threaten the safety of the crew if the pressurized wall of a module is perforated, which

may result in significant air loss. Collisions with other objects are another possible cause

of a leak, as occurred on the Russian Space Station Mir in 1997. To protect the ISS from

the impact damages, various debris shields have been designed. Heavy shields are placed in

the forward facing area which is likely to be hit frequently, and fewer shields are used in the

nadir-facing and aft area.2 Hazards associated with a debris penetration of the ISS modules

are discussed in Ref. 3.

Perforations in a pressurized module will result in a rapid temperature and pressure

decrease. Therefore, fast determination of the extent and location of the leak is needed to

maintain the operational status in order to provide safety for the crew. The first indication

of a leak in the ISS is the depressurization of a module. The leak size can be calculated

by measuring the internal pressure and its depressurization rate. Based on the extent of

leak it is possible to calculate the “reserve time” left until a crew evacuation is required.

Depending on the reserve time operational decisions must be made, including: 1) whether

or not to perform a leak isolation to patch the leak, or 2) evacuate the ISS. Leak localization

should be performed first to find the leaking module. Then, the exact location within the

leaking module can be determined for repair purposes. The effects of a compartment vent

flow during the spacecraft launch has been surveyed in Ref. 4. Also in Ref. 5, a closed

form equation has been derived to calculate the pressure differentials across the walls of

2 of 42



compartment as a function of external and internal pressure changes.

Conventional methods to locate air leaks on the ISS include the sequential module leak

isolation process for the US segment (prior to assembly stage 10A) and the airflow induction

sensor system for the Russian segment. The sequential module leak isolation process involves

having the crew close hatches sequentially while monitoring the pressure difference across

each hatch. A drawback of this process is that a very small pressure difference can keep a

closed hatch from being open again, which significantly reduces the reserve time and can pose

an immediate risk to the crew. Thus, safety dictates that the hatches be closed in an order

that will never trap a crew member away from the escape vehicle. This may significantly

inhibit the leak isolation process if the leaking module is not located within the first few

hatch closures.

The airflow induction sensor system employs hot-wire anenometers situated in hatchways

to measure the air flow direction and its rate. The hot-wire anenometer operates by air

passing across a wire with a current running through it to maintain a constant temperature

in the wire. These devices are installed at all hatchways of the Russian segment. However,

the airflow induction sensor system designed for the ISS has several limitations for the

following reasons. The sensors are not mounted at all hatchways of the US segment (only at

Node-2 and Node-3 of the US segment). Therefore, the sequential module isolation process

is still needed to determine which module leaks in the US segment. Since the sensors are very

sensitive to the air circulation inside, the venting system and the movement of the crew must

be stopped for several minutes, which may waste time in an emergency situation. Because

these sensors are situated in hatchways, the location of the leak within the suspected leaking

module cannot be found for repair purposes without using other inspection processes (this is

also true for the sequential isolation process). Therefore, a more efficient localization system

is needed to locate the leaks.

The new method presented in this paper uses the attitude response of the ISS caused

by the leak reaction force of the air flowing through a perforated hole. The vent thrust can
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yield a strong reaction torque depending on the size and location of the leak. A leak hole on

the surface of a pressurized module can be modeled as a short nozzle with the leaking air as

the propellant. We assume that the line of action of the vent thrust is perpendicular to the

cross section area of the leak hole. This assumption is reasonable due to the relatively thin

skin of each module. The effects of the reaction torque due to a vent thrust can be found in

Ref. 4.

Based on the nozzle dynamics, an extended Kalman filter (EKF) algorithm is used to

estimate the vent thrust magnitude with the internal pressure measurements. The venting

torque is estimated by the Unscented filter (UF) developed by Julier and Uhlman.6 The

vent torque, which is not explicitly modeled in the attitude dynamics, shows up as a resid-

ual disturbance torque when the spacecraft angular rate measurement undergoes a filtering

process. In the disturbance torque estimation algorithm, the filter state vector is augmented

to include the unknown parameters as additional states, resulting in a total of six states,

where three states are for the total angular momentum of the spacecraft and the remaining

three states are for the three-axis components of the disturbance torque. But problems arise

when the unmodeled disturbances, besides the vent torque, dominate the residual torque.

Among the external disturbances, the aerodynamic torque is known to have large uncer-

tainties in its parameters, but has relatively less effect on the residual disturbance torque

estimation results compared to the uncertainties in the inertia components of the ISS in a

short period. Therefore, parameter estimation methods are employed to estimate the six

inertia components when it is known that a venting leak does not occur on the spacecraft.

The UF algorithm is employed to estimate the inertia in real time. It is shown that the com-

plete inertia parameters are unobservable when the space station attitude is in its torque

equilibrium attitude (TEA), which is the nominal ISS operational attitude. But the inertia

observability can be strengthened with the presence of attitude maneuvers. Problems in esti-

mating the inertia matrix for the ISS have been investigated in several papers, such as Refs. 7

and 8. In Ref. 9, small sinusoidal probing signals are used to enhance the observability of the
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inertia by causing attitude motion about the TEA. Also in Ref. 8, an estimation algorithm

to determine the mass and aerodynamic torque properties of the ISS in LEO, based on a

least-squares method, has been derived with the use of an indirect adaptive control algorithm

to enhance the observability of the unknown parameters.

The possible locations of the air leak are then calculated using the estimated vent torque,

vent thrust magnitude and the actual geometric structure of the pressurized segments. For

simplicity, the disturbance torque caused by the pressure of the impingement of the leaking

air plume on nearby surfaces is neglected. The effects of plume impingement are found in

Refs. 10 and 11. Also, we assume that the leak is caused by a single leak hole. There may

be single or multiple leak locations that produce the same attitude response. To reduce

the number of possible solutions, conventional methods are combined with the new leak

localization method. This approach reduces the number of possible solutions, so that fewer

hatch closures are required to uniquely determine the leak location. Advantages of the

attitude response method include: 1) No other devices are needed besides pressure gauges

to measure the air pressure, and spacecraft attitude and rate sensors; 2) Relatively fast leak

localization can be achieved compared to the conventional leak localization method proposed

for the ISS; and 3) The new method not only determines the possible leaking modules but also

determines the possible locations of the leak hole within those modules. This may be critical

to allow for repairs rather than sealing off a module or performing a station evacuation.

The remainder of this paper is organized as follows. First, a summary of the attitude

dynamics for the ISS is given. Then, using isentropic nozzle theory, the vent thrust is

calculated using isentropic and isothermal air depressurization models. Next, a derivation

of the disturbance torque estimation process is given. Then, the steps to locate a leak are

described using the calculated disturbance torque and the thrust due to a leak. Finally,

numerical simulations for the leak localization are presented with conclusions.
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Spacecraft Attitude Dynamics

The rotational dynamic equations of motion for a rigid spacecraft in a LEO environment,

expressed in a body-fixed frame, are given by Euler’s equation:

Ḣ(t) = −
{

J−1 [H(t) − h(t)]
}

× H(t) + N drag(t) + N grav(t) + N vent(t) (1)

where H(t) is the total angular momentum of the spacecraft satisfying

H(t) = Jω(t) + h(t) (2)

and J is the inertia matrix about the center of mass, ω(t) is the angular velocity of the

spacecraft with respect to an inertial frame, N drag(t) is the aerodynamic torque, N grav(t) is

the gravity-gradient torque, h(t) is the angular momentum of the control moment gyroscopes

(CMGs), and N vent(t) is the torque due to an air leak vent. Other environmental effects

such as solar radiation and Earth’s albedo are neglected for simplicity and lack of data for

the space station’s optical properties. But the solar radiation torque can still be significant

during periods of low solar activity (for more details refer to Refs. 12 and 13). The rotational

dynamical effects caused by solar arrays rotations are omitted because of their slow motion

(1Hz/orbit) and their relatively small inertia (3.4%) and mass (1.5%) compared to the total

ISS inertia and its mass at assembly stage UF1.1 However, the drag model does contain the

effects of the solar arrays on the resulting aerodynamic torques because of their large surface

area.

The gravity-gradient torque for an orbiting spacecraft, neglecting the J2 effect, is13

N grav(t) =
3µ

||RS(t)||3
∫

[

ri × R̂S(t)
] [

ri · R̂S(t)
]

dmi =
3µ

||RS(t)||3 R̂S(t) ×
[

JR̂S(t)
]

(3)

where µ ' 3.986 × 1014 m3/s2 is the Earth gravitational constant and R̂S(t) is the unit

vector from the Earth center to the spacecraft body frame’s origin. The mass element of the
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spacecraft is dmi and its position with respect to the center of mass is ri. Equation (3) can

be rewritten as

N grav(t) = 3n2C3(t) × J C3(t) (4)

where C3(t) = −R̂S(t) is the 3rd column of the direction cosine matrix, C, from the local-

vertical-local-horizontal (LVLH) orbital reference frame to the body-fixed reference frame.

The orbital frequency n =
√

µ/||RS(t)||3 can be calculated from the orbit data of the

spacecraft (for the ISS, n ' 0.0011 rad/s).

The aerodynamic torque, N drag(t), is modeled such that the drag force and the center

of pressure location are functions of the attitude of the spacecraft:

N drag(t) = −1

2
ρa(t)|vr(t)|CD S(t)

[

ρcp(t) × vr(t)
]

(5)

where vr(t) is the relative velocity vector of the atmosphere with respect to the spacecraft.

The atmospheric density, ρa(t), is calculated using the Marshall Engineering Thermosphere

model,14 which accounts for seasonal and diurnal heating effects of the Earth’s atmosphere.

The drag coefficient, CD, is assumed to be constant for a given orientation of the spacecraft.

Also, S(t) is the attitude dependent frontal area and ρcp(t) is the attitude dependent center

of pressure location with respect to the center of mass. The relative velocity vector vr(t)

can be approximated with the assumption that the atmosphere co-rotates with the Earth:15

vr(t) = v(t) − ω⊕ × r(t) (6)

where v(t) is the inertial spacecraft velocity vector, r(t) is the inertial position vector, and

ω⊕ is the Earth’s angular velocity vector with magnitude of 0.7292 × 10−4 rad/s.

The attitude dependent aerodynamic parameters are calculated with the method devel-

oped in Ref. 16, where the reference area and the center of pressure are calculated for any

orientation by defining interpolation functions. The projected area and the center of pressure
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for the three orthogonal body reference axes of the ISS are given in Ref. 1 for each assembly

stage.

The vent torque is modeled by

N vent(t) = rvent × F vent(t) (7)

where rvent is the moment arm of a vent torque from the center of mass to a leak location,

which is assumed to be a constant vector, and F vent(t) is a time-varying vent thrust vector.

The effects of flexible body dynamics are not considered in this research. Detailed studies

on the flexible space station attitude dynamics can be found in Refs. 17–19 and 20.

Vent Thrust Calculation

A leak hole perforated on the surface of a pressurized module will behave like a short

length nozzle. The dynamic properties of the air flow through the leak hole are analyzed

using one-dimensional isentropic and isothermal nozzle dynamic models. Figure 1 shows a

diagram of the air flow through the leak hole on the pressurized module, where T ∗ and P ∗

are the temperature and pressure of the air in the leak hole, respectively, T and P are the

temperature and pressure of the inside of the pressurized module, respectively, F vent is the

vent thrust, and PB is the back pressure. The mass flow rate in a leak hole is given by21

ṁout(t) = −A(t)P ∗(t)v∗(t)

R T ∗(t)
(8)

where A(t) is the area of the hole, R is the ideal gas constant (287 N-m/Kg-K), and v∗(t) is

the exhaust velocity of the air satisfying

v∗(t) =
√

γR T ∗(t) (9)

where γ is the specific heat ratio, with γ = 1.4 for an ideal gas. The mass flow rate, ṁout(t),

can be expressed as a function of the air inside the pressurized module. This is accomplished
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by substituting the following expressions into Eq. (8):

P ∗(t) = P (t)

(

2

γ + 1

)
γ

γ−1

(10a)

T ∗(t) = T (t)

(

2

γ + 1

)

(10b)

yielding

ṁout(t) = −A(t)P (t)
√

γ
√

R T (t)

(

2

1 + γ

)
1+γ

2(γ−1)

(11)

The actual mass flow rate can be calculated by multiplying ṁout in Eq. (8) by the discharge

coefficient CJ . The discharge coefficient is defined by the relation:

CJ =
actual velocity at nozzle exit

velocity at nozzle exit with isentropic flow
(12)

and depends on the shape of the exit orifice (for a round orifice, CJ = 0.8).

Using the thrust equation the vent thrust magnitude is given by

||F vent(t)|| = CJ ṁout(t)v
∗(t) + [P ∗(t) − Pa(t)]A(t) (13)

where Pa is the ambient pressure, which is approximately zero for the vacuum of space.

Substituting Eqs. (8), (9) and (10) into Eq. (13), and simplifying yields

||F vent(t)|| = A(t)P (t) (CJ γ + 1)

(

2

γ + 1

)
γ

γ−1

(14)

Note that the magnitude of the vent thrust is proportional to the pressure inside the module

and to the area of the leak hole. This expression is very useful since the vent thrust magnitude

is a direct function of the internal pressure, P (t), which can be measured by a pressure sensor.

For the calculation of the hole area, A(t), the following approach is used. The indication

of an air leak in a pressurized module is the depressurization of the air. The air inside the
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module follows the ideal gas law, given by

P (t) =
m(t)R T (t)

V (t)
or m(t) =

P (t)V (t)

R T (t)
(15)

where V (t) is the volume of the air and m(t) is the air mass inside the volume. Differentiating

the second equation of Eq. (15) with respect to time yields

ṁ(t) = ṁout(t) + ṁin(t) =
Ṗ (t) V (t)

R T (t)
+

P (t) V̇ (t)

R T (t)
− P (t)V (t) Ṫ (t)

R T 2 (t)
(16)

In this equation, the mass flow rate, ṁ(t), can be decomposed into two parts: 1) the air

mass introduction rate from a ventilation system, ṁin(t), and 2) the air mass expulsion due

to a leak, ṁout(t). Therefore, Eq. (16) can be rewritten, assuming constant volume V , as

ṁout(t) =
Ṗ (t) V

R T (t)
− P (t) V Ṫ (t)

R T 2 (t)
− ṁin(t) (17)

If we know the internal pressure P (t) and the temperature T (t) and their respective rate,

and ṁin(t), the area of a the leak hole, A(t), can be calculated by equating Eqs. (11) and

(17), which yields

A(t) = −
√

R T (t)

P (t)
√

γ

(

2

1 + γ

)
1+γ

2(1−γ)

[

Ṗ (t) V

R T (t)
− P (t) V Ṫ (t)

R T 2 (t)
− ṁin(t)

]

(18)

The thrust can be calculated by substituting Eq. (18) into Eq. (14).

We can further simplify the thrust calculation when there is no mass introduction, ṁin '

0, in the volume and by making some assumptions for the depressurization process model.

We consider two special process models based on the temperature characteristics of the air.

For an isentropic air model, which involves no heat transfer (adiabatic) and no irreversibilities
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within the system, P (t) and T (t) are related by

T (t) = T0

(

P (t)

P0

)
γ−1

γ

(19)

and the depressurization rate Ṗ (t) can be derived by using Eqs. (17) and (19), giving

Ṗ (t) = −k1A(t)P k2(t) (20a)

k1 =
γ
√

R T0γ

V
P

1−γ

2γ

0

(

2

γ + 1

)
γ+1

2(γ−1)

CJ (20b)

k2 =
3γ − 1

2γ
(20c)

where the subscript 0 stands for the initial value, and k1 and k2 are constants.

Another process model we consider is the isothermal process, where the temperature T

is treated as a constant in Eq. (17). The depressurization rate, Ṗ (t), in this case can be

derived as

Ṗ (t) = −k3A(t)P (t) (21a)

k3 =

√
R T γ

V

(

2

1 + γ

)
1+γ

2(γ−1)

CJ (21b)

where k3 is constant. Note that we cannot use Eq. (19) anymore for the isothermal process

and that the actual temperature T of the air appears in the process equation.

Comparisons between the isentropic and isothermal gas model are shown in Figures 2

and 3, using the ISS assembly Stage 16A with a leak hole radius of 0.3 inch and a pressurized

volume of 867.2 m3. From Figure 2, the isentropic gas model gives a faster pressure drop in

the internal pressure than the isothermal gas model. Therefore, the reserve time tres, which is

a measure of the time it takes for the current pressure P (t) to reach the minimum habitable

pressure, Pmin ≈ 490 mmHg = 6.530 × 104 Pa, is shorter using the isentropic gas model

than using the isothermal gas model. The reserve time tres can be obtained by integrating
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Eq. (20a) for the isentropic process and Eq. (21a) for the isothermal process. The reserve

time for the isentropic process is

tres =

(

Pmin

P (t)

)
1−γ

2γ − 1

γ−1
2

A(t)
V

√

R T (t) γ
(

2
γ+1

)
γ+1

2(γ−1)
CJ

(22)

where the internal temperature T (t) can be substituted by P (t) from Eq. (19). From Figure

3 the vent thrust magnitude is larger using the isothermal gas model, meaning the isothermal

gas model produces a greater torque than the isentropic gas model. Also, as can be clearly

seen, the differential pressure dominates the mass propulsion effect. But note that there

isn’t much difference in vent thrust magnitude for both gas models just after the vent starts

(e.g. within 10 minutes).

Vent Thrust Estimation

Since the actual internal pressure measurements are corrupted by noise, the continuous-

discrete Kalman filter22 is used to estimate the hole area, A(t), which is needed to calculate

the magnitude of vent thrust with Eq. (14). The state equations for the depressurization

process have the following form:

ẋ(t) = f [x(t), t] + η(t) (23)

where the state x(t) = [P (t), A(t)]T and

f [x(t), t] =







−k1A(t)P k2(t)

0






(24)
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for an isentropic process model, and

f [x(t), t] =







−k3A(t)P (t)

0






(25)

for an isothermal process model. The vector η(t) = [η1(t), η2(t)]
T is the process noise, where

η1(t) and η2(t) are Gaussian white-noise processes with

E {ηi(t)} = 0 (26a)

E {ηi(t)ηj(t
′)} = Qδi,j(t − t′) (26b)

with i, j = 1, 2. The matrix Q has the following form

Q =







σ2
1 0

0 σ2
2






(27)

where the terms σ2
1 and σ2

2 are the variances of η1(t) and η2(t), respectively. The strength

of the noise σ2 corresponds to the possible range of the area variation. The discrete-time

internal pressure measurement, denoted by ỹk, is modeled as

ỹk = Pk + vk (28)

where vk is the measurement noise, which satisfies a discrete Gaussian white-noise process

with

E {vk} = 0 (29a)

E {vkvk′} = Rkδk,k′ (29b)
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The standard continuous-discrete extended Kalman filter algorithm22 can now be applied to

estimate the pressure and area to calculate the magnitude of the vent thrust with Eq. (14).

Note that for the initial condition of the filter, the following value is used: x̂(t0) = [ỹ0 0]T .

Vent Torque Estimation

The vent torque, which is not explicitly modeled in the attitude dynamics, shows up as

a residual disturbance torque when the spacecraft angular rate measurement undergoes a

filtering process. In the vent torque estimation algorithm, another filter is executed whose

state vector is augmented to include the unknown parameters as additional states, resulting

in a total of six filter states, where three states are for the total angular momentum of the

spacecraft and the other three states are for the three-axis components of the disturbance

torque. Note that the attitude information, which is needed to determine the gravity-gradient

and aerodynamic torque in the disturbance torque estimation algorithm, is assumed to be

available from a real-time attitude estimation algorithm. In this section, the disturbance

estimation algorithm using the UF approach is shown.

The state model for the torque estimation filter with x(t) = [H(t)T , N vent(t)
T ]T can be

expressed as







Ḣ(t)

Ṅ vent(t)






=







−J−1 [H(t) − h(t)] × H(t) + L(t) + ||F vent(t)||N vent(t)

03×1






+







ηH(t)

ηN(t)







(30)

where ||F vent(t)||Nvent(t) is the vent disturbance torque. Note that H(t) and J are calcu-

lated with respect to the body-fixed frame with its origin at the center of mass. This form of

Euler’s equation is preferred since it does not involve a derivative of the CMG wheel speed,

ḣ(t), which may contain significant noise. The thrust magnitude, ||F vent(t)||, is treated as a

deterministic quantity and is estimated from the EKF algorithm shown earlier. The vectors

ηH(t) and ηN(t) are zero-mean Gaussian process noise vectors, which correspond roughly

to the possible range of the disturbance variations. The attitude dependent torque, L(t), is
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the external disturbance, expressed as

L(t) = N drag(t) + N grav(t) (31)

neglecting other sources of disturbance. This vector is treated as a deterministic input in

the filter equations. The discrete gyroscope output measurement model is

ỹk = ωk + η1k

= J−1 [Hk − hk] + η1k
, k = 1, ... , N (32)

An UF approach is considered here as an alternative to the EKF for this particular estimation

problem. The UF has first been proposed by Julier and Uhlman 6. Unlike the EKF, the UF

more accurately captures the posterior mean and covariance of a random variable for any

nonlinearity by choosing a minimal set of sample points and propagating them through the

original nonlinear system. Also it is derivative-free, i.e. no Jacobian and Hessian calculations

need to be evaluated for the computation. Therefore, it can be easily applied to any complex

dynamical system and to non-differentiable functions. For disturbance estimation, the UF

approach has faster convergence compared to the EKF in the presence of large initial errors

in the filter states.23 The continuous-time nonlinear equations shown in Eqs. (30) and (32)

can be discretized to fit the UF derivation shown in Ref. 6 through an appropriate numerical

integration scheme.

Numerical simulations for the UF cases are performed with an angular rate-noise standard

deviation of 2.3 × 10−4 ◦/sec (σ1 = 4 × 10−6 rad/sec) and a sampling frequency of 1 Hz for

the ISS assembly stage UF1. It is assumed that the spacecraft attitude maintains the TEA

when suddenly after 5.7556 hr (20720 sec) a vent torque of 66.07 Nm is applied in each

body axis of the spacecraft. The disturbance torque estimation results after the onset of

venting are shown in Figure 4, where the dashed lines correspond to the true values. We can

see that the vent torque estimates converge to the true values around 10 seconds after the
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leak. When an air leak occurs, the state covariance of the filter is reset to a large value to

incorporate the variation of the disturbance torque at the instant when the leak occurs (as

previously mentioned, it is known when a leak occurs by sensing the air pressure drop inside

the crew cabin). In this way the filter converges much faster than without a covariance reset.

The estimation errors for each component of the disturbance torque, denoted by ∆N vent,

are shown in Figure 5 with their 3σ-bound lines.

Inertia Estimation

For the ISS, the uncertainty in the aerodynamic torque may affect the vent torque estima-

tion results if it has the same order of magnitude as the torque due to a leak. But the major

uncertainty in the residual torque estimation is the inaccurate ISS inertia mass components.

For the ISS, the inertia of each configuration is pre-calculated on the ground with CAD

tools. But these values may be imprecise since the ISS is made up of multiple complex rigid

bodies interconnected to each other and undergoes several configuration changes during its

lifetime. Therefore, an online parameter estimation method is employed to estimate these

slowly changing inertia components in real time when it is known that there is no venting

leak acting on the spacecraft. But the parameter estimation performance depends heavily on

the observability of the parameters of interest. Usually, in the parameter estimation prob-

lem, the state vector is extended by adjoining it with the vector of unknown parameters,

as has been done for the vent torque estimation algorithm. In this section, a least-squares

approach is used to analyze the relative observability of the ISS inertia components.

When the ISS attitude is near the LVLH orientation, the inertia matrix components

are unobservable, even though there are some slight attitude variations due to the time

varying aerodynamic torque. Assuming that the aerodynamic parameters are known, the

inertia matrix observability in an ideal LVLH fixed mode can be shown from the following

equations:

J23 =
1

4n2
(Naero1 − u1)
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J13 =
1

3n2
(u2 − Naero2)

J12 =
1

n2
(u3 − Naero3) (33)

where the constant angular rate ω = [0 −n 0]T and the constant attitude Euler angles

of [0 0 0]T are substituted in the rotational Euler’s equation of motion. The quantities

Naeroi
and ui are the ith component of the aerodynamic torque and the control torque input,

respectively, and Jij is the ijth inertia matrix element. The spacecraft is assumed to be

rotating in an Earth-pointing mode with a constant attitude angular rate n = 0.0011 rad/sec.

We can see from Eq. (33) that among the six inertia components, only the products of inertia

(J23, J13 and J12) show up due to the presence of the gravity-gradient torque. But note

that the control input, u, and the aerodynamic torque, N aero, have small values with the

same order of magnitude. Therefore, exact knowledge of the aerodynamic and control input

torque are needed to directly calculate the products of inertia, which is actually not feasible

in practice.

A numerical test is done with the batch least-squares method to check the observability

conditions in the LVLH fixed attitude mode. The assumptions are: 1) perfect measurements

of the attitude, angular rate, control input and the angular acceleration are available, 2)

perfect knowledge of the aerodynamic torque, and 3) no other disturbances besides aerody-

namic and gravity-gradient torque are present. A linear parametrization of the equations

of motion is needed to use the batch least-squares method. At known discrete instants of

time tj, Euler’s equation can be linearly parameterized with respect to the unknown inertia

components as

−u(tj) + N aero(tj) = Jω̇(tj) + ω(tj) × [Jω(tj)] − 3n2C3(tj) × [JC3(tj)]

= {D1[ω̇(tj)] + D2[ω(tj)] − 3n2D2[C3(tj)]}J

ỹ(tj) = h(tj)J , j = 1, 2, ..., m (34)
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where J = [J11 J22 J33 J23 J13 J12]
T , and the matrices D1 and D2 are defined as8

D1(ω̇) =













ω̇1 0 0 0 ω̇3 ω̇2

0 ω̇2 0 ω̇3 0 ω̇1

0 0 ω̇3 ω̇2 ω̇1 0













(35)

D2(ω) =













0 −ω2ω3 ω2ω3 ω2
2 − ω2

3 ω1ω2 −ω1ω3

ω1ω3 0 −ω1ω3 −ω1ω2 ω2
3 − ω2

1 ω2ω3

−ω1ω2 ω1ω2 0 ω1ω3 −ω2ω3 ω2
1 − ω2

2













(36)

and m is the number of measurements. The solution of the least-squares method for the

estimation of the inertia matrix is as follows:

J = (HTH)−1HT Ỹ (37)

where the quantities H and Ỹ are known from the measurements and the control inputs:

Ỹ = [ỹ(t1)
T , ỹ(t2)

T , ... , ỹ(tm)T ]T (38)

H = [h(t1)
T , h(t2)

T , ... , h(tm)T ]T (39)

The quantity HT H should be strictly positive definite since its inverse appears in Eq. (37)

to solve the unknown parameters. In practice, we require HTH to be well-conditioned. A

useful measure of the condition of a matrix is the condition number.24 The condition number

varies from 1 for an orthogonal matrix to infinity for a singular matrix. From a numerical

simulation, when all six components of inertia matrix are solved using the Eq. (37), the

condition number of HT H is 1.7 × 1010, resulting in an inaccurate solution. The relative

observability among the inertia components is analyzed using an eigenvalue/eigenvector de-

composition of the HTH matrix, which is shown in Figure 6. From this figure, J11 is the

maximum component of the eigenvector, which corresponds to an eigenvalue of magnitude
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10−15. As expected the three products of inertia, which have their eigenvalues near 10−6 are

the most observable components among the elements, whereas the three moments of inertia

have their magnitude near 10−15, which is nine orders of magnitude smaller than those of

the products of inertia. A simulation has been done to estimate the products of inertia

with a batch least-squares method, and the results are shown in Figure 7 (where the results

are calculated at regular instants of time with the cumulative measurements). The three

components converge very quickly, within an orbit, to their true values (expressed as circles

in the figure) as expected. The corresponding condition number is 16, which is much smaller

than the previous simulation case, revealing that the HT H is now a well-conditioned matrix.

For the real-time estimation of the inertia, the UF approach is used because of its robustness

in the presence of large initial state uncertainty and its derivative free characteristics. The

UF filter formulation is similar to the vent torque estimation approach with the filter state

x(t) = [H(t)T J11 J22 J33 J23 J13 J12]
T using the dynamic equation shown in Eq. (1).

The center of mass is also estimated, since this quantity is also needed in the leak local-

ization algorithm. For the center of mass estimation, we can rewrite the rotational equation

of motion of the ISS about the center of mass as

Jω̇(t) + ω(t) × [Jω(t)] = L(t) + NCMG(t) +

n
∑

i=1

ri × F i(t) (40)

where F i(t) is the ith applied force vector and ri is the moment arm from the center of mass.

The coordinate of the moment arm can be expressed as

ri = li − d (41)

where li is the known position vector of the point of the applied force, F i(t), and d is the

unknown position vector of the center of mass, both expressed with respect to the body-

fixed frame with a known origin. The torque due to the CMGs, N CMG(t), does not depend

on each CMG location, but is a function of the orientation of each CMG. Therefore to
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estimate the center of mass position, a control torque (thruster) with known position and

magnitude needs to be applied to the spacecraft. Then the filter state must be augmented

to include three elements of d for the estimation of the center of mass (estimation of the

six inertia elements may be estimated concurrently). Estimation of the mass properties

should be performed only when an attitude maneuver is present to enhance the observability

of the parameters. Recently, an algorithm to estimate the moments and products of the

inertia matrix using a batch process has been developed by Psiaki.25 This approach uses

a trapezoidally integrated version of Euler’s equation in inertial coordinates for the filter

propagation and incorporates a scalar quadratic constraint to overcome the unobservability

of the parameters’ overall scaling.

Leak Localization

Once the vent torque, N vent(t), is estimated by the real-time filter, the next step involves

determining the position vector rvent, which is the moment arm of the vent torque satisfying

N vent(t) = rvent × F vent(t) (42)

In the above equation, the vent torque and the magnitude of F vent(t) are known by the

estimation algorithms.

The overall steps for locating a leak on the ISS are as follows:

1. Model the 3-D geometric surfaces of the pressurized parts of the spacecraft.

2. Estimate the vent torque and magnitude of the vent thrust.

3. Slice the 3-D surfaces of the pressurized modules with a plane perpendicular to the

direction of the vent torque so that this plane includes the center of mass of the

spacecraft. From the fundamental definition of torque, a torque about the center of

mass of a rigid body is perpendicular to the plane comprising the vectors rvent and

F vent. So, rvent, F vent and the center of mass are all in the same plane normal to the
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direction of the vent torque. Denote this plane by τ . The intersection between the

plane τ and the surface of the spacecraft produces contours.

4. With the assumption that the vent thrust is normal to the tangent plane of the partial

section on the ISS surface where the leak occurs, calculate the gradient vectors (direc-

tion normal vectors) of the points that make up the sliced contours obtained in Step

3.

5. Multiply the magnitude of the vent thrust estimated in Step 1 with all gradient vectors

calculated in Step 4.

6. Since the position and gradient vectors of all the points making the sliced contours are

known, calculate the resulting torque at each point on the contours.

7. From the torques obtained for each point in Step 6, select the torques that are closest

to the estimated torque (within an error bound) and check their points on the contours.

The actual geometric structure of the station eliminates many of the possible solutions;

however, multiple solutions may still exist. In this case further assumptions can be made,

such as the probability of impacts by the debris or small meteorites is low on the aft and

nadir facing surfaces since these surfaces are shaded by other structures. Also, the leak

localization method based on the attitude response may be combined with the conventional

leak localization methods. For example, if the solution shows that two possible leaks are

situated at two different modules, then only one hatch closure between any of these modules

may be needed to check which one of the two modules leaks. Furthermore, visual inspections

by the crew may narrow the possible leak solutions.

Numerical Simulation

A user-friendly design tool coded entirely in MATLAB has been developed to estimate a

leak location under various conditions. The tool supports several ISS assembly stages from

11A to UF-7, but it may need to be modified due to the uncertainties in the future of the
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ISS program. The 3-D surface models of the pressurized segment of the ISS Stage have been

developed based on the data provided in Ref. 1. Figure 8 shows the main Graphical User

Interfaces (GUIs) of the tool. Users can input the orbit, the mass and the aerodynamic

parameters of the ISS, and choose a simulated leak location with the GUI. The resulting

leak locations after the leak localization estimation process are shown on another GUI.

For the simulation, the ISS assembly Stage 16A is considered (see Figure 9). The

isentropic depressurization process of the air inside the ISS is assumed. The mass and

aerodynamic properties of the ISS are provided in Ref. 1. The inertia J is given by

J =













127908568 3141229 7709108

3141229 107362480 1345279

7709108 1345279 200432320













(kg m)2 (43)

The centers of pressure are ρcpx
= [0,−0.355,−0.927]T m, ρcpy

= [−7.94, 0,−1.1]T m and

ρcpz
= [1.12, 0.247, 0]T m in the Space Station Analysis Coordinate System with respect to

the center of mass. The components x, y and z represent the three orthogonal axes of the

ISS body fixed frame.1 The reference projected areas are Sx = 967 m2, Sy = 799 m2 and

Sz = 3525 m2.

The Global Positioning System (GPS) attitude-sensor measurement-error standard de-

viation is given by σq = 0.5 deg, and the ring-laser gyro sensor measurement-error standard

deviation is given by σω = 4 × 10−6 deg/sec.26 The measurement-error standard deviation

of the internal pressure is given by σ = 0.1 mmHg = 13.3 Pa. For the depressurization of

the air inside, the initial internal temperature and pressure are set to T0 = 21o C and P0 = 1

atm, respectively. The back pressure is assumed to be PB = 0 atm and the volume of the

entire pressurized system for ISS 16A is V = 867.2 m3. Finally, an inertia uncertainty of 3%

is added to the true J .

Simulations are done for 100 seconds from the start of the leak. Figure 10 shows the

estimate of the leak hole area using the Kalman filter algorithm. The true leak hole area
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A is 1.8241 × 10−4 m2. As seen from this figure the Kalman filter accurately estimates the

leak hole area. The vent thrust magnitude is then computed with the internal pressure

measurement and the estimate of the hole area.

For the first simulation, a leak is assumed on a module shown in Figure 11. The sliced

plane τ with contours in 3-D is shown in Figure 12. Using the leak localization approach a

single leak has been determined for this simulated case, depicted in Figure 13. The estimated

position is marked with a ◦, the true position of a leak is marked with a ∗ for comparison,

and the center of mass is marked with a ? on the plane τ . Slicing of the 3-D surface is

performed at the end of the simulation (t = 100 sec). If no errors are present in the assumed

model and if the assumptions made so far are perfectly satisfied, then the closest torque

yielding the point to the estimated vent torque is the true leak point. But because of sensor

inaccuracies and modeling errors in the inertia, the estimated vent torque may deviate from

the true value. Therefore, an upper error-bound should be set when selecting points that

yield the torque closest to the estimated vent torque. For the case shown in Figure 13, we

conclude that the leak occurs on the contour line labelled 6, which corresponds to the Kibo

JEM pressurized module. In this simulated case, the leak location is well estimated using

the new localization method.

Another simulation has been done where multiple locations may result from the given

estimated vent torque. In this case, the estimated leak locations are spread over several

modules, as shown in Figure 14. The locations P1, P2 and P3 are possible leak candidates

(the true leak point is situated near P1). But since P1 and P2 are on the same module, a

crew person only needs to close one hatch between the module labelled 20 and the module

labelled 19 to verify which one of the two modules has a leak. This is accomplished by

measuring the internal pressure drop rate or using visual inspections of the estimated leak

points. If the leak hole is due to space debris or small meteorite punctures, then the aft

and nadir facing surfaces of the ISS have little possibility to be impacted. This is also true

for locations where regions are protected by other structures, as is the case for point P3.
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Therefore this point is not a likely candidate for the leak.

Experimental validation of the algorithm has been treated in Ref. 27, where the effects

of the air vent on the attitude of the ISS assembly Stage 5A with the mated Space Shuttle

(STS-98) are investigated. The goal involves estimating the torque and the upper bound

magnitude of the force caused by the air vent from the depressurization of the Space Shuttle

airlock for the preparation of extravehicular activity of the crew. Because a T-shaped valve

is used, where air is vented on opposite sides of the valve structure, the net thrust should be

nullified in theory. But if the expelled air is not uniform at both openings, a net thrust may

occur. From the experimental data it is seen that a CMG momentum buildup occurs during

the pressurization process, which means that the net thrust is not cancelled. Actual test

data from a depressurization of the space shuttle airlock indicates that the proposed method

has the potential to accurately estimate the leak hole size and venting force magnitude (see

Ref. 27 for more details).

Conclusions

In this paper, a leak localization method using attitude response data was developed for

the International Space Station. The leaking air through the perforated hole on the external

surface area leads to a reaction force which results in a torque affecting the attitude of the

spacecraft. The size of the leak was calculated from a Kalman filter using estimated values of

the internal air pressure and area of the leak hole. The resultant leak torque was estimated

by an Unscented filter algorithm. An observability analysis on estimating the inertia com-

ponents has also been shown. Numerical results showed that the proposed leak localization

method can determine a unique solution or multiple solutions. The actual geometric struc-

ture of the station eliminates many of the possible solutions; however, multiple solutions

may still exist. In this case, further assumptions should be made, such as the probability

of impacts by the debris or small meteorites is low on the aft and nadir facing surfaces,

and some parts of the surfaces which are not likely to leak can be ignored. Also, the leak

localization method based on the attitude response may be combined with the conventional
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leak localization methods. For example, if the solution shows that two leaks are situated at

two different modules, then only one hatch closure between any of these modules is needed

to check which one of the two modules leaks.
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Figure 8: GUI for Simulation of the Leak Localization Algorithm
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Figure 9: ISS Assembly Stage 16A
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Figure 12: Sliced Plane τ with Contours in 3-D
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Figure 13: Contours on Plane τ with Possible Leak
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Figure 14: Contours on Plane τ with 3 Possible Leaks
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