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Abstract

In this paper, new attitude determination algorithms using pseudolite signal phase measure-
ments are developed and presented with realistic simulations. Pseudolite signals are used to
replace GPS signals which are often not available due to blocking by nearby large structures,
for example a crew return vehicle under the International Space Station. A new observation
model needs to be applied because spherical wavefronts are present for pseudolite signals,
which are much closer to the antennas than GPS signals. Both static and filtering meth-
ods are developed. An iterative algorithm using the Levenberg-Marquardt method and a
nonlinear Predictive filter provide a deterministic solution; however, they are not suitable
for moving cases. Instead, the nonlinear Predictive filter, the extended Kalman filter and
the Unscented filter using angular velocity measurements as well as pseudolite signal phase
measurements are developed. In the convergence comparison, the Unscented filter and the
Predictive filter show more robust behavior than that of the extended Kalman filter.

Introduction

The definition of attitude determination is to estimate the attitude parameters of a body
fixed coordinate frame, relative to a reference coordinate frame, such as the Earth Centered
Earth Fixed (ECEF) reference coordinate system. Due to the sensor type, attitude deter-
mination algorithms are largely divided into two approaches: static methods and filtering
methods. Static methods provide a point-by-point attitude solution, while filtering methods
combine dynamic and/or kinematic models. Both methods use measurements from attitude
sensors, such as sun sensors, Earth sensors, a three-axis magnetometer (TAM), and/or star
sensors. However, star sensors and sun sensors are generally very expensive. Also, they
cannot be used in the case of eclipse or bright objects in sensor’s field of view (FOV). Earth
sensors cannot provide three-axis attitude information, and the estimation error using a
TAM is relatively large.

The Global Positioning System (GPS) was originally developed for the purpose of naviga-
tion. With the pseudorange measurements of the GPS receiver the instantaneous positions
and velocities are determined as well as the precise time. No other instrument can provide
this information with both the accuracy and bandwidth achievable with GPS. In addition to
orbit determination, the capability of GPS to provide attitude information makes it increas-
ingly applied in the attitude subsystem of modern spacecraft [1–5]. Since GPS receivers can
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also measure the signal carrier phases, they have been applied as attitude sensors with mul-
tiple antenna sets. However, when using the phase measurements the solution becomes more
complicated since the phase measurements contain integer ambiguities [6–8]. Furthermore,
to utilize a GPS receiver as an attitude sensor, the system parameters such as baselines
and line biases need to be determined, as well as integer ambiguities [4, 9]. This operation
is called the self survey. Once a self survey is accomplished, the attitude determination
problem then can be solved.

In the key application by Cohen and Trimble Navigation, Ltd. in the late 1980’s the
GPS receivers, TANS Vector and TANS Quadrex, were designed primarily for airborne ap-
plications, tracking up to six satellites on four separate antennas [1]. Cohen has developed
an iterative nonlinear least squares using Euler angles. When three non-coplanar baselines
exist, Cohen showed that the solution based on Wahba’s problem [10] is almost an order
faster than a nonlinear least squares algorithm. Still, a singular value decomposition (SVD)
that is computationally expensive must be performed. Bar-Itzhack et al. showed another
analytical conversion of the GPS phase difference measurements into unit vectors to be used
in QUEST algorithm [11]. However, it only used two baselines sets. Crassidis and Markley
have developed a generalized deterministic attitude solution using GPS phase difference
measurements [12, 13]. Crassidis et al. have proposed an efficient and optimal algorithm
based on nonlinear predictive filter scheme [2, 14]. This algorithm, called Attitude-Lean-
Loping-Estimator using GPS Recursive Operations (ALLEGRO), has several advantages:
1) it is non-iterative, 2) an optimal attitude is provided even for coplanar baseline configu-
rations, and 3) it guarantees convergence even for poor initial conditions [3].

Estimator-based filtering methods such as the extended Kalman filter (EKF) have also
been developed for GPS attitude determination applications. The main advantage of using
filtering techniques is that the three-axis attitude solution can be achieved using less than
three baseline sets, as long as there is sufficient vehicle motion. Also, line biases can be
estimated concurrently with the attitude. Fujikawa and Zimbelman developed an EKF using
GPS signal phase differences to estimate the attitude and line biases using one baseline [15].
Crassidis et al. have proposed a new filter based on nonlinear predictive filter scheme [3].
This filter does not assume that the external torque is modeled by a zero-mean Gaussian
process. Instead, it is determined during the estimation process. In the GPS receiver, data
defined by a RINEX format the Signal-to-Noise Ratio (SNR) of GPS signal is also measured.
Axelrad and Behre have developed an attitude determination algorithm using GPS SNR
measurements [16]. Lightsey and Madsen developed an EKF algorithm using canted antenna
SNR measurements [17]. However, the attitude errors of the SNR measurements methods
are larger than those of using carrier phase measurements.

All of the various attitude determination approaches have been tested on a number
of actual spacecraft [18–22]. Currently, the International Space Station (ISS) uses GPS for
both orbit and attitude determination. However, significant GPS signal outages occur due to
various structures near the ISS. Gaylor et al. showed that GPS signals below 10 meters from
the ISS are blocked 99.99% [5]. Therefore, pseudolite techniques are being developing by the
Navigation Systems and Technology Laboratory (NSTL) in NASA’s Johnson Space Center
(JSC) and Texas A&M university to replace GPS signals near the proximity of the ISS [4].
The pseudolite transceivers are used to transmit GPS-like signals. However, this leads to
more complicated solutions because the pseudolite signals have spherical wavefronts. These
non-planar (or spherical) wavefronts effects were investigated for the rendezvous problem
by Zimmerman [23, 24]. In the attitude determination algorithms, these effects should be
resolved. In this paper, optimal attitude determination algorithms using pseudolite signals
are investigated. Levenberg-Marquardt method, Predictive filter, EKF, and Unscented filter
(UF) [25] based algorithms are developed and analyzed with realistic simulations.
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Problem Statement

The main purpose of using pseudolite (PL) signals is to replace the GPS signals when the
GPS signals may not be available [26, 27]. For example, GPS signals are not available on
the Moon or Mars. Also, they are often blocked by the nearby huge structures. Pseudolite
signals are also used to determine relative attitude and positions [28,29]. Pseudolite signals
are essentially the same as GPS signals except the signals are now being broadcasted by PL
signal transceivers of which positions are known. When the PL signals are used, the phase
measurement model should be modified because the PL signal transceiver (TX) is located
too close to antennas so that the planar assumption of GPS signals does not hold. Since
the relative distances between antennas and PL TXs are short, relative position vectors
between them are no longer assumed as parallel. Instead, a spherical wavefront model was
applied [23, 24, 30]. In Figure 1 the PL signal phase measurement model is shown. As can
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Figure 1: Non-Planar Pseudolite Carrier Phase Measurement Model

be seen, the phase measurement contains the nonlinear spherical wavefront effect. The PL
signal phase measurement can be expressed by

∆φij =
(∣∣r + ATbm − tj

∣∣−
∣∣r + ATbsi − tj

∣∣) /λ + nij + τi (1)

where A is the attitude matrix, which transforms coordinates from the reference frame to
body frame, n is the integer ambiguity, τ is the line bias error, λ is the wavelength, tj is
the position vector of the j-th PL TX in the reference frame, r is the position vector of the
body frame origin in the reference frame, bm is the position vector of the master antenna
(MA) in the body frame, bsi is the position vector of the i-th slave antenna (SA) in the
body fixed frame.
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It is assumed that the baselines, line biases, and integer ambiguities are already de-
termined using a self survey process. Therefore, the attitude determination is a nonlinear
estimation problem to estimate the attitude parameters.

Previous Work

The most widely used attitude determination techniques using LOS vector measurements
are methods to solve Wahba’s problem [10]. Although the GPS signal phase measurements
are not LOS vectors, a modified Wahba’s problem was posed by Crassidis et al. [11–13].
They also found a suboptimal attitude solution. Nonlinear least squares or gradient-based
search techniques can solve for the optimal attitude by minimizing a certain loss function.
However, these methods are not computationally efficient because they are iterative. Also,
convergence is not guaranteed if the initial errors are large. A non-iterative algorithm using
predictive filtering scheme, called ALLEGRO, was developed by Crassidis [3]. Fujikawa
and Zimbelman developed an EKF using GPS signal phase measurements to estimate the
attitude and line biases using one baseline [15].

New Approach

Since the signals are no longer planar, new attitude determination algorithms using the
PL signal phase measurement model need to be developed. In this paper, both batch and
filtering methods are developed. As for batch methods, the Levenberg-Marquardt (LM)
algorithm and the modified ALLEGRO are developed. For the filtering methods which use
angular velocity measurements as well as PL signal phase measurements, the EKF and the
UF are developed.

Attitude Determination Methods Using PL Signals

Levenberg-Marquardt Method

A Levenberg-Marquardt method using the quaternion is developed. Using the quaternion
[31], the estimated attitude matrix can be written by

A (q̂) = A (δq) A (q) (2)

where q̂ represented the estimated quaternion, δq is the error quaternion, and q is the true
quaternion. In the small angle approximation, A (δq) can be rewritten as

A (δq) = I− 2 [δq13×] (3)

where δq13 is the vector part of the error quaternion and

[δq13×] =




0 −δq3 δq2

δq3 0 −δq1

−δq2 δq1 0


 (4)

Then, the PL signal phase measurement model in Eq. (1) can be approximated as

∆φ̂ij ≈
[√

`m − 2
(
r + ATbm − tj

)T
AT [bm×] δq/

√
`m

−√
`si − 2

(
r + ATbsi − tj

)T
AT [bsi×] δq/

√
`si

]
/λ + nij + τi

(5)

where
`m =

(
r + ATbm − tj

)T (
r + ATbm − tj

)
(6a)

`si =
(
r + ATbsi − tj

)T (
r + ATbsi − tj

)
(6b)
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Thus, the Jacobian matrix is given by

Hij = ∂∆φ̂ij

∂δq13

≈ − 2
λ

{
(r+ATbm−tj)T

AT[bm×]√
`m

− (r+ATbsi
−tj)T

AT[bsi
×]√

`si

} (7)

To compute the attitude covariance matrix, the Fisher information matrix is determined by

F ≡ 1
4E

{
∂J

∂q13

∂J
∂q13

T
}

= 1
4

m∑
i=1

n∑
j=1

σ−2
ij HT

ijHij

(8)

where the division by a factor of 4 is required because quaternion errors are two times the
Euler angle errors and the loss function is defined by

J =
1
2

m∑

i=1

n∑

j=1

σ−2
ij

(
∆φ̃ij −∆φij

)2

(9)

where m represents the number of baselines, n represents the number of sightlines, and σij

denotes the standard deviation of the ij-th measurement error. Then, the attitude error
covariance matrix is obtained by

P ≡ F−1

= 4

[
m∑

i=1

n∑
j=1

σ−2
ij HT

ijHij

]−1
(10)

For large initial guess errors, nonlinear least squares using the Jacobian matrix in Eq.
(7) may not converge to correct solutions. The method of steepest descent many help to
avoid this problem, however, the convergence is very poor close to the solution [32]. These
difficulties can be overcome by LM method [33]. In the LM method, the search direction is
intermediate between the steepest descent and the differential correction direction such as
nonlinear least squares, which makes the convergence more robust.

Nonlinear Predictive Filter

An algorithm using the nonlinear Predictive filter from GPS signals was proposed by Cras-
sidis et al. [2, 3, 14]. The major advantage of the Predictive filter is that the model error is
not assumed to be represented by a zero-mean Gaussian noise process with known covari-
ance, but instead is determined during the estimation process [34]. Crassidis et al. have
proposed the nonlinear Predictive filter by simultaneously solving system optimality con-
ditions and an output error constraint. Since the GPS signal multipath error is known to
have non-Gaussian components, this approach is fit for PL signal application because the
multipath effect of PL signal is more severe than that of GPS signal. This algorithm is called
the Attitude Lean Loping Estimator using GPS Recursive Operations (ALLEGRO). In the
ALLEGRO algorithm, the model is assumed as the quaternion kinematics model. Also, the
attitude rate is adequately modeled by a constant model error d between measurements,
which is given by

˙̂q =
1
2
Ξ (q̂)d (11)

where q̂ denotes the estimated quaternion. Therefore, the attitude parameter, i.e. the
quaternion, is determined without using angular rate information. The loss function to be
minimized is given by

J [d (t)] =
1
2

[ỹ (t + ∆t)− ŷ (t + ∆t)]T R−1 [ỹ (t + ∆t)− ŷ (t + ∆t)]+
1
2
dT (t)Wd (t) (12)
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where ∆t is the measurement sampling interval, W ∈ Rq×q is the positive semi-definite
weighting matrix, ỹ (t + ∆t) is the measurement at time t + ∆t, and ŷ (t + ∆t) is the
estimated output at time t + ∆t. The optimal model error can be obtained by minimizing
Eq. (12) with respect to d (t), given by

d (t) = −
{

[Λ (∆t)S (x̂)]T R−1Λ (∆t)S (x̂) + W
}−1

[Λ (∆t)S (x̂)]T R−1

[z (x̂, ∆t)− ỹ (t + ∆t) + ŷ (t)]
(13)

where the matrix S [q̂ (t)] is a generalized sensitivity matrix, and Λ(∆t) ∈ Rm×m is a
diagonal matrix with elements given by

λii = ∆t (14)

The i-th component of vector z [q̂ (t) , t] is given by

zi (q̂,∆t) = ∆tL1
f (ci) (15)

where L1
f (ci) is the 1-st Lie derivative and c [q̂ (t) , t] ∈ Rn → Rm is the output vector.

Then, the obtained d (t) in Eq. (13) is used to perform a nonlinear propagation of the state
estimates in Eq. (11) to time t. So, the measurement is processed at time t + ∆t to find
the new d (t) in [t, t + ∆t ], and then the state estimates are propagated to time t + ∆t. As
W decreases, more model error is added to correct the model, so that the estimates more
closely follow the measurements. As W increases, less model error is added, so that the
estimates more closely follow the propagated model.

A modified ALLEGRO using the PL signal observation model in Eq. (1) is now devel-
oped. To derive the S (q̂) matrix , the following matrices are defined

Ω (a) ≡



− [a×]

... −a
. . . . . . . . . . . . . . . . . .

−aT
... 0


 , Γ (b) ≡



− [b×]

... −b
. . . . . . . . . . . . . . . . . .

bT
... 0


 (16)

where a and b are 3-dimensional vectors. Another useful properties between quaternion q
and 3-dimensional vectors are given by

Ω (a)q = Ξ (q)a (17a)
Γ (b)q = Ψ (q)b (17b)

where matrices Ξ (q) and Ψ (q) are defined by

Ξ (q) ≡



q4I3×3 + [q13×]
. . . . . . . . . . . . . . .

−qT
13


 , Ψ (q) ≡




q4I3×3 − [q13×]
. . . . . . . . . . . . . . .

−qT
13


 (18)

Using the property A (q) = ΞT (q)Ψ (q) and substituting Eqs. (16), (17), and (18) into
Eq. (1) yields

cij [q̂ (t) , t] =
√

(r+AT(q̂)bm−tj)
T(r+AT(q̂)bm−tj)−

q
(r+ATbsi

−tj)T(r+AT(q̂)bsi
−tj)

λ

=
√

`+bT
mbm−2q̂TΩ(bm)Γ(tj−r)q̂−

q
`+bT

si
bsi

−2q̂TΩ(bsi)Γ(tj−r)q̂

λ

(19)

where ` = rTr− 2rTtj + tT
j tj . The matrix S (q̂) is formed by taking the partial derivative

of Eq. (19) with respect to q̂ and right-multiplying by Ξ (q̂) /2. Therefore, we have

S (q̂) =
1
2λ




q̂T[Ω(bs1)Γ(t1−r)+Γ(t1−r)Ω(bs1)]q
`+bT

s1
bs1−2q̂TΩ(bs1)Γ(t1−r)q̂

− q̂T[Ω(bm)Γ(t1−r)+Γ(t1−r)Ω(bm)]√
`+bT

mbm−2q̂TΩ(bm)Γ(t1−r)q̂

...
q̂T[Ω(bsm )Γ(tn−r)+Γ(tn−r)Ω(bsm )]√

`+bT
sm

bsm−2q̂TΩ(bsm )Γ(tn−r)q̂
− q̂T[Ω(bm)Γ(tn−r)+Γ(tn−r)Ω(bm)]√

`+bT
mbm−2q̂TΩ(bm)Γ(tn−r)q̂




Ξ (q̂)

(20)
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The remaining quantities in Eq. (13) are given by

Λ = ∆tIm×m (21a)

ŷ =




√
`+bT

mbm−2q̂TΩ(bm)Γ(t1−r)q̂−
q

`+bT
s1

bs1−2q̂TΩ(bs1)Γ(t1−r)q̂

λ
...√

`+bT
mbm−2q̂TΩ(bm)Γ(tn−r)q̂−

√
`+bT

sm
bsm−2q̂TΩ(bsm )Γ(tn−r)q̂

λ


 (21b)

z (x̂,∆t) = 0 (21c)

As shown in Ref. [3], the attitude error covariance using Eqs. (11) and (13) leads to the
same covariance of Eq. (10) if ∆t is small. Therefore, the predictive approach leads to an
efficient estimator.

Extended Kalman Filter

In this section, a quaternion based extended Kalman filter (EKF) using the PL signal phase
measurement with gyro measurements is developed for attitude estimation. The state error
vector has seven components consisting of error quaternion δq and gyro bias error ∆β. The
multiplicative error quaternion is defined by [31]

δq = q⊗ q̂−1 (22)

where q is the true quaternion, q̂ is the estimated quaternion, and the operator ⊗ refers to
quaternion multiplication. The inverse quaternion is given by q−1 =

[−qT
13 q4

]T. However,
the covariance matrix of the error quaternion is nearly singular since it has four compo-
nents. Lefferts et al. solved this problem by reducing the covariance into a three-component
representation [35]. The dimension of the covariance matrix is then 6 by 6. For a small
rotation, the error quaternion in Eq. (22) can be approximated by

δq ≈
[
δq13

1

]
(23)

The vector part of the error quaternion, δq13, corresponds to half Euler angle errors for a
small angle approximation. By using the quaternion kinematics model and the typical gyro
model, the state model equation can be written by

q̇ =
1
2
Ω (ω̃ − β − ηv)q (24a)

β̇ = ηu (24b)

where ηv and ηu are zero-mean Gaussian white-noise processes with the properties:

E [ηv(s)ηv(τ)] = σ2
vδ(s− τ)I3×3 (25a)

E [ηu(s)ηu(τ)] = σ2
uδ(s− τ)I3×3 (25b)

E [ηv(s)ηu(τ)] = 03×3 (25c)

where δ(t) is the Dirac delta function. By using the vector part of the error quaternion
in Eq. (23) and the additive gyro drift error ∆β, the state error equation of the EKF is
written as

∆ẋ = fx∆x + gxw (26)

where the state error is given by

∆x =
[
δq13

∆β

]
(27)
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The Jacobian matrices are given by

fx =
[− [ω̂×] − 1

2I3×3

03×3 03×3

]
(28a)

gx =
[− 1

2I3×3 03×3

03×3 I3×3

]
(28b)

where the angular velocity estimate is given by

ω̂ = ω̃ − β̂ (29)

For the state-observable discrete measurements model of the PL signal shown in Eq. (1),
the corresponding Hk matrix is given by

Hk =




...
Lij

k 01×3

...


 (30)

where

Lij
k = ∂∆φij

∂δq13

≈ − 2
λ

{
(r+AT(q̂−k )bm−tj)T

AT(q̂−k )[bm×]√
`m

− (r+AT(q̂−k )bsi
−tj)T

AT(q̂−k )[bsi
×]√

`si

}
(31)

The prediction of the covariance matrix is obtained by

Ṗ = fxP + PfT
x + gxQgT

x (32)

Then, the continuous-discrete EKF update equations are summarized by

∆x̂+
k = Kk

[
ỹk − hk

(
q̂−k

)]
(33a)

P+
k = [I6×6 −KkHk]P−k (33b)

q̂+
k = δq̂+

k ⊗ q̂−k (33c)

β̂
+

k = β̂
−
k + ∆β̂

+

k (33d)

where the Kalman gain matrix is obtained by

Kk = P−k HT
k

[
HkP−k HT

k + Rk

]−1
(34)

Unscented Filter

The EKF may fail to estimate the correct estimates because it uses a linearization of the
nonlinear system. Therefore, errors in truncating the Taylor series to first order should be
small. Also, a zero-mean Gaussian random process is assumed. Therefore, the mean and
covariance used in EKF are propagated by using only the first-order truncated linearization
of the nonlinear system. The third and higher order moments are thus all zero. Therefore,
the EKF has an error in the covariance expression when the fourth-order moments of the
Gaussian distribution (kurtosis) are not zero. A better mean and covariance expression can
be obtained by using the Unscented Filter (UF) developed by Julier, Uhlmann and Durrant-
Whyte [25, 36–39]. The UF uses the same structure as the EKF, however, the mean and
covariance propagations are different. The main idea of UF is that with a fixed number of
parameters it should be easier to approximate a Gaussian distribution than to approximate
an arbitrary nonlinear function. Although the UF needs more computations than the EKF,
it has several advantages; 1) the expected error is lower than the EKF and 2) the UF avoids
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the derivation of Jacobian matrices. In fact, the UF is accurate to third order for Gaussian
inputs for all nonlinearities and at least to second order for non-Gaussian inputs [37].

In this section, an UF is developed using PL phase measurements. The quaternion is
used as the attitude parameter because it is singularity free and the kinematics equation
is bilinear. However, since quaternions are not independent parameters, the normalization
constraint should be satisfied. The sigma points generated by using quaternions will violate
this constraint. To solve this problem the modified Rodrigues parameter (MRP) [31] is used
to generate the sigma points, which can be converted into quaternions. Although the MRPs
have singularity at a 360◦, the error MRPs related with the error quaternions should not
have singularities in practice. Also, the exact form of quaternion propagation solution can
still be used. This technique is first introduced by Crassidis and Markley [40] and called the
unscented quaternion estimator (USQUE). Let the state vector be

x̂+
k =

[
δp̂+

k

β̂
+

k

]
(35)

where δp̂k is the error MRP and β̂k is the bias error. For the application of the UF, a
modified covariance matrix is given by [40]

Qk =
∆t

2

[ (
σ2

v − 1
6σ2

u∆t2
)
I3×3 03×3

03×3 σ2
uI3×3

]
(36)

Then, the sigma points are generated by

σk ← 2n columns from±
√

(n + λ)Pk + Qk (37a)

χk (0) = x̂k (37b)

χk (i) = σk (i) + x̂k (37c)

where n is the dimension of the state and λ =
{
α2 (n + κ)− n

}
is a scaling parameter. The

parameter κ is a secondary scaling parameter which is usually set to 0. The parameter α is
usually set to a small positive value, and β is used to compensate the higher-order moments.
Setting β = 2 is optimal for Gaussian distributions. Efficiently methods to compute the
matrix square root can be found by using the Cholesky decomposition. If an orthogonal
matrix square root is used, then the sigma points lie along the eigenvectors of the covariance
matrix. Note that there are a total of 2n values for σk (the positive and negative square
roots). The mean and covariance of these points are known [25]. Since this set of points is
symmetric, its odd central moments are zero, so its first three moments are the same as the
original Gaussian distribution.

By using those sigma points the corresponding error quaternions can be generated by

δq+
4 (k, i) =

1− ||χδp
k (i) ||2

1 + ||χδp
k (i) ||2

(38a)

δq+
13 (k, i) =

[
1 + δq+

4 (k, i)
]
χδp

k (i) (38b)

where χδp represents the sigma points pertaining to the error MRPs. Then, the propagation
of the error quaternions are given by

q̂−k+1 (i) = Ω
[
ω̂+

k (i)
]
q̂+

k (39a)

δq−k+1 (i) = q̂−k+1 (i)⊗ [
q̂−k+1 (0)

]−1
(39b)

where
q̂+

k (0) = q̂+
k , q̂+

k (i) = δq+
k (i)⊗ q̂+

k (40)
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Then, the propagated sigma points are given by

χk+1 (0) ≡
[

χδp
k+1 (0)

χβ
k+1 (0)

]
=

[
0

χβ
k (0)

]
(41a)

χk+1 (i) ≡
[

χδp
k+1 (i)

χβ
k+1 (i)

]
=

[
δq−13(k+1,i)

1+δq−4 (k+1,i)

χβ
k (i)

]
(41b)

The predicted mean for the state estimate is calculated by

x̂−k+1 =
1

n + λ

[
λχk (0) +

1
2

2n∑

i=1

χk+1 (i)

]
(42)

The predicted covariance is given by

P−k+1 = 1
n+λ

{ [
λ +

(
1− α2 + β

)
(n + λ)

] [
χk+1 (0)− x̂−k+1

] [
χk+1 (0)− x̂−k+1

]T

+ 1
2

2n∑
i=1

[
χk+1 (i)− x̂−k+1

] [
χk+1 (i)− x̂−k+1

]T
}

+ Qk

(43)
Since the observation γ can be written as

γk+1 (i) =




...
|r+AT[q̂−k+1(i)]bm−tj|−|r+AT[q̂−k+1(i)]bsi

−tj|
λ + nij + τi

...


 (44)

The mean observation is obtained by

ŷ−k+1 =
1

n + λ

[
λγk+1 (0) +

1
2

2n∑

i=1

γk+1 (i)

]
(45)

The output covariance is given by

Pyy
k+1 = 1

n+λ

{ [
λ +

(
1− α2 + β

)
(n + λ)

] [
γk+1 (0)− ŷ−k+1

] [
γk+1 (0)− ŷ−k+1

]T

+ 1
2

2n∑
i=1

[
γk+1 (i)− ŷ−k+1

] [
γk+1 (i)− ŷ−k+1

]T
} (46)

Then the innovations covariance is given by

Pνν
k+1 = Pyy

k+1 + Rk+1 (47)

The cross covariance matrix is determined using

Pxy
k+1 = 1

n+λ

{ [
λ +

(
1− α2 + β

)
(n + λ)

] [
χk+1 (0)− x̂−k+1

] [
γk+1 (0)− ŷ−k+1

]T

+ 1
2

2n∑
i=1

[
χk+1 (i)− x̂−k+1

] [
γk+1 (i)− ŷ−k+1

]T
} (48)

The filter gain is then computed by

Kk+1 = Pxy
k+1

(
Pνν

k+1

)−1 (49)

The state vector can now be updated by

x̂+
k+1 = x̂−k+1 + Kk+1νk+1 (50a)

10



Figure 2: Geometric Configuration of Simulation

P+
k+1 = P−k+1 −Kk+1Pνν

k+1K
T
k+1 (50b)

The updates of MRPs and the biases are taken by using Eq. (50). Then, the quaternions
are updated by

q̂+
k+1 = δq̂+

k+1 ⊗ q̂−k+1 (0) (51)

where δq̂+
k+1 is given by

δq+
4 (k + 1) =

1− ||δp̂+
k+1||2

1 + ||δp̂+
k+1||2

(52a)

δq+
13 (k + 1) =

[
1 + δq+

4 (k + 1)
]
δp̂+

k+1 (52b)

For the next step the states should be set as

x̂+
k+1 =

[
0

∆β+
k+1

]
(53)

The procedures of USQUE are as follows. First, the sigma points are generated by using
some initial covariance. Then, they are transformed into error quaternions. The quaternions
are propagated using Eq. (39) and the error quaternions are computed again. Then, the
propagated sigma points and observations are obtained by using Eqs. (41) and (44). The
predicted mean and covariance are then computed by using Eqs. (42), (45), (43), (46),
and (48). Then, the update of covariance and error MRP are obtained by Eqs (50) and
(49). Next, the update of the quaternion is accomplished by using the updated error MRP.
Finally, the state is reset using Eq. (53) for the next propagation.

Simulation and Results

Pseudolite signals are simulated using the geometric configuration shown in Figure 2. The
locations of the PL TXs and receiver antennas are displayed as TX1, TX2, TX3, TX4,
MA, SA1, SA2, and SA3, respectively. The unit vectors {I, J,K} are for the reference
coordinate system and {x, y, z} are for the body fixed coordinate system. The coordinates
of the transceivers in the reference frame and those of the antennas in the body fixed frame
are shown in Table 1. It is assumed that the position of the origin of the body fixed frame,
r = [ 2.5, 2.5, 0 ]T(m), is given from another source such as navigation data. Then, using
these PL signal phase measurements, the characteristics of each attitude determination
algorithm are investigated.

11
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Figure 3: LM Method Euler Angle Errors (Static)

LM Method

Figure 3 shows the Euler angle errors and their 3-σ boundary layers of the LM method. As
can be seen, the errors are well inside 3-σ bounds. Also, we can notice that the errors in
the pitch axis are smaller than those of the other axes when we use the sightline geometry
shown in Figure 2.

Nonlinear Predictive Filter

To investigate the behaviour of the Predictive filter, three different angular velocities are
considered. First, the static case is considered to compare with the LM method. Then, cases
of a LEO spacecraft having an orbital period of 95 minutes are considered. The angular
velocities and weighting matrices of all cases are shown in Table 2. Since both ∆t and W
can affect the filter performance various values are chosen. The sampling interval, ∆t, is set
to 10 seconds.

Static Case

To show the convergence behavior large initial errors are considered:



δφ
δθ
δψ


 =



−43.086◦

−13.851◦

−55.382◦




A comparison of the Euler angle error is shown in Figure 4. The horizontal axis represents the
time in hours unit and the longitudinal axis is the roll angle error in degrees. The 3-σ error
bounds are also displayed in the figure. As can be seen, the roll angle error converges after
8 minutes for W = 106I. However, the error clearly decreases as the weighting increases.

Table 1: Locations of Transceivers and Antennas
Transceivers Locations (m) Antennas Locations (m)

t1 [ 0, 0, 5 ]T bm [ -0.05, -0.05, 0 ]T

t2 [ 0, 5, 5 ]T bs1 [ 0.05, -0.05, 0 ]T

t3 [ 5, 0, 5 ]T bs2 [ 0.05, 0.05, 0 ]T

t4 [ 5, 5, 5 ]T bs3 [ -0.05, 0.05, 0 ]T

12



Table 2: Angular Velocities and Weighting Matrices for Each Case
Cases Weighting Matrices Angular Velocity (rad/s)

Static
W = 0
W = 105I
W = 106I

ω =

2
4

0
0
0

3
5

Moving
W = 0
W = 105I
W = 5× 105I

ω =

2
4

0
0.0011

0

3
5
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Figure 4: Attitude Error Comparison in the Roll Axis

To investigate the characteristics of the estimation errors, zero initial errors are considered
with the weight matrices W = 105I, W = 104I, W = 103I, and W = 0. To investigate
the statistical properties of the estimation errors, the Gaussian distribution of the roll angle
errors are compared in Figure 5. As can be seen, the standard deviation decreases as the
weighting increases. The mean and the standard deviation values are shown in Table 3.
For W = 0, which is the deterministic case, the 3-σ values of Euler angle errors are over
6 degrees. However, for W = 105I, the 3-σ values of Euler angle errors are less than 0.4
degrees. From the static simulation survey, we conclude that the larger weighting introduces
smaller attitude errors. However, the convergence to the correct attitude is the slower.

Moving Case

To investigate the attitude determination performance of the Predictive filter in motion, a
LEO orbit motion shown in Table 2 is considered. Pitch angle error is compared in Figure
6. At first as the weighting increases the Euler angle errors decrease. However, unlike the
static case the errors seem to be biased for larger weightings. As a conclusion, for the static
case the estimation error of the Predictive filter decreases as the weight increases. However,

Table 3: Mean and Standard Deviation Values
Mean (Deg.) Standard Deviation (Deg.)

Weighting Roll Pitch Yaw Roll Pitch Yaw

W = 105I 0.0755 -0.1059 0.0341 0.1085 0.1061 0.1237

W = 104I 0.0708 -0.1248 0.0540 0.3787 0.3945 0.4120

W = 103I 0.0690 -0.1170 0.0499 1.0880 1.0511 0.9850

W = 0 0.0428 -0.1501 0.0891 2.0120 2.1646 1.9007
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Figure 7: Attitude Error Comparison in the Pitch Axis

for the moving cases if the weights exceed certain limits the estimation errors increase and
can violate the 3-σ bounds.

Case using angular rate measurements

When the angular rate measurements are available, we can still use the modified ALLEGRO
by using model given by

˙̂q =
1
2
Ξ (q̂) [ω̃ + d] (54)

Then, we have new form of z variable as

z =
1
2λ




q̂T[Ω(bs1)Γ(t1−r)+Γ(t1−r)Ω(bs1)]q
`+bT

s1
bs1−2q̂TΩ(bs1)Γ(t1−r)q̂

− q̂T[Ω(bm)Γ(t1−r)+Γ(t1−r)Ω(bm)]√
`+bT

mbm−2q̂TΩ(bm)Γ(t1−r)q̂

...
q̂T[Ω(bsm )Γ(tn−r)+Γ(tn−r)Ω(bsm )]√

`+bT
sm

bsm−2q̂TΩ(bsm )Γ(tn−r)q̂
− q̂T[Ω(bm)Γ(tn−r)+Γ(tn−r)Ω(bm)]√

`+bT
mbm−2q̂TΩ(bm)Γ(tn−r)q̂




Ξ (q̂) ω̃

(55)
Figure 7 shows the pitch angle estimation errors for three different weightings. The angular
rate measurements error characteristics are the same as those used in EKF and UF com-
parison. Also, to investigate the large initial errors case, the same large initial Euler angle
errors used in EKF and UF are applied, too. As can be seen, the pitch angle errors decrease
when the weighting increases. However, its convergence is slow.

EKF and UF

The Pseudolite signal measurements as well as angular velocity measurements with gyros
are used for the comparison of EKF and UF. The comparison is accomplished in two parts.
The first compares the mean estimation error through Monte Carlo like simulations. By
using this comparison, the statistical properties of the EKF and UF can be investigated.
Then, by using large initial errors the convergence behaviors are investigated.
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Figure 8: EKF vs. UF Pitch Error

Monte Carlo Simulation

To compare the EKF and UF, a Monte Carlo simulation is applied. The initial Euler angle
errors and gyro drift errors are generated randomly by




δφ
δθ
δψ


 = 30 randn (3, 1) (Deg)

∆β = .0001 randn (3, 1) (rad/sec)

where the ‘randn’ is the MATLAB command used to generate a Gaussian normal random
number whose standard deviation is 1. The initial covariance matrix is set to

P0 =
[

0.5I3×3 03×3

03×3 10−5I3×3

]

The process covariance matrix is given by Eq. (36) where ∆t = 10 seconds, σv = 1.7222e-5
(rad/sec3/2), and σu = 1.8133e-8 (rad/sec3/2). The measurement covariance matrix is given
by R = σ2

pI12×12 where σp = 0.0263(cycles).
By using 100 random initial attitude errors, bias errors, and measurements, the mean

values of Euler angle errors and biases errors are compared in the following figures. Figure
8 shows the pitch angle estimation error comparison. As can be seen, the 3-σ bounds of
UF are slightly larger than those of the EKF. However, this does not mean that the EKF’s
covariance is the smaller. Since the EKF uses a linearization approximation, the mean and
covariance expression do have errors [36]. In actuality, the covariance expression of UF is
more correct than the EKF. In fact, the differences in the mean estimation errors cannot
be distinguishable. Also, the differences of 3-σ bounds between the UF and EKF are the
smallest for the pitch axis while the values of 3-σ bounds are the largest due to the sightline
geometry. Figure 9 shows the gyro drift errors comparison. Now, the 3-σ bounds of the UF
are slightly smaller than those of the EKF. For the same reason in the Euler angle errors,
the covariance of the UF is more reliable than that of the EKF. Similar to the Euler angles
error, the differences in the mean value of the gyro drift error are not distinguishable while
the differences in the 3-σ bounds are slightly different.
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Figure 10: UF Attitude Estimation Errors

Large Initial Errors

To compare the convergence behavior of the EKF and UF, a large initial error is considered
as 


δφ
δθ
δψ


 =




0
−120◦

0


 , ∆β =



−0.0001

0.0003
0.0002


 (rad/sec)

With the given initial guesses, the Euler angle estimation errors are compared in Figures
10 and 11. As can be seen, the estimation of the EKF fails while the UF estimation errors
are well within their 3-σ bounds, although the convergence of the covariance and estimation
error requires an hour. The failure of the EKF is caused by the linearization approximation
of the EKF that works only for small, first-order, errors. Similar to Euler angle errors, the
gyro drift estimation of the EKF fails. However, the estimation errors of the UF seem to be
within 3-σ bounds. Also, the convergence of the drift errors requires more time than Euler
angle estimation.
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Figure 11: EKF Attitude Estimation Errors

Concluding Remarks

Attitude estimation algorithms using pseudolite signals were developed and compared. The
comparison is separated into two cases, the static and the moving cases. For the static case,
the Levenberg-Marquardt algorithm is compared with the modified ALLEGRO. As a result,
the modified ALLEGRO with large weighting shows the smallest estimation errors while the
estimation error covariance of all methods satisfies the Cramér-Rao lower bounds. For the
moving case, we consider a LEO spacecraft motion. Since the iterative algorithm, LM, is not
efficient, only the modified ALLEGRO, EKF, and UF are compared. The estimation errors
of the nonlinear predictive filter decrease as the weighting increases. However, unlike the
static case, the estimation error of the modified ALLEGRO increases as the weight increases
after a certain value of weighting which is varying with respect to sampling interval, ∆t, and
spacecraft angular motion. This problem can be solved by using angular rate measurements.

In the comparison of large initial errors behavior, the modified ALLEGRO and UF
provide more robust results than EKF. However, both the EKF and UF determine the
attitude well within 0.5 degrees Euler angle errors while the modified ALLEGRO seems to
have smaller residual errors. So the best choice is to use the modified ALLEGRO in the
beginning then switch into either the EKF or UF using those estimates as the initial guesses.
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