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Abstract

Model-error control synthesis is a nonlinear robust control approach that mitigates the

effects of modeling errors and disturbances on a system by providing corrections to the

nominal control input directly. In this paper model-error control synthesis is applied to

the spacecraft attitude control problem, where the model-error vector is computed using a

receding-horizon approximation. The main advantage of this approach over other adaptive

approaches for spacecraft attitude control is that it can simultaneously handle both inertia

modeling errors and time varying disturbances. A design scheme is presented to determine

the weighting factor and the length of the associated receding-horizon interval of the model-

error solution by minimizing the closed-loop sensitivity norm. Simulation results are provided

to show the performance of the new control approach.

Introduction

Model-error control synthesis (MECS) is a signal synthesis adaptive control method.1

Robustness is achieved by applying a correction control to the nominal control vector, thereby

minimizing the effects of modeling errors and disturbances at the system output.2,3 The
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model-error vector is determined by using either a one-step ahead prediction approach1,4 or

an Approximate Receding-Horizon (ARH) approach.5 As shown by the benchmark problem

example in Ref. 4, the one-step ahead prediction approach inherent in MECS could not

stabilize the system for the given ranges of uncertainties, which has one pole at the origin

and two poles on the imaginary axis. When using the ARH approach the closed-loop system

can tolerate relatively larger uncertainties than the one-step ahead prediction approach.

However, the one-step ahead prediction approach may be easier to design for complicated

systems than the ARH approach. Therefore, choosing between the one-step ahead prediction

approach or the ARH approach to determine the model error depends on the particular

properties and required robustness in the system to be controlled.

In Ref. 1 MECS with the one-step ahead prediction approach is first applied to suppress

the wing rock motion of a slender delta wing, which is described by a highly nonlinear

differential equation. Results indicated that this approach provides adequate robustness for

this particular system. In Ref. 4 a simple study to test the stability of the closed-loop system

is presented using a Padé approximation for the time delay inherent in the MECS approach,

which showed the relation between the system zeros and the weighting in the cost function.

The analysis proved that some systems cannot be stabilized using the original model-error

estimation algorithm, which lead to the ARH approach in the MECS design to determine

the model-error vector in the system.5 A closed-form solution of the ARH approach using

Quadratic Programming (QP) is first presented by Lu.6 Although the problem is solved

from a control standpoint, the algorithm must be reformulated as an estimation problem to

determine the model-error vector, which is discussed in this current paper.

The control of spacecraft for large-angle slewing maneuvers poses a difficult problem,

which is mainly due to the highly nonlinear characteristics of the governing equations. Much

effort has been devoted to the closed-loop design of spacecraft with large angle slews. In

fact, many viable and practical stable control laws have reached mainstream use today on

several missions, including the International Space Station.7 A new approach by Wallsgrove
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and Akella8 uses a smooth attitude-stabilizing control law, which is globally stable in the

presence of bounded unknown disturbances. However, only the regulation case is considered

in this work. Other researchers focus on the development of adaptive control laws that

maintain desired closed-loop dynamics in the presence of modeling errors and disturbances.

Ahmed et al.9 present an approach that identifies the inertia matrix in real time and proves

that the process is asymptotically stable. Schaub et al.10 expand upon this approach by also

estimating for disturbance inputs. The disadvantages of these adaptive approaches are the

state vector must be appended to estimate the parameters and the parameters themselves,

including the disturbance inputs, must be constant. A disturbance accommodating technique

has been developed to handle time varying disturbances,11 but this approach requires the use

of specific basis functions to characterize the disturbance. Still, these adaptive approaches

form a foundation to provide robustness for large-angle spacecraft slewing maneuvers.

In this paper the MECS approach with the ARH solution is applied to the spacecraft atti-

tude control problem. The advantages of this approach over the aforementioned approaches

for large-angle spacecraft slewing maneuvers include: 1) the MECS approach does not re-

quire appending the state vector to estimate for the unknown parameters, 2) it can handle

time varying disturbances without assuming any form for these disturbances, and 3) it can

easily be modified to handle general input-tracking (possible time-varying) requirements.

In Ref. 10 an adaptive control approach using attitude, based on the Modified Rodrigues

Parameters (MRP), and angular-velocity information has been developed. This approach

provides robustness in the system by estimating the inertia matrix and (assumed constant)

external disturbances through a linear closed-loop dynamics expression. The development of

the MECS approach in our work retains the same basic non-adaptive portion of the controller

in Ref. 10 for the nominal controller, however, instead of estimating each element of the iner-

tia matrix and the external disturbance separately, the whole effect of both uncertainties is

estimated by the ARH approach through a model-error vector in the dynamics. The MECS

approach subtracts the determined model error from the nominal control input in order to
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track the desired dynamics in the face of bounded inertia and external disturbance errors.

The organization of this paper is as follows. First, the ARH approach to determine the

model-error vector in a system is summarized. As an alternative form to the original ARH

solution the state prediction in the ARH approach is modified using a higher-order Taylor

series expansion. Second, the new approach is applied to the spacecraft attitude control

problem. A design scheme is presented to determine the weighting factor and the length of

receding-horizon interval to minimize the sensitivity function norm of the closed-loop system.

Next, a nonlinear analysis of the spacecraft attitude control system using MECS is shown.

Finally, results for spacecraft attitude maneuvers are shown through simulation.

Approximate Receding-Horizon Solution

In this section the basic concept of MECS is introduced, where the model error is deter-

mined as a solution of the approximate receding-horizon optimization problem.

Model-Error Control Synthesis Concept

The overall MECS system block diagram is shown in Figure 1, where x(t) is the state

vector and r(t) is the reference vector. The model error is determined using the system

states, the control input and the current measurement. The determined model error, û(t),

corrects the nominal control input, ū(t), to provide an overall control input, u(t). Since a

response in the system must be given before compensation is applied, the following model

error correction input is used:1

u(t) = ū(t) − û(t − τ) (1)

where ū(t) is the nominal control input at time t, which can be any controller, and û (t − τ)

is the estimated model error at time t− τ , determined by the solution of the ARH problem.

The time delay τ is always present in the overall MECS design because the measurement

of the output y(t), denoted by ỹ(t), must be given before the error in the system can be

corrected. For discrete-time measurement systems the time delay can be set to the sampling
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interval. If the time delay is much longer than the expected, the error correction may yield

some adverse effects in the response and, in the worst case, the closed-loop system may

unstable. However, our experience has indicated that for most systems whose sampling rate

is below Nyquist’s upper limit, this time delay causes no significant problems on stability.

Still, the robustness with respect to some range of time delay on the performance response

has to be checked during the design procedure.

Model Error Determination

To determine the model error in a system, the receding-horizon optimization problem is

set up as follows:6

min
û

J [x(t), t, û(t)] =

∫ t+T

t

[

eT (ξ) R−1(ξ) e(ξ) + ûT (ξ) W (ξ) û(ξ)
]

dξ (2)

subject to

ẋ(t) = f [x(t)] + G [x(t)]u(t) + G [x(t)] û(t) (3a)

y(t) = c [x(t)] (3b)

with the initial condition, x0 = x(0), where R and W are each positive definite weighting

matrices, f [x(t)] : <n → <n is the assumed model vector, G [x(t)] : <n → <n×q is assumed

control-input and model-error distribution matrix, x(t) ∈ <n is the state vector, u(t) ∈ <q

is the control input, û(t) ∈ <q is the to-be-determined model error, c [x(t)] : <n → <m,

and y(t) ∈ <m is the assumed system output. Both f [x(t)] and G [x(t)] are C2, where the

first and the second derivatives are continuous and c [x(t)] is sufficiently differentiable. In

addition, f (0) is equal to zero (if not, we can transform the states x(t) to some new states

so that this condition holds). Also, we assume that a unique solution for x(t) exists. In

the receding-horizon problem the error at the end of horizon is forced to be equal to zero as
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follows:

e(t + T ) = 0 (4)

where the residual error is defined by

e(t) = ỹ(t) − y(t) (5)

where the measurement of the output, ỹ(t), may include zero-mean Gaussian white noise. If

it includes random signals, then the correct way to define the error at the end of horizon is

by using an expectation as follows: E {e(t + T )} = 0. However, because the random signal

is assumed to be zero mean, the overall effect on e(t+T ) is zero in the averaged sense, i.e. it

is unbiased.12 For notational simplicity, we simply write e(t + T ) = 0 without expectation.

Note that T is the length of the receding-horizon interval, which is not the sampling interval

in general.

There are some differences in the above formulation from the original receding-horizon

problem of Ref. 6, which was not originally formulated as an estimation problem but a

control problem. In the original receding-horizon formulation, the residual error is the error

between a reference trajectory and an output trajectory, and the optimization variable is not

a resulting model-error effect but a control input in the system. The closed form solution of

Eq. (2) is not available in general. However, by approximating the cost function, a closed

form solution can be obtained.6 Although this problem is reformulated to our model-error

estimation problem, most of derivations remain the same.

At each time t, the model-error solution û(t) over a finite horizon [t, t+T ] is determined

on-line. Define h ≡ T/N for some integer N ≥ n/m, which is the number of sub-intervals

on [t, t+T ]. This lower bound guarantees the existence of the ARH solution (details can be

found in Ref. 6). Define

L(k h) ≡ eT (t + k h)R−1(t + k h)e(t + k h) + ûT (t + k h) W (t + k h) û(t + k h) (6)
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The cost function to be minimized is approximated using a trapezoidal formula or Simpson’s

rule.6

To obtain an explicit expression for Eq. (6) in terms of the known quantities at time t, such

as the current state, input, etc., we need to make the following assumptions. Since the future

values of ỹ(t) and u(t) are unknown in general, they are assumed to remain constant over

the finite horizon [t, t + T ]. Although this assumption seems to be an extremely inaccurate

approximation, in the design process the length of subinterval, h, and the weights, R and/or

W , are tuned appropriately for the system to be stable. The constant-over-the-interval

assumption becomes less accurate as the receding-horizon step-time T increases and/or the

speed of response increases. Therefore, the weights for L(kh) in Eq. (6) should become larger

as the index, k, increases. Our approach uses an exponential weighting scheme:

Rk = erp Rk−1 (7a)

Wk = ewp Wk−1 (7b)

where R0 and W0 are assumed given, and rp and wp are non-negative real values, which may

be time varying. For simplicity and avoiding the cross-product terms of û(t+ih) and û(t+jh),

we assume that G[x(t + kh)] ≈ G[x(t)] and F [x(t + kh)] ≈ F [x(t)], where F ≡ ∂f/∂x (see

Ref. 5 for details). With these assumptions, the future state can be approximated using

either a repeated first-order or an rth-order Taylor series expansion, where r is the relative

degree of the system.13 After using this expansion, then the model error can be determined.

Details on the expansion and the model-error solution can be found in Ref. 14.

Spacecraft Attitude Control

In this section the nominal control design in Ref. 10 is first summarized and then the

model-error correction input using the ARH approach is derived. Next, a method is derived

to choose the weighting and the length of receding-horizon interval to minimize the sensitivity

function norm of the closed-loop system. Then, a stability analysis for the nonlinear system,
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which includes the actual dynamics, is presented. Finally, simulation results are shown to

verify the new control design approach.

Nominal Controller Design

The spacecraft attitude kinematics and dynamics can be written as follows:15

σ̇(t) =
1

4
B [σ(t)] ω(t) (8a)

ω̇(t) = −I−1 [ω(t)×] Iω(t) + I−1u(t) + I−1û(t) (8b)

where σ(t) represents the Modified Rodrigues Parameter (MRP) vector, ω(t) is the angular-

velocity vector, I is the spacecraft inertia matrix, û(t) is the model-error vector to be

determined (which is a function of the unknown external disturbances, spacecraft moment

of inertia and the angular velocity), and u(t) is the total control input defined by Eq. (1).

The matrix B [σ(t)] is given by15

B [σ(t)] ≡
[

1 − σ2(t)
]

I 3×3 + 2 [σ(t)×] + 2 σ(t)σT (t) (9)

where I3×3 is a 3 × 3 identity matrix, σ2(t) = σT (t)σ(t), and the inverse is given by

B−1 [σ(t)] =
[

1 + σ2(t)
]−2

BT [σ(t)] (10)

For a ≡ [a1, a2, a3]
T , the cross product operator [a×] is defined by

[a×] ≡













0 −a3 a2

a3 0 −a1

−a2 a1 0













(11)
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From the control design in Ref. 10, the nominal control input, which performs a feedback

linearization, is given by

ū(t) = [ω(t)×] Iω(t) + Iφ(t) (12)

with

φ(t) = −Pω(t) −
{

ω(t) ωT (t) +

(

4K

1 + σ2(t)
− ω2(t)

2

)

I3×3

}

σ(t)

− 4KIB
−1 [σ(t)]

∫ t

0

σ(ξ)dξ (13)

where P , K, and KI are the control gain matrices and ω2(t) = ωT (t) ω(t). After substituting

this control input into the dynamics in Eq. (8), the closed-loop system becomes

σ̈(t) = −P σ̇(t) − Kσ(t) − KI

∫ t

0

σ(ξ) dξ +
1

4
B [σ(t)] I−1 {û (t) − û (t − τ)} (14)

In Ref. 10 the inertia matrix, I, and external disturbances are estimated by an adaptive

scheme, where the model parameters are updated on-line in the control law so that the

closed-loop system is globally asymptotically stable. In this paper instead of using the

adaptive scheme, the total model-error vector, û(t), is estimated by the ARH solution and

the control input is corrected using the MECS approach shown in Figure 1.

Model Error Determination

Setting P = pI3×3, K = kI3×3, and KI = kII3×3, where p, k, and kI are positive constants,

yields

σ̈i(t) = −p σ̇i(t) − k σi(t) − kI

∫ t

0

σ(ξ) dξ + ν̂i(t) − ν̂i(t, t − τ) (15)
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for i = 1, 2, 3, where

ν̂(t) =
1

4
B [σ(t)] I−1û(t) (16a)

ν̂(t, t − τ) =
1

4
B [σ(t)] I−1û(t − τ) (16b)

and ν̂(t) ≡ [ν̂1(t), ν̂2(t), ν̂3(t)]
T and ν̂(t, t − τ) ≡ [ν̂1(t, t − τ), ν̂2(t, t − τ), ν̂3(t, t − τ)]T .

The state-space form for each axis is given by

ẋi(t) = Aixi(t) + Bi $i(t, t − τ) + Bi ν̂i(t) (17a)

yi(t) = Ci xi(t), (17b)

for i = 1, 2, 3, where

$i(t, t − τ) ≡ ν̆i(t) − ν̂i(t, t − τ) (18a)

ν̆i(t) ≡ −kI

∫ t

0

σi(ξ) dξ (18b)

xi(t) =

[

xi1(t), xi2(t)

]T

=

[

σi(t), σ̇i(t)

]T

(18c)

and

Ai =







0 1

−k −p






, Bi =







0

1






, Ci =

[

1 0

]

(19)

Usually kI is chosen to be as small as possible so that the integral control action does

not significantly affect the transient response, while also reducing the steady-state error.

Therefore, in order to help simplify the analysis by keeping the order of the model equal to

two, the integral control term is not used for the design process. However, it will be used in

the final control law. After the vector ν̂(t) is determined, the actual model-error correction
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input, û(t), is given by

û(t) =
4

[1 + σ2(t)]2
I BT [σ(t)] ν̂(t) (20)

Since the relative degree is 2, we choose the value of the subinterval N be equal to 2, and the

predicted states at time t + h are determined using the rth-order Taylor series expansion.

Finally, the estimated model-error correction input is given by

ν̂i(t) = a1 xi1(t) + a2 xi2(t) + a3 $i(t, t − τ) + a4 ỹi(t) (21)

for i = 1, 2, 3, where a1, a2, a3 and a4 are functions of rp, wp, h and τ (given in the Appendix

for the N = 2 case), and ỹi(t) is the i-th element of ỹ(t). Note that Eq. (21) still retains the

integral control action.

Design Process

Our goal is to determine rp, wp, h and τ that minimizes the ∞-norm of sensitivity function

for the system given by Eq. (17). To accomplish this goal, the closed-loop system has to be

derived. Neglecting the effects of noise on the system, then the following closed-loop transfer

function is obtained:

yi(t) =
Ncl(s)

Dcl(s)
[ν̂i(t)] ≡ S(s) [ν̂i(t)] (22)

where S(s) is sensitivity function, with

Dcl(s) = [dt(s) + a3nt(s)]Dk(s)Ds(s) + [(1 − a3) dt(s) + a3nt(s)] Nk(s)Ns(s)

+ dt(s) (a1 + a4 + sa2)Dk(s)Ns(s) (23a)

Ncl(s) = [dt(s) + a3nt(s)]Dk(s)Ds(s) (23b)
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The term Nk(s)/Dk(s) is the transfer function of the integral control action given by Eq. (18b).

Note that the nominal controller in Eq. (12) is now embedded in the system model through

Eq. (17). The transfer function Ns(s)/Ds(s) is equal to Ci(sI2×2−Ai)
−1Bi. Also, nt(s)/dt(s)

is a Padé approximation of e−τs from the time delay in the MECS design. The following

(3, 3) Padé approximation is used:16

e−τs ≈ −τ 3 s3 + 12 τ 2 s2 − 60 τ s + 120

τ 3 s3 + 12 τ 2 s2 + 60 τ s + 120
≡ nt(s)

dt(s)
(24)

Note that all variables in Eq. (22) are evaluated at time t only now, which is due to the

use of the Padé approximation for the time delay. The variables rp, wp, h and τ are chosen

so that the ∞-norm of the sensitivity function, ||S(jω)||∞, is minimized. For this partic-

ular problem we have found that the stable region is most affected by the values of h and

rp. Hence, we choose to hold the other variables constant.17 Although this is strictly not

an optimal approach from a parameter optimization point of view, i.e. by minimizing the

sensitivity function, it allows us to visualize the effects of the most sensitive parameters in

finding the required region. Further optimizations may yield better results, i.e. by perform-

ing a numerical parameter optimization to find all four parameters that minimize ||S(jω)||∞,

but our simple approach provides adequate robustness characteristics in the MECS design,

which is shown through simulation. So, the parameter space for the sought values is now

2-dimensional (rp and h). We set k = 1.0, p = 3.0 and kI = 0.090, which are adopted from

Ref. 10, and w0 = 1, wp = 0.1, r0 = 0.5 and τ = 0.0025 sec. The closed-loop characteristic

equation is given by

Dcl = τ 3 (1 − a3) s6 +
[

τ 3 (a2 − 3 a3 + 3) + 12 τ 2 (1 + a3)
]

s5 +
[

τ 3 (1 + a1 − a3 + a4)

+36 τ 2 (36 a3 + 12 a2 + 36) + 60 τ (1 − a3)
]

s4 +
[

0.09 τ 3 (1 − a3) + 12 τ 2 (1 + a1 + a3 + a4)

+60 τ (3 + a2 − 3 a3) + 120 (1 + a3)] s2 +
[

1.08 τ 2 (1 − a3) + 60 τ (1 + a1 − a3 + a4)

+120 (1 + 3 a2 + 3 a3)] s + 10.80 (1 − a3) (25)
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A stable region for Eq. (25) can now be found using linear system theory, such as the Routh-

Hurwitz stability criterion, root locus, etc. After the stable region is found, by calculating

‖S(jω)‖∞ for various values of h and rp, we find that the norm is more sensitive to h than rp.

Figure 2 depicts h versus the normalized values of ‖S(jω)‖∞, settling time and maximum

overshoot for an impulse ν̂(t) input, with rp set to 0.1 (chosen by trial and error). To

minimize the sensitivity norm the value of h has to be chosen as small as possible. However,

the settling time increases as h decreases and the control input may saturate. Therefore,

good values of h are in the range of 1.48 ≤ h∗ ≤ 1.58. By trial and error h∗ = 1.5 sec is

selected. Finally, the determined model error for i = 1, 2, 3 is given by

ν̂i(t) = 0.72 xi1(t) + 2.03 xi2(t) − 0.66 $i(t, t − τ) − 0.06 ỹi(t) (26)

It is important to note that although the design procedure to determine the gains is fairly

complex, the resulting model-error correction in Eq. (26) is very simple. Also, to check the

robustness with respect to various values of the time delay, τ , the roots of Eq. (25) are

computed for different τ . All the poles are in the left half plane for values of τ up to 0.1 sec.

Nonlinear Analysis and Simulation Results

The simulations contain both modeling errors and external disturbances. The actual

system is simulated using

σ̇a(t) =
1

4
B [σa(t)] ωa(t) (27a)

ω̇a(t) = −I−1
a [ωa(t)×] Iaωa(t) + I−1

a u(t) + I−1
a F(t) (27b)
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where the subscript a denotes the actual (true) system and F(t) denotes an external distur-

bance vector. In the simulations we use the following inertia matrices taken from Ref. 10:

Ia =













30 10 5

10 20 3

5 3 15













kg-m2, I =













5 0 0

0 5 0

0 0 5













kg-m2 (28)

where Ia and I are the true and assumed inertia matrices, respectively. The output is

attitude-angle, which is simulated by ỹ(t) = σa(t)+w(t), where w(t) is zero-mean Gaussian

white-noise with known covariance and σa(t) ≡ [σa1
, σa2

, σa3
]T .

Stability Analysis with Nonlinear Uncertainty

The MECS scheme for the attitude control problem is developed through a linearization

of the model equations. In this section an analysis of the stability of this approach is shown

by incorporating the errors introduced using the actual nonlinear model in Eq. (27). To

analyze the stability of the system with nonlinear uncertainty, we neglect the effects of noise

on the system, so w(t) = 0. Noise will be added in the simulations though to provide

a more realistic scenario. For the implementation of the MECS approach in practice, the

model error is determined using estimated quantities of the actual variables, which will be

discussed more in the Simulation Results section. With no noise in the system and assuming

that a stable estimator exists which tracks the actual output with no error, we can effectively

replace the state quantities in Eq. (21) with their respective actual values. Errors arise due

to the differences between the actual and assumed inertia matrices with possible external

disturbances. To obtain the actual closed-loop dynamics with both inertia errors and external

disturbance, the procedure outlined in Ref. 10 is followed exactly here. Using the Padé (3,

3) approximation for the time delay in the controller, the actual closed-loop dynamics for

each axis due to the imperfect control from the incorrect inertia matrix are given by

η̇i(t) = Aηi
ηi(t) + Bηi

ν̂ai
(t) (29)
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with

Aηi
≡







Aei
− Bei

Dzi
aT −Bei

Czi

Bzi
aT Azi






, Bηi

≡







Bei

03×1






(30a)

Aei
≡













0 1 0

0 0 1

−kI −k −p













, Bei
≡













0

0

1













(30b)

Azi
≡













0 1 0

0 0 1

−120 (1 + a3)

(1 − a3) τ 3
−60

τ 2
−12 (1 + a3)

(1 − a3) τ













, Bzi
≡













0

0

1













(30c)

Czi
≡

[

− 240 a3

(1 − a3)
2 τ 3

, 0, − 24 a3

(1 − a3)
2 τ

]

, Dzi
≡ 1

1 − a3

(30d)

for i = 1, 2, 3, where aT ≡ [−a3 kI, a1 + a4, a2 ]T . The first three states of ηi(t) correspond

to
[

∫ t

0
σai

(ξ)dξ, σai
(t), σ̇ai

(t)
]T

and the last three states correspond to states from the

Padé (3, 3) approximation in Eq. (24). Note that the model-error correction of Eq. (21) is

embedded in Azi
, Bzi

, Czi
and Dzi

. The quantity ν̂ai
(t) is the i-th element of

ν̂a(t) ≡
1

4
B [σa(t)] I

−1ûa(t) (31)

where ûa(t) is the actual model error, computed by comparing Eqs. (8b) and (27b):

ûa(t) = − [ωa(t)×] δI1 ωa(t) − I δI2 [ωa(t)×] Iωa(t) − I δI2 [ωa(t)×] δI1 ωa(t)

+ I δI2 u(t) + (I3×3 + I δI2)F(t) (32)
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where δI1 and δI2 are inertia errors, defined by

δI1 ≡ Ia − I (33a)

δI2 ≡ I−1
a − I−1 (33b)

By these definitions δI2 = −
(

I3×3 + δI−1
1 I

)−1
I−1. Using Eq. (32) in Eq. (16a) drives the

assumed model states to the actual states, as expected.

It is important to note that Eq. (29) represents the actual dynamics of Eq. (27) using the

nominal controllers of Eqs. (12) and (21), combined with the actual model errors. Equation

(29) is a bit deceiving since Aηi
ηi(t) is a linear term. This term arises from the fact that

Eq. (13) is formulated such that the closed-loop system has some desired linear characteristics

when no model errors and/or external disturbances are present in the system.10 However,

all the nonlinear terms still exist through ν̂ai
(t). If no modeling or disturbances errors

exist, then the first three states of Eq. (29) yield the desired closed-loop dynamics σ̈ai
(t) +

p σ̇ai
(t) + k σai

(t) + kI

∫ t

0
σai

(ξ)dξ = 0 for each axis, analogous to the approach shown in

Ref. 10. To provide a stability proof for Eq. (29), the subsequent definitions and theorems

are summarized, where the proof of each of the following can be found in Ref. 18.

Quadratically Stable; Consider the following system with nonlinear uncertainty ∆f [η(t)]:

η̇(t) = Aη η(t) + ∆f [η(t)] (34)

where Aη is the block diagonal matrix composed by Aηi
, for i = 1, 2, 3, and ∆f [η(t)] ≡

Ef δ [η(t)] is a C0 function, η(t) ≡ [ηT
1 (t), ηT

2 (t), ηT
3 (t)]T , and δ [η(t)] is a element of the

following set:

Ω ≡ { δ [η(t)] | ‖δ [η(t)] ‖∞ ≤ ‖Nf η(t)‖∞, ∀ η(t)} (35)

where Nf is a constant matrix. Note that global stability is provided for all η(t), which is

the element of the set Ω. However, an unresolved issue is whether the actual uncertainty is
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the element of the set Ω. This issue will be partially studied by the simulation-based analysis

shown later. For our particular system in Eq. (29) we have ∆f [η(t)] ≡ Bη ν̂a(t), where Bη

is the block diagonal matrix composed of Bηi
, for i = 1, 2, 3, and ν̂a(t) is given by Eq. (31).

Hence, Ef is equal to Bη. Note that nonlinearities exist in the particular ∆f [η(t)] from the

definition in Eq. (32). The system, Eq. (34), is said to be quadratically stable if there exists

a positive-definite symmetric matrix Pq > 0 such that

{Aη η(t) + ∆f [η(t)]}T Pq η(t) + ηT (t) Pq {Aη η(t) + ∆f [η(t)]} < 0 (36)

for all nonzero η(t) ∈ <3n and all admissible nonlinear uncertainty ∆f [η(t)].

Quadratic Cost Matrix, Pq; A positive definite matrix Pq > 0 is said to be a quadratic

cost matrix for Eq. (34) and the following cost function:

Jq =

∫ ∞

0

ηT (t) Qq η(t) dt (37)

where Qq ≥ 0, if

{Aη η(t) + ∆f [η(t)]}T Pq η(t) + ηT (t) Pq {Aη η(t) + ∆f [η(t)]} < −ηT (t) Qq η(t) (38)

for all nonzero η(t) ∈ <3n and all admissible nonlinear uncertainty ∆f [η(t)]. As previously

stated, checking all possible inertia errors and control gains for all admissible nonlinear

uncertainty is an intractable problem to solve. Thus, only the specific inertias given by

Eq. (28) and assumed control gains are checked. Also, the MRPs have a singularity for

360 degree rotations. A switch to the “shadow” MRP vector15 can be made to avoid this

singularity, which ultimately causes a discontinuity in the η(t) vector. For the stability proof

it is assumed that the MRP vector remains bounded inside the 180 degree eigen-angle, so

that the vector η(t) remains continuous. For our particular controller gains, the matrix Aηi
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is given by

Aηi
=

































0 1 0 0 0 0

0 0 1 0 0 0

−0.13 −1.40 −4.23 −70447.0 0 −9234.0

0 0 0 0 512.0 0

0 0 0 0 0 4096.0

0.015 0.17 0.51 −715.4 −2344 −937.7

































(39)

The Cost Function Bound; If Pq > 0 is a quadratic cost matrix for the nonlinear uncertain

system, Eq. (34), then the system is quadratically stable and the cost function is bounded

by

Jq ≤ ηT (0) Pq η(0) (40)

and if the system is quadratically stable, then there exists a quadratic cost matrix.

H∞ Norm Bound Condition; For the system, Eq. (34), there exists a quadratic cost

matrix, Pq > 0, if and only if the following conditions hold: 1) Aη is a stable matrix, and 2)

the following H∞ norm bound is satisfied for some ε > 0

∥

∥

∥

∥

∥

∥

∥







Nf

√
ε Qq






(s In×n − Aη)

−1 Ef

∥

∥

∥

∥

∥

∥

∥

∞

< 1 (41)

Then, for such ε, the Riccati equation

AT
η Pq + Pq Aη + ε Pq Ef ET

f Pq +
1

ε
NT

f Nf = −Qq (42)

has a solution.

The particular matrix Aη, formed from the sub-matrices in Eq. (39), is stable. So, the

first stability condition is satisfied. For the cost function, Jq, the first three states for each

axis are penalized, which are the integral, the proportional and the derivative of the MRP

parts for each axis. Then Qq is given by the block diagonal matrix composed by Qqi
, which
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is as follows:

Qqi
=







I3×3 03×3

03×3 03×3






(43)

There is no systematic way to determine the quantities Nf and ε, described in the previ-

ously mentioned definitions and theorems. In fact there are many possible solutions for our

particular system. One of the obviously best ways is to find the largest possible admissible

bound of the nonlinear uncertainty by formulating the problem as an maximization prob-

lem, such that Nf and ε maximize ‖Nf η(t)‖∞, subject to the existence of Pq that satisfies

Eq. (42). However, solving this maximization problem is difficult, so instead we use the

following heuristic method. First, fix ε equal to some constant, which we choose to be 0.001,

and then find Nf such that the following condition holds for all time:

∆νi(t) ≡ sgn {‖Nf η(t)‖∞ − ‖ν̂ai
(t)‖∞} = 1 (44)

or at least holds for as long as possible, which is checked by nonlinear simulation. Equation

(44) is merely used to maximize ‖Nf η(t)‖∞ in a heuristic sense. But even if Eq. (44) is

satisfied for all time (or a fraction of the time) using a trial Nf , the matrix Pq must still be

shown to exist by satisfying Eq. (42).

Clearly, if F(t) is not a function of the states, the norm bounded uncertainty assumption

in Eq. (44) is not satisfied with this type of external disturbance. This does not mean that the

system is unstable though, which will be shown through simulation. For other disturbances

that are a function of the states, e.g. aerodynamic drag, it may be possible to analytically

prove stability. The norm bound can be checked on a case-by-case basis, which depends on

the particular aspects of the disturbances present in the actual system. For our particular

inertia matrices and assumed control gains, without the external disturbance or sensor noise,
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after various numerical trials the following Nf is obtained:

Nf = diag

[

Nf1
, Nf2

, Nf3

]

(45)

where

Nfi
=

[

diag [0.248, 2.250, 8.160] 03×3

]

(46)

and diag denotes the diagonal matrix. The time histories of each ∆νi(t) is shown in Figure 3.

For this case, when t > 6.3 sec, the nonlinear uncertainties are inside the norm bound. The

minus sign of ∆νi(t) at the beginning is due to the large uncertainty in the inertia matrix.

The norm bound condition, Eq. (41), with the given matrices is still satisfied though, since

the computed ∞-norm is 0.9982. Moreover, the cost function, which is given by Eq. (37),

is bounded by Eq. (40). To obtain Pq in Eqs. (40) and (42), the Special Algebraic Riccati

Equation, Eq. (42), is solved. The solution for Pq gives a symmetric and positive definite

matrix (the smallest eigenvalue is 29.20). Therefore, the quadratic cost function, Eq. (37),

is bounded by

Jq ≤ 2.746 × 104 ‖σa(0)‖2
2 + 5.815 × 103 σT

a (0) σ̇a(0) + 5.739 × 103 ‖σ̇a(0)‖2
2 (47)

Hence, for the norm bounded uncertainty by the second condition for quadratic stability,

the closed-loop system is stable.

Simulation Results

In this section simulation results are shown. In order to provide a more realistic simu-

lation, a state estimator is used to provide full-state information, which is required in the

control scheme. A block diagram of this approach is given in Figure 4, where x̂a(t) denotes the

estimate of xa(t) ≡ [σT
a (t), ωT

a (t)]T . A Kalman filter using the dynamics model is designed

for state estimation, which includes a filtered attitude and estimated angular velocity (details

on tuning the filter gains are beyond the scope of this paper). The state estimate is now used
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in the determined model error of Eqs. (20) and (26) and in the nominal controller of Eq. (12).

For the simulations we set r(t) = 0. The initial MRP is σa(0) = [−0.3, −0.4, 0.2 ]T and the

initial angular velocity is ωa(0) = [0.2, 0.2, 0.2 ]T rad/sec. A constant external disturbance

of F(t) = [2, 1, −1 ]T N·m has been used (consistent with Ref. 10). For the simulation the

noise variance for the MRP measurement is given by 1.23 × 10−5.19 The state estimation

errors and 3σ bounds are shown in Figure 5. Without using an angular-velocity sensor, such

as a three-axis gyro, the rate estimation error bound is about ±1.2◦/sec. If this error is too

large, then gyro measurements should be employed.

The model-error components at the initial time are all set to zero. The control histories

for each case are shown in Figure 6. The NO ERRORS case corresponds to using the nominal

control design only with no inertia errors or external disturbances, but with measurement

noise included. The MECS OFF case corresponds to using the nominal controller only with

both inertia errors and external disturbances. The MECS ON case corresponds to using the

nominal controller and the model-error correction part with the same situation as the MECS

OFF case. The NO ERRORS case has more transient behaviors in the control histories than

the other cases, but the response trajectories of the MRPs are nearly identical for the MECS

ON and NO ERRORS cases, as shown in Figure 7. With MECS OFF far larger transients

are present in the trajectories of the MRPs. The MRP norm histories for each case are

shown in Figure 8. When no errors are present we expect that the steady-state errors decay

to values near the noise levels of the output, due to the integral control action. However,

because of modeling errors, the steady-state values have much larger errors. In contrast the

steady-state values for the MECS ON case are about 85% smaller than the MECS OFF

case, and the settling time of the MECS ON case is slightly faster than the MECS OFF

case. Clearly, the MECS ON case provides the best performance when modeling errors and

disturbances are present. Note that in Ref. 10 the MRP error with the adaptive control

keeps decreasing below the MECS ON case shown in this paper. The main reason for this is

that perfect state information with no measurement noise is used in Ref. 10. But, this is not
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the case in the simulations, which provide a more realistic scenario of an actual spacecraft

application.

As an additional test, instead of a constant disturbance, we employ a time-varying ex-

ternal disturbance, given by

F(t) =

















2 +
1

5
sin

(

t

7

)

1 +
1

10
sin

(

t

7
+

π

4

)

−1 − 1

10
cos

(

t

7

)

















N·m (48)

The above external disturbance has the constant parts of the external disturbance scenario

in Ref. 10 with the additional 10% amplitude sinusoidal parts. The frequency is chosen such

that the magnitude of the output is maximized, i.e. worst case frequency. All of the other

conditions remain the same as before, including all control and filter gains, i.e. no modifi-

cations have been made to the controllers used in the previous simulation. The real power

of the MECS approach is that it can compensate for time-varying disturbances, unlike the

parameter adaptive approach shown in Ref. 10. The MRP norm histories for this simulation

are shown in Figure 9. The error fluctuates because of the time-varying components in the

external disturbance. Still, the MECS ON case clearly outperforms the MECS OFF case.

The stability of the actual closed-loop system in Eq. (29) is now shown by evaluating the

left side of Eq. (36) using the incorrect inertia matrix as well as the disturbance inputs. The

top plot of Figure 10 shows this quantity with the constant disturbance added, while the

bottom plot shows this quantity using the time varying disturbance. Clearly, the inequality

is satisfied using the inertia errors with either type of disturbance added. Note that in order

to fully prove stability, Eq. (36) must be satisfied for all admissible nonlinear uncertainty.

Still, satisfying this inequality signifies confidence that asymptotic stability can be provided

for a class of disturbance inputs.
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Stability Bound

Checking whether or not all nonlinear uncertainties given in Eq. (31) are inside the set,

Eq. (35), is not easy. Instead, a simulation based Monte Carlo type verification is used. If

some property, say stability, is satisfied for some uniformly distributed random sets, at least

as many as the Chernoff bound, then this property is guaranteed with a certain confidence

level.20 The uncertainty bound for inertia matrix is given by

δI1ij
= κχIij

(49)

where δI1ij
is the (i, j)-element of δI1 shown by Eq. (33a), κ is a positive number, and χIij

is

a uniformly distributed random number of [−1, 1]. Whenever the sample is generated, the

following two conditions are checked so that the actual inertia is feasible:

Iaii
+ Iajj

≥ Iakk
(50a)

λ = min λi (Ia) > 0 (50b)

where i, j, and k could be 1, 2, or 3. Since the MRP is bounded by 1 using the shadow set,

then the initial MRP is given by

σai
(0) = χσi

(51)

for i = 1, 2, 3, where χσi
is a uniform random number inside the bound [−1, 1]. Similarly,

the uniform sample for the initial angular velocity is given by

ωai
(0) = χωi

(52)

for i = 1, 2, 3, where χωi
is a uniform random number inside the bound [−1, 1] rad/sec. Since

ωai
(0) can be any real number, the bound should be (−∞, +∞), but checking stability for

this unbounded uncertainty is not feasible, so we restrict the initial angular velocity to ± 1
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rad/sec.

To find the largest κ such that Eq. (44) holds for t ∈ [0, 600] sec, a value is first chosen

so that it does not hold. Then κ is systematically reduced so that the largest κ is found. If

Eq. (44) holds for a certain number of samples, N , then the bound satisfies the condition of

the set given by Eq. (35). The number N has to satisfy the following condition:20,21

N ≥ log(2/δ)

2ε2
(53)

where ε is the accuracy, δ is confidence level, and both are in (0, 1). This is the Chernoff

bound.20 If N is greater than the Chernoff bound, then the following condition is true:

Prob {|κ̄∗ − κ̄| ≤ ε} ≥ 1 − δ (54)

where κ̄∗ is the true bound, which is unknown, and κ̄ is the determined bound. Hence, if

the given property is satisfied for N number of uniform samples, then the probability that

the corresponding bound, κ̄, is inside ±ε from the true bound, is greater than (1 − δ).

In this paper N is equal to 26,492 and the corresponding ε and δ are both 0.01. Therefore,

if the bound is found, then the probability that the bound is 0.01 from the true one in the

worst case is greater than 99.99%. The κ̄ that makes the nonlinear uncertainty satisfy the

set condition, Eq. (35), is found to be 0.3035. Since the quadratic bound is likely to be

conservative, then the convergence is directly checked by the Euclidean norm of the MRPs

and angular velocity vector. The stability is checked by the Euclidean norm of the final

steady-state values of the MRPs and angular velocities. If the norm converges inside 0.01

within 600 sec, then the response is claimed to be stable; otherwise it is not stable. Whenever

an unstable response is found, then κ is systematically reduced so that the largest κ is found

for a stable response. With the given value of N = 26.492, the value of κ̄ is found to be

25. As expected, the quadratic bound 0.3035 is very conservative compared to the one from

the nonlinear simulation, given by 25. Note that the bound of 25 includes the uncertainty
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matrix that corresponds to the inertia matrices given in Eq. (28).

Discussion

The simulation-based nonlinear analysis provides a fairly good robustness measure for

a realistic system. In the previous section the robust stability of the closed-loop system

for the sector bounded nonlinear uncertainty is provided. However, the main problem in

this analysis alone is whether the realistic uncertainty for the closed-loop system satisfies

the sector boundedness. Partial answers to this question are provided by the Monte Carlo

simulation. First, the maximum sector bound is found. Second, the convergence of the

states is directly checked. By comparing the results, the conservatism of the first bound is

revealed, at least in the smaller angular velocity region. By the direct search for the stable

region relatively large robustness bound is found, which includes the extreme uncertainty

case for the simulation scenario.

Conclusion

A new approach for the robust attitude control of a maneuvering spacecraft was shown.

The approach was based upon a technique known as model-error control synthesis, which

corrects the nominal control input to mitigate the effects of modeling errors and disturbances.

The main advantage of this approach for the attitude control problem, over existing adaptive

methods, is its ability to handle both inertia modeling errors and time-varying disturbances.

Although the design of the gains is fairly complicated, the resulting model-error correction

law for this problem is simple. Realistic simulation results, involving angle-only type ob-

servations with noise, indicated that a nominal controller combined with the model-error

control synthesis approach produced robust transient response behaviors, and the steady-

state attitude errors were much smaller than the nominal controller only case. A Monte

Carlo type approach was used to verify the stability within a probabilistic bound for various

inertia errors.
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Appendix

a1 =
[

k
(

r0 w0 erp+wp k2 + 1
)

h6 + 4 r0 w0 erp+wp p k2 h5 − 2
(

7 r0 w0 erp+wp k2

−2 r0 w0 erp+wp p2 k + 1
)

h4 − 28 r0 w0 erp+wp p k h3 + 52 r0 w0 erp+wp k h2

+ 8 r0 w0 erp+wp p h − 24r0 w0 erp+wp
]

/da (55a)

a2 =
[

p
(

r0 w0 erp+wp k2 + 1
)

h6 + 2
(

2 r0 w0 erp+wp p2 k − r0 w0 erp+wp k2 − 1
)

h5

+ 2
(

2 r0 w0 erp+wp p3 − 9 r0 w0 erp+wp p k
)

h4 + 4
(

5 r0 w0 erp+wp k

−7 r0 w0 erp+wp p2
)

h3 + 64 r0 w0 erp+wp p h2 − 48 r0 w0 erp+wp h
]

/da (55b)

a3 =
[

−
(

r0 w0 erp+wp k2 + 1
)

h6 − 4 r0 w0 erp+wp p k h5 + 2
(

7 r0 w0 erp+wp k

−2 r0 w0 erp+wp p2
)

h4 + 28 r0 w0 erp+wp p h3 − 48 r0 w0 erp+wp h2
]

/da (55c)

a4 = 2
[

h4 − 2 r0 w0 erp+wp k h2 − 4 r0 w0 erp+wp p h + 12 r0 w0 erp+wp
]

/da (55d)

where

da =
(

r0 w0 erp+wp k2 + 1
)

h6 + 4 r0 w0 erp+wp p k h5 + 4 r0 w0 erp+wp
(

p2 − 3 k
)

h4

− 24 r0 w0 erp+wp p h3 + 2 r0 w0 erp (18 ewp + erp) h2 (56)
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