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Formation Flying is the concept that multiple spacecraft can be arranged in a forma-

tion to perform tasks that are not possible with a single spacecraft, or tasks that can be

done more efficiently or inexpensively with a group of small spacecraft. One of the main

engineering problems to be overcome is that of orienting or pointing a spacecraft to a very

high degree of precision. Many approaches have focused on improving the performance

and accuracy of the hardware used to determine the current orientation of the spacecraft.

Here, orientation is related the line-of-sight accuracy between one spacecraft and another,

not the overall relative attitude. The approach in this paper explores filtering algorithms

for the goal of determining the minimum hardware requirements necessary to obtain micro-

arcsecond line-of-sight pointing knowledge. This may allow for the use of less expensive

hardware in future formation flying missions and may vastly improve mission capability.

I. Introduction

Spacecraft formation flying, also known as distributed space systems (DSS), has become an increasingly
important area of research. The development of formation flying technology is necessary if NASA is to
be successful in implementing President Bush’s 2004 vision for the United States civil space program. In
the report detailing this vision, formation flying was identified as one of seventeen “enabling technologies”
which are “critical to attainment of exploration objectives within reasonable schedules and affordable costs”
and, by extension, “will significantly help the United States to protect its technological leadership, economic
vitality, and security.”1

Significant performance, robustness, maintenance and cost benefits of a formation made up of smaller,
individual spacecraft can be realized for a variety of military, civilian and scientific applications. Collection
of information through a cluster of individual sensors or through sensors distributed over multiple formation
flying vehicles can provide substantial benefits.2 The advantages of a constellation of small spacecraft are
many. Smaller and lighter spacecraft are much less expensive to launch. Spare spacecraft can be flown in
formation and repositioned into place if a spacecraft fails, thus saving on mission downtime and the prospect
of an expensive repair mission (if repair is indeed possible at all). DSS will enable higher resolution imagery,
robust and redundant fault-tolerant spacecraft system architectures, and complex networks dispersed over
clusters of spacecraft.3

For example, instead of the deployment of a single large spacecraft, such as the Hubble Space Telescope,
a cluster of smaller spacecraft can be deployed to effectively create a much larger, higher resolution telescope
through the concept of interferometry; a concept commonly used to link together ground-based radio tele-
scopes across the surface of the Earth. Spare or backup spacecraft can be deployed in formation. Spacecraft
launches and replacement can be conducted unmanned. Thus, mission cost can be decreased while mission
capability, robustness and lifecycle can all be increased. The prospect of scuttling an entire large spacecraft
and, indeed, the cancelation of the program itself, can be avoided. In the end, a multi-spacecraft design saves
money and reduces risk. It is less expensive to build, launch and deploy smaller identical spacecraft. Also,
with separate launches for individual spacecraft or perhaps for multiple spacecraft, if the design permits,
one can avoid “putting all the eggs in one rocket.”4
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The difficulty with the concept of spacecraft formation flying or DSS is in determining the absolute
and/or relative bearing of each spacecraft in the formation to a high degree of precision, particularly with
respect to telescope and interferometry applications. To solve this problem, most approaches have focused on
improvements in hardware through the development of a “super star tracker” or improved inertial references
(e.g. low drift, low friction gyroscopes) to achieve alignments on the order of 30 micro-arcseconds.5 Unfor-
tunately, these hardware improvements may not be possible without disproportionate expenditures of time
and money. This paper presents filtering approaches to achieve micro-arcsecond pointing knowledge through
software. Here we focus on providing the minimum hardware requirements, in terms of required line-of-sight
(LOS) measurement accuracy and required sampling rates. Micro-arcsecond pointing knowledge should be
more than sufficient for all but the most ambitious DSS missions planned for the next 15-20 years.5, 6

The organization of this paper is as follows. First, some of the current and proposed programs and
missions are discussed, followed by a summary of the problems in achieving high accuracy knowledge. Then,
the coordinate frames used in formation flying are shown, as well as the classical equations of motion. Next,
the measurement model is discussed, followed by a simplification of this model to allow for linear models.
These linear models will be used to determine the steady-state performance of a Kalman filtering using line-
of-sight measurements. A simple analysis is also derived that relates filtered accuracy to sensor accuracy
and sampling interval. Then, a summary of the nonlinear filters used for the full model is shown. Finally,
simulation results are provided.

A. Programs & Missions

As DSS technologies have matured in recent years, various groups and agencies are flying and proposing a
large number of DSS missions.2, 6 Most of the significant scientific missions requiring DSS technology are
incorporated under three NASA programs: New Millennium, Origins, and Structure and Evolution of the
Universe (“Beyond Einstein”).

Near future DSS technology dependent missions associated with these programs include the Space Inter-
ferometry Mission (SIM) and the Laser Interferometer Space Antenna (LISA). Later missions such as the
Terrestrial Planet Finder (TPF), the Planet Imager (PI) and Constellation-X, will depend upon the tech-
nologies developed for SIM and LISA. The New Millennium Space Technology 3 (ST3) mission, originally
planned to launch in 2005, has since been cancelled. ST3 was to consist of two separate spacecraft to be
used to test the techniques of interferometry and formation flying in space. ST3 would have been the first
spaceborne stellar interferometer.5, 7

The most ambitious with regard to DSS technology is the Micro-Arcsecond X-ray Imaging Mission
(MAXIM), which will achieve resolution on the order of 100 nano-arcseconds to resolve the event horizon of
a black hole. The MAXIM Pathfinder (MP) mission will lay the foundation for MAXIM with an angular
resolution of roughly 100 micro-arcseconds. The Stellar Imager (SI) mission is another proposed 100 micro-
arcsecond imaging mission.5, 8, 9

Each of these missions will need a stable relative reference accurate to a fraction of their angular resolution
to produce quality images and data.5 The goal of this research will be to do just that: to provide micro-
arcsecond relative pointing knowledge, which will satisfy all but the most stringent requirements of any of
these missions.

B. Problem

Up to now, most approaches to achieving high precision angular resolution have concentrated on improve-
ments in hardware. Typically, guidance systems for spacecraft have utilized (1) a star tracker to make use
of guide stars, (2) an inertial reference, such a gyroscope, or (3) both. The simplest improvement to a star
tracker would be to just make it bigger. Obviously, this increases the size and weight and still does not
solve fundamental optics problems and limitations of CCDs. Use of the X-ray band (instead of the visible
spectrum) will lead to problems because of the scarcity and “dimness” of targets, which means that it may
not be scalable to the sub micro-arcsecond range required for MAXIM. Use of interferometry approaches like
the SIM mission have been discounted due to high cost (nearly $1 billion), which is much too expensive for
a subsystem on another mission.5 The main disadvantage of star trackers for formation flying applications
is they provide absolute knowledge, which is useful for the primary spacecraft, but may not necessarily be
the best choice for relative knowledge between spacecraft, i.e. using two inertial sensors to derive relative
knowledge may be excessive.
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Improvements to gyroscopes may be even more difficult to achieve. The Kilometric Optical Gyroscope
(KOG) was dropped from the ST3 mission due to technical difficulties and cost. In theory, atomic inter-
ferometer gyroscope and the superfluid gyroscope have potential but will require much more development
to produce a practical device. The Gravity Probe B (GP-B) gyroscopes utilize superconductivity (via cryo-
genics) to minimize drag and have been developed to near-flight readiness. They could be combined with
a telescope and star tracker to achieve resolutions on the order of 100 micro-arcseconds to satisfy the re-
quirements of the MP or SI missions.5 However, they are still costly and their best resolution is far from
satisfying the MAXIM requirements. In the final analysis, because star trackers and gyroscopes have been in
use for a long time, they have reached a very high state of refinement, and are approaching their respective
physical limitations. While it is tempting to attack the hardware problem head-on, we have reached a point
of diminishing returns where it will take a great amount of money and effort to produce a comparatively
small improvement in performance. In other words, star trackers and gyros are about as good as they are
going to get, and any significant improvements may be a long way off.

II. Approach

This work provides an assessment of the hardware requirements for future formation flying missions
that have a goal of achieving accurate line-of-sight (LOS) information between two spacecraft (called a
“chief” and a “deputy”). The LOS equipment may include microwave or laser technology. A promising
technology involves a vision-based navigation (VISNAV) system, which comprises an optical sensor of a new
kind combined with specific light sources (beacons) in order to achieve a selective or “intelligent” vision.
The sensor is made up of a position sensing diode placed in the focal plane of a wide angle lens. Benefits of
this configuration include: 1) very small sensor size, 2) very wide sensor field-of-view, 3) no complex/time
consuming charge-coupling-device signal processing or pattern recognition required, 4) excellent rejection of
ambient light interference under a wide variety of operating conditions, and 5) relatively simple electronic
circuits with modest digital signal processing micro-computer requirements. A more detailed description of
the VISNAV system can be found in Ref. 10.

Relative position and attitude results using a Kalman filter for spacecraft formation flying is shown in
Ref. 11. However, the study only involved the feasibility of using LOS measurement for formation flying,
and an analysis is not shown for obtaining the achievable accuracies in terms of sampling intervals and
sensor accuracy. The LOS measurements and detailed relative orbital model equations will be combined
in a Kalman filter to achieve micro-arcsecond directional knowledge in this current paper. To be clear, it
is assumed that the chief spacecraft has perfect position and pointing knowledge and control with respect
to some inertial frame (note that attitude is not considered). This paper does not address how this might
be done, as this is a very difficult problem. The lone measurement is the relative LOS vector between the
spacecraft. It is well known that using filtering algorithms provide more accuracy than sensors alone.12

This paper only seeks to determine what hardware requirements might be necessary to achieve the goal
of micro-arcsecond relative position and pointing knowledge between the deputy and chief spacecraft using
filtering approaches. To be more realistic, it should be assumed that there is some relative motion of the
deputy spacecraft with respect to the chief. To simulate this, a few micro-g’s of process noise are included
in the analyses.

Here, an overview of the frames used to describe the relative attitude and position equations of motion is
shown, reprinted for convenience from Ref. 11. The spacecraft about which all other spacecraft are orbiting is
referred to as the chief. The remaining spacecraft are referred to as the deputies. The relative orbit position
vector, ρ, is expressed in components by ρ = [x y z]T , shown in Figure 1. The vector triad {ôr, ôθ, ôh} is
known as the Hill coordinate frame, where ôr is in the orbit radius direction, ôh is parallel with the orbit
momentum vector and ôθ completes the triad. A complete derivation of the relative equations of motion for
eccentric orbits can be found in Ref. 13. If the relative orbit coordinates are small compared to the chief
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Figure 1. General Type of Spacecraft Formation with Relative Motion

orbit radius, then the equations of motion are given by (with disturbances added here)

ẍ− x θ̇2

(

1 + 2
rc

p

)

− 2 θ̇

(

ẏ − y
ṙc

rc

)

= w1 (1a)

ÿ + 2 θ̇

(

ẋ− x
ṙc

rc

)

− y θ̇2

(

1− rc

p

)

= w2 (1b)

z̈ + z θ̇2 rc

p
= w3 (1c)

where p is semilatus rectum of the chief, rc is the chief orbit radius and θ̇ is true anomaly rate of the chief.
Also, w1, w2 and w3 are acceleration disturbances which are modeled as zero-mean Gaussian white-noise
processes.The true anomaly acceleration and chief orbit-radius acceleration are given by

θ̈ = −2
ṙc

rc
θ̇ (2a)

r̈c = rc θ̇2

(

1− rc

p

)

(2b)

If the chief spacecraft orbit is assumed to be circular so that ṙc = 0 and p = rc, then the relative equations
of motion reduce to the simple form known as the Clohessy-Wiltshire (CW) or Hill’s equations:

ẍ− 2 n ẏ − 3 n2x = w1 (3a)

ÿ + 2 n ẋ = w2 (3b)

z̈ + n2z = w3 (3c)

where n = θ̇ is the mean motion. The analyses in this paper are limited to the two-dimensional case but
may be easily extended to three-dimensions, at the expense of significant additional computing time.

A. Baseline Analysis

To begin a preliminary baseline analysis, a covariance analysis is performed. We begin with Hill’s equations
for in-plane (two-dimensional) motion only (the simplest form for relative motion of two spacecraft).13 For
convenience, Eq. (3) is repeated here without the out-of-plane z component:

ẍ− 2 n ẏ − 3 n2x = w1 (4a)

ÿ + 2 n ẋ = w2 (4b)
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The state-space representation is given by

ẋ =











0 0 1 0

0 0 0 1

3 n2 0 0 2 n

0 0 −2 n 0











x +











0 0

0 0

1 0

0 1











w (5a)

≡ F x + Gw (5b)

where x ≡ [x y ẋ ẏ]T and w ≡ [w1 w2]
T with covariance given by Q. The conversion of the system in

Eq. (5) to discrete-time is given by van Loan14 for fixed parameter systems, which includes a constant
sampling interval and time-invariant state and covariance matrices.

First, the following augmented matrix is formed:

A =







−F GQ GT

0 FT






∆t (6)

where ∆t is the constant sampling interval, F is the constant continuous-time state matrix, and Q is the
constant continuous-time process noise covariance. Then, the matrix exponential of Eq. (6) is computed:

B = eA ≡







B11 B12

0 B22






=







B11 Φ−1Q

0 ΦT






(7)

where Φ is the state transition matrix of F and Q is the discrete-time process noise covariance matrix. The
state transition matrix is then given by

Φ = BT
22 (8)

Also, the discrete-time process noise covariance is given by

Q = ΦB12 (9)

If the sampling interval is “small” enough, then obviously a first-order analysis is a good approximation for
the solution given by Eqs. (8) and (9), with Φ ≈ I + ∆t F and Q ≈ ∆t GQ GT .

The output is assumed to be the LOS of one spacecraft to the other. Since we only have planar motion,
then the LOS is simply given by one angle θ:

θ = tan−1

(

x

y

)

(10)

The sensitivity matrix is formed by taking the partials of Eq. (10) with respect to x and y:

H =

[

y

x2 + y2

−x

x2 + y2
0 0

]

(11)

This is obviously nonlinear. To simplify the analysis it is assumed that x = y (θ = 45◦) and that the
spacecraft are kept c km apart for all time (note that in principle, while c could be any constant, c is chosen
to be 1 km for simplicity). This leads to

H =

√
2

2 c

[

1 −1 0 0
]

(12)

Other constant angles can be tested as well if desired. For example if we choose θ = 0◦, then we have

H =
1

c

[

1 0 0 0
]

(13)

5 of 14

American Institute of Aeronautics and Astronautics



Note that Eq. (12) (and Eq. (13)) may not be completely realistic, but for a baseline analysis they should
be adequate. The steady-state Riccati equation can now be solved to determine the expected performance
of the estimation state using a Kalman filter:12

P = Φ P ΦT − Φ P HT [H P HT + R]−1H P ΦT +Q (14)

where P is the covariance matrix of the estimation error, R is the measurement covariance (scalar for our
case), and Φ and Q are discrete-time versions of F and Q, respectively. The standard deviation of the filtered
LOS estimate is given by

σLOS = (H P HT )1/2 (15)

Equation (15) can now be used to compute the required sensor noise accuracy and sampling interval to
achieve the desired filtered LOS estimate.

An even simpler analysis can be performed by just considering the system as an attitude problem. This
can useful to quantify the general trends of the previous analysis. Suppose that we have the following model:

˙̄x =

[

0 1

0 0

]

x̄ +

[

0

1

]

w̄ ≡ F̄ x̄ + Ḡ w̄ (16)

where x̄ ≡ [θ ω]T , with ω = θ̇ denoting “angular velocity,” and the variance of w̄ is given by q̄. Now we
assume continuous measurements with measurement noise Rcont = σ2

sensor∆t (see Ref. [15] for details), where
σ2

sensor is the standard deviation of the LOS measurement noise. This will be a reasonable approximation if
the sampling interval is much shorter than the time constants of interest, which is the case of most interest.
The covariance obeys

˙̄P = F̄ P̄ + P̄ F̄T − P̄ H̄T R−1
contH̄ P̄ + q̄ Ḡ ḠT (17)

with H̄ = [1 0] and

P̄ ≡
[

P̄θθ P̄θω

P̄θω P̄ωω

]

(18)

At steady state, ˙̄P = 0, so

[

2 P̄θθ P̄ωω

P̄ωω q̄

]

− 1

σ2
sensor∆t

[

P̄θθ

P̄θω

]

[

P̄θθ P̄θω

]

= 0 (19)

Equation (19) can easily to be solved to give

P̄θθ =
[

4 q̄ (σ2
sensor∆t)3

]1/4 ≡ σ̄2
LOS (20a)

P̄θω =
(

q̄ σ2
sensor∆t

)1/2
(20b)

P̄ωω =
(

4 q̄3σ2
sensor∆t

)1/4
(20c)

Note that P̄θω = (P̄θθP̄ωω/2)1/2. The LOS error is now given by

σ̄LOS = (4 q̄)1/8σ3/4
sensor∆t3/8 (21)

Equation (21) can be compared with Eq. (15) to investigate the general trends of the expected results for
various levels of sensor accuracies and sampling intervals. Note that q̄ is not related to the Q in a direct
manner, but the powers of σsensor and ∆t in Eq. (21) do show relationships with the results obtained using
Eq. (15).

B. Expanded Analysis

To solve the Riccati equation, Eq. (14), in the simple baseline analysis above, P must be constant for a given
∆t. In turn, this requires a constant H matrix (see Eq. (12) above) as well as constant Φ, R, and Q. As an
aside, note from Eq. (15) that P is not used directly to determine the standard deviation of the filtered LOS
estimate. The H P HT term in Eq. (15) effectively gives the variance of the system in the direction of H .
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An extended Kalman filter is necessary if the measurement model is nonlinear and changes with time
(i.e. a time-varying H matrix). Several simulations are performed using different types of Kalman filters: a
square-root Information Filter (SRIF), a square-root Unscented Kalman filter (SRUKF), and a square-root
Kalman Filter (SRKF). Square-root filters are used primarily to improve precision and eliminate or reduce
errors due to rounding or poorly conditioned matrices. Results from each Kalman filter are compared with
the baseline analysis.

The SRIF uses the inverse of covariance matrix:16

P+
k ≡ (P+

k )−1 = S+T
k S+

k (22a)

P−

k ≡ (P−

k )−1 = S−T
k S−k (22b)

where S ≡ S−1, and P+
k and P−

k are the updated and propagated covariances, respectively. A square root
decomposition of the inverse measurement covariance and an eigenvalue decomposition of the process noise
covariance is also used in the SRIF:

R−1
k = VT

k Vk (23a)

Qk = ZkEkZT
k (23b)

where Vk is the inverse of the matrix Vk in R = VkV T
k . The matrix Ek is an s × s diagonal matrix of

the s non-zero eigenvalues of Qk. The matrix Zk consists of eigenvectors of the corresponding non-zero
eigenvalues. Next, the following (n + m)× n matrix is formed, where n is the dimension of the state and m
is the dimension of the output:

S̃+
k ≡

[

S−k
VkHk

]

(24)

It can be shown that when a QR decomposition of S̃+
k is taken, then the updated matrix S+

k can be extracted
from

T T
k S̃+

k =

[

S+
k

0m×n

]

(25)

where Tk is the orthogonal matrix from the QR decomposition of S̃+
k . In the SRIF the state is not explicitly

estimated. Instead the following quantities are used:

α̂+
k ≡ S+

k x̂+
k (26a)

α̂−

k ≡ S−k x̂−

k (26b)

Note the updated and propagated state can easily be found by taking the inverse of Eq. (26). The update
equation is given by

[

α̂+
k

βk

]

= T T
k

[

α̂−

k

ỹk

]

(27)

where βk is an m× 1 vector, which is the residual after processing the measurement, that is not required in
the SRIF calculations. The following n× s matrix is now defined:

Ξk ≡ ΥkZk (28)

where Υk is defined in the filter model (see Tables 1 and 2). Let Ξk(i) denote the ith column of Ξk and
Ek(i, i) denote the ith diagonal value of the matrix Ek. The propagated values are given by a set of s
iterations:
for i = 1

a = S+
k Φ−1

k Ξk(1) (29a)

b =
[

aT a + 1/Ek(1, 1)
]−1

(29b)

c =
[

1 +
√

b/Ek(1, 1)
]−1

(29c)

dT = b aTS+
k Φ−1

k (29d)

α̂−

k+1 = α̂+
k − b c aaT α̂+

k (29e)

S−k+1 = S+
k Φ−1

k − c adT (29f)
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for i > 1

a = S−k+1Ξk(i) (30a)

b =
[

aT a + 1/Ek(i, i)
]−1

(30b)

c =
[

1 +
√

b/Ek(i, i)
]−1

(30c)

dT = b aTS−k+1 (30d)

α̂−

k+1 ← α̂−

k+1 − b c aaT α̂−

k+1 (30e)

S−k+1 ← S−k+1 − c adT (30f)

where← denotes replacement. This SRIF is essentially a simplified version of the SRIF used. The main focus
of this paper is to provide expected performance specifications. Therefore, state estimates are not explicitly
required; only the covariance information is needed. Unfortunately, the LOS measurement equation is
nonlinear in the state. However, a sufficient approach to overcome this difficulty is to use the true states in
place of the estimated ones.15 This significantly reduces the computational load, which can be significant
for very small sampling intervals.

General algorithms for the SRUKF and SRKF are shown in Tables 1 and 2, respectively. In each table,
Q is the process noise covariance matrix and R is the measurement noise covariance matrix, while P0 is the
initial covariance.

For the SRUKF in Table 1, n is the dimension of the state vector, while γ and W are standard Unscented
filter parameters, defined by n and the choice of the parameters α, β, and κ. In the particular simulations
run for this paper, n = 4 and the remaining parameters are chosen as follows: α = 1, β = 2, and κ = 0. Note
that the cholupdate function (available in MATLAB) is different from the chol function. The cholupdate

function allows S to be updated, even if W c
0 is negative (in which case S would be “downdated”). See

Refs. 17 and 18 for more details regarding the implementation and operation of the SRUKF.
The SRKF algorithm shown in Table 2 was derived after it was realized that if the process and measure-

ment models are linear (as in this case) and we are not interested in updating the state vector (ultimately,
we are only interested in the state covariance, P as this is essentially a covariance analysis) then it is not
necessary to generate sigma points and the SRUKF essentially reduces to this form. Furthermore, since ∆t
and the errors are assumed to be very small, truth values can be used to update the sensitivity matrix, H ,
which is the same approach used in the SRIF.

III. Results

In this section expected filtered LOS results are shown using some realistic parameters for the spacecraft
disturbance effects. For both the baseline analysis and the expanded analysis, the principal simulation
parameters are the same: The process noise covariance matrix Q is assumed to be given by a scalar times
the identity matrix (i.e., isotropic errors) with Q = qI2×2δ(t− τ), where δ(t− τ) is the Dirac delta function.
A reasonable 3σ outlier for the disturbances acting on the spacecraft is about a few micro g’s. Hence, q is
given by (2 × 9.81 × 10−9/3)2 km2/s4. The spacecraft are placed in low-Earth orbit (n = 0.0011 rad/sec)
and they are assumed to be 1 km apart (i.e. c = 1). This separation, of course, is true only at initial time
for the expanded analyses.

Note that these analyses were run using MATLAB versions 6.5 (R13) and 7.2 (R2006a). The baseline
analysis was run exclusively in MATLAB 7.2 to take advantage of the increased precision and numerical
stability available in the dare function (due to square-root-based SLICOT routines introduced in Control
System Toolbox v6.0/R14).19

A. Baseline Analysis

The sensitivity matrix for the baseline analysis is given by Eq. (12) with c = 1km. Using these parameters
the steady-state covariance P is solved using Eq. (14), and the standard deviation of the expected filtered
LOS estimate is computed using Eq. (15).

A 3D plot of the expected filtered LOS performance, derived using the steady-state Riccati solution in
Eqs. (14) and (15), versus the sampling interval and sensor standard deviation is shown in Figure 2. From
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Table 1. Square-Root Unscented Kalman Filter

Model xk+1 = f(xk, k) + Υkwk

ỹk = h(xk, k) + vk

Initialize x̂(t0) = x̂0

S+
0 = chol{P0}

χk(0) = x̂+
k

χk(1 : 2n) =
[

x̂+
k + γS+

k x̂+
k − γS+

k

]

χk+1(i) = f [χk(i), k]

x̂−

k+1 = Wm
0 χk+1(0) +

∑2n
i=1 Wm

i χk+1(i)

Propagation S−

k+1 = qr

{[

√

W c
1

(

χk+1(1 : 2n)− x̂−

k+1

)

Υk

√
Qk

]}

S−

k+1 = cholupdate
{

S−

k+1, χk+1(0)− x̂−

k+1, W
c
0

}

χk+1(0) = x̂−

k+1

χk+1(1 : 2n) =
[

x̂−

k+1 + γS−

k+1 x̂−

k+1 − γS−

k+1

]

Yk+1(i) = h[χk+1(i), k]

ŷ−

k+1 = Wm
0 Yk+1(0) +

∑2n
i=1 Wm

i Yk+1(i)

Sy
k+1 = qr

{[

√

W c
1

(

Yk+1(1 : 2n)− ŷ−

k+1

) √

Rk+1

]}

Sy
k+1 = cholupdate

{

Sy
k+1, Yk+1(0)− ŷ−

k+1, W
c
0

}

P xy
k+1 =

∑2n
i=0 W c

i [χk+1(i)− x̂−

k+1] [Yk+1(i)− ŷ−

k+1]
T

Gain Kk+1 = (P xy
k+1/Sy T

k+1)/Sy
k+1

υk+1 ≡ ỹk+1 − ŷ−

k+1

Update x̂+
k+1 = x̂−

k+1 + Kk+1υk+1

S+
k+1 = cholupdate

{

S−

k+1, Kk+1S
y
k+1,−1

}

this analysis, achieving near micro-arcsec performance is possible with a sampling interval of 1×10−6 seconds
and sensor standard deviation of 1×10−4 arcsec. Note that the 3D surface does not form a plane. To further
see this behavior, various slices of this surface are shown in the plots of Figure 3. Figure 3(a) shows a linear
relationship with respect to varying sampling interval and a sensor standard deviation of 1 arcsec. The slope
of this curve is nearly 3/8, which matches well with the simplified relationship shown in Eq. (21). For a
smaller sensor standard deviation (1× 10−4 arcsec), a nonlinear relationship exists with respect to sampling
interval, as shown in Figure 3(b). However, the slope for small sampling intervals is nearly 3/8, which
again matches well with the simplified relationship. Figures 3(c) and Figure 3(d) show results for sampling
intervals of 1 second and 1× 10−6 seconds, respectively, with varying sensor noise standard deviation. The
slope of the linear region in Figure 3(c) is given by 3/4, which matches well with the simplified relationship
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Table 2. Square-Root Kalman Filter

Model xk+1 = Φkxk + Υkwk

ỹk = Hkxk + vk

Initialize x̂(t0) = x̂0

S+
0 = chol{P0}

x̂−

k+1 = Φkx̂
+
k

ŷ−

k+1 = Hk+1x̂
−

k+1

S−

k+1 = qr

{[

ΦkS+
k Υk

√
Qk

]}

Propagation Sy
k+1 = qr

{[

Hk+1S
−

k+1

√

Rk+1

]}

P xy
k+1 = S−

k+1S
−T
k+1H

T
k+1

Gain Kk+1 = (P xy
k+1/Sy T

k+1)/Sy
k+1

υk+1 ≡ ỹk+1 − ŷ−

k+1

Update x̂+
k+1 = x̂−

k+1 + Kk+1υk+1

S+
k+1 = cholupdate

{

S−

k+1, Kk+1S
y
k+1,−1

}

shown in Eq. (21). The slope shown in Figure 3(d) is 3/4 as well. These plots indicate that the slopes are
not linear when the sampling interval is large and the sensor noise is small. But, the simplified relationship
of Eq. (21) shows excellent agreement with the Riccati solution in the linear regions.

Better than micro-arcsec performance is shown in Figure 4 with a sampling interval of 1× 10−5 seconds
and sensor standard deviation of 1× 10−5 arcsec. Note the “spikes” in Figure 4, which are an indication of
some of the numerical problems inherent to solving the algebraic Riccati equation. This and other numerical
issues are motivation to verify and expand this analysis through the use of different types of square-root
Kalman filters.

B. Expanded Analysis

The results in Figures 5 and 6 are obtained using the SRUKF. These results are very close to the results in
Figures 2, 3 and 4 using the Riccati solutions for LOS accuracy. The LOS variances are calculated using the
sigma points and unscented transformation. They agree well with Eq. (15) because P is very small. Note
that the LOS Accuracy in Figures 5 and 6 are actual values and are not plotted on a log scale.

The initial condition of the state is x(t0) = [0 1 0.5 n 0]T with n = 0.0011. Under the noise-free
assumption, the nominal motion of the first two state variables is given by [0.5 sin(n t) cos(n t)]T . The
relative position of the deputy is not entirely observable because the only measurement available to the
system is the angle θ in the LOS direction—there is no range measurement. In other words, the filter can
easily predict and correct the course along track but there is virtually no information available regarding
movement in the radial direction (though there is a very small amount of coupling in the system due to the
orbit dynamics). Thus, P will likely become more poorly conditioned as the sampling interval decreases.
Evidence for this is shown in Figure 6 with increasing variance over time. These results are very similar to
the results of the square-root information filter (SRIF) and the square-root Kalman filter (SRKF) with the
same time-varying measurement model and, thus, the SRIF and SRKF results are not shown.
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Figure 2. Expected Performance Versus Sampling Interval and Sensor Accuracy

IV. Conclusion

This paper presented an analysis of the filtered performance from line-of-sight measurements for formation
flying applications. The dynamics model was based on Hill’s equations, which describe the relative motion
between two spacecraft. Two variables were used for the expected filter performance analysis: sensor accuracy
and sampling interval. A linear model was used to assess the expected performance from a steady-state
Riccati solution, followed by a simplified analytical analysis that relates sensor accuracy and sampling interval
to filtered performance. Filter solutions using the nonlinear output equation were also implemented, based
on using various square-root Kalman filters and the square-root Unscented Kalman filter. These filters
were chosen in order to reduce numerical problems. The linear model and simplified analysis showed good
agreement with the filter solutions, thus reinforcing analytical predictions. The main goal is to assess the
hardware requirements to achieve micro-arcsec performance. One possible combination for achieving this
performance level uses a sampling interval of 1 × 10−6 seconds and sensor standard deviation of 1 × 10−4

arcsec. Another combination uses a sampling interval of 1 × 10−5 seconds and sensor standard deviation
of 1 × 10−5 arcsec. Note that micro-g control will almost certainly be possible in the near future, and
may already be possible given the capabilities of missions like Gravity Probe B. In addition, interferometry
missions and the like will depend only upon the ability to control the relative positions of spacecraft with
respect to disturbances (not the absolute positions of individual spacecraft), which will minimize these effects
because all spacecraft will generally be subject to the same disturbances. Although technology currently
does not exist to achieve micro-arcsec performance, the analysis shown in this paper shows system trades
between sampling interval and sensor accuracy to achieve this performance level.
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Figure 5. Expected Performance Versus Various Sampling Intervals and Sensor Accuracies for SRUKF Analysis
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Figure 6. X and Y Coordinate Accuracy for Sampling Interval of 0.1 Seconds and Sensor Accuracy of 1 Arcsec
from SRUKF Analysis, Figure 5(d)
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