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Abstract

To use a GPS receiver as an attitude sensor several system parameters, such as integer am-

biguities, line biases and baselines, need to be first determined. This operation is called the

self survey. It also may require several subsystem aspects, such as cycle slip detection and

repair. In this paper, a new self survey scheme is presented that is robust to initial guess er-

rors in the survey parameters. This new approach first uses an attitude-independent method

with double-differenced phase measurements to resolve the integer ambiguities, and then de-

termines the remaining parameters using nonlinear least-square methods. The algorithm is

verified with both simulated and real GPS receiver data.

1 Introduction

The Global Positioning System (GPS) was originally developed for the purpose of naviga-

tion. Using a GPS receiver with pseudorange measurements, instantaneous positions as well

as precise time can be determined [1]. In addition, a GPS receiver has the ability to pro-

vide attitude information by employing multiple antenna sets to measure the signal carrier

phase differences [2–5]. However, when using the phase measurements the solution becomes

more complicated than position determination since the phase measurements contain inte-

ger ambiguities [6–8]. Furthermore, to utilize a GPS receiver as an attitude sensor several

system parameters, such as baselines, line biases and integer ambiguities, need to be first

determined [5, 9, 10]. This operation to estimate all the required parameters is called the

self survey.
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In general, a self survey requires 6 to 8 hours of data to estimate baselines, line biases,

integer ambiguities and the static attitude, because the sightlines, i.e., the line-of-sight

(LOS) vectors between the GPS satellites and the receiver, are moving slowly relative to the

motionless receiver [2]. The orbital period of the GPS satellites is approximately 12 sidereal

hours. Since the GPS satellites are moving with respect to the receiver, the connections

between various GPS satellites and the receiver will be on and off repeatedly. When a new

GPS satellite signal is available, the integer ambiguities must be resolved first. Also, the

GPS signals are often blocked for possibly several minutes [1]. This causes cycle slips or

jumps in the phase measurements, because the receiver accumulates the cycles of the carrier

phase. For the correct estimation of the survey parameters, cycle slip free measurements

should be obtained. Altmayer enhanced the integrity of an integrated GPS/INS system

by cycle slip detection and correction [11]. Since the phases change slowly, cycle slips can

be successfully detected and repaired by using a polynomial fitting method [5, 10]. Hence,

several subsystem aspects, such as an integer ambiguity resolution routine to determine the

integer number wavelengths in the phase measurements as well as a cycle slip detection and

repair algorithm, are needed. Once a self survey is accomplished, the attitude determination

problem can then be solved.

In this paper, a new self survey algorithm that estimates the self survey parameters is

developed using linear and nonlinear estimation methods. To ensure robust convergence

properties, the Levenberg-Marquardt algorithm is applied for the nonlinear estimation pro-

cess. The convergence behavior of the new algorithm is investigated by Monte-Carlo like

simulations. Then, simulated as well as actual GPS data collected by a commercial receiver

are used to verify the new algorithm.

2 Problem Statement

The model of the single differenced GPS signal carrier phase between the Master Antenna

(MA) and a Slave Antenna (SA) is shown in Figure 1 [12]. The j-th sightline vector, sj ∈ R3,

is the unit LOS vector from the receiver to the j-th GPS satellite in the Earth-Centered-

Earth-Fixed (ECEF) reference frame [13]. The i-th baseline vector, bi ∈ R3, is the relative

position vector from the phase center of the MA to that of the i-th SA, which is represented

by cycles in the body frame. Since the wavelength of the L1 frequency of the GPS signal

carrier is λ = 19.03 cm, an integer (or cycle) ambiguity, nij , may occur either if the baseline
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Figure 1: Planar Phase Measurement Model

is longer than the signal wavelength or when cycle slips occur due to signal loss. Since the

distance between the receiver and GPS satellites is usually very large relative to the baseline

length, the wavefronts of GPS signal carrier can be considered to be essentially planar [2].

Therefore, the single differenced carrier phase between the i-th baseline and j-th sightline,

∆φij , shown in Figure 1 can be written by

∆φij = bT

i A sj + nij + τi (1)

where A ∈ R3×3 is the attitude matrix from the ECEF reference frame to the body frame,

and τi is the line bias of the i-th baseline. The self survey determines the assumed constant

attitude A, baseline in the body frame bi, integer ambiguity nij , and line bias τi by using

the phase difference measurements that contain additive noise, denoted by ∆φ̃ij , and the

sightline sj information. The measurement noise is assumed to be represented by a zero-

mean Gaussian white-noise process with standard deviation given by 0.5 cm/λ = 0.026

wavelengths [2]. The sightline information is obtained from the navigation data collected

by the receiver.

2.1 Self Survey Approaches

As can be seen in Eq. (1), the self survey estimation process is a nonlinear problem. Most

self survey algorithms rely on batch-type processes for the the estimation of the assumed

constant parameters [5]. Either nonlinear least squares (NLS) or a gradient search method

can directly be used, however, the attitude parameters and the baselines are not indepen-
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dent [10]. Therefore, a singularity in the derived Hessian matrix occurs. Alternatively, the

baselines in the ECEF reference frame and the summation of integer ambiguities and line

biases can be determined first by using a linear least-squares fit. Then, the integer ambigu-

ities and line biases can be separated, without loss of any information, by taking the integer

parts as the integer ambiguities.

2.2 Integer Ambiguity Resolution

The integer ambiguities can be determined using either instantaneous or dynamic tech-

niques [14]. Instantaneous techniques find a solution that minimizes the error residual at a

specific time by searching through all possible integer sets. Refinements can be made to the

solution by restricting the search space using geometric constraints [8]. This is well suited to

short baselines, however, the minimum residual does not guarantee a correct solution in the

presence of measurement noise [5, 6]. Hence, an instantaneous algorithm can report wrong

integers as valid ones. This may cause significant problems during the self survey. Dynamic

techniques perform a batch estimation using collected data for a given period of time while

the integer ambiguities remain constant over the collection period. Since these techniques

require that a certain amount of motion has occurred, several minutes of collection time may

be required for convergence. Also, large matrix inversions may need to be taken, which may

lead to numerical errors. However, dynamic techniques are more robust than instantaneous

techniques because dynamic techniques have numerous checks that can be implemented into

the solution before it is accepted [14].

Cohen [14] developed an algorithm that uses a linearized iterative batch estimator. By

varying the sample rate and the data collection period, this algorithm can be applied for

almost any vehicle motion. However, there are several disadvantages, including: 1) an a

priori attitude must be given, 2) for large initial attitude errors it may converge to wrong

estimates, and 3) depending on the amount of data large-order matrix inversions may be

required. In Ref. [6] an algorithm has been developed that has advantages over Cohen’s

method, including: 1) it doesn’t require any a priori attitude information, 2) large matrix

inversions are not required, and 3) it is non-iterative. Also, a covariance expression has been

derived that can be used to check the integrity of the determined integer ambiguity. However,

this algorithm assumes that at least three non-coplanar baselines exist. Also, a significant

amount of vehicle motion is still required in order for the integers to be observable. In Ref. [7]
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a real-time attitude-independent ambiguity resolution algorithm has been developed, based

on an Unscented filter formulation. This approach does allow for three coplanar baselines

to exist, while providing accurate estimates that are robust to initial guess errors.

In the self survey, the antenna set connected to the receiver is not moving generally.

Therefore, motion based dynamic techniques are not efficient since the sightlines are moving

slowly. Instead, a fast integer ambiguity resolution algorithm shown in Ref. [8] can be

used. This algorithm uses a geometric inequality to reduce the integer search space, which

can be applied for coplanar baselines as well. Then, a batch-type loss function is used to

resolve the integer ambiguities with a covariance integrity check. Therefore, even with a few

data points the integer ambiguities can be resolved successfully. Instantaneous algorithms

have an advantage in that they provide integers directly at a specific time, although they

are prone to noise errors, which can induce either incorrect solutions or no solution. An

integer search is performed to maximize the probability that a unique solution is the correct

solution [5], while at the same time reducing the search space by using normality constraints

as well as geometric constraints. Also, an attitude-independent algorithm using an effective

measurement model is developed in Ref. [8] to directly determine the integers without pre-

computing the sightline vector in the body frame or baselines in the reference frame. The

integers for all sightlines and baselines can thus be determined instantaneously or using a

small batch of data.

3 New Self Survey Approach

Previous self survey approaches mostly rely on determining the survey parameters in one

batch algorithm. This approach has several disadvantages. Mainly, good estimates must

usually be known a priori. The new approach uses an attitude-independent method to first

resolve the integers, thereby making it more robust. Also, some algorithms do not allow

for changes in baseline length. Changes in the baseline lengths due to the phase differences

from the geometric centers may result in large estimation errors. Furthermore, the previous

integer ambiguity resolution algorithms do not work if line bias errors are present in the

measurements. In the new approach, these problems are solved using a double difference

technique with the Levenberg-Marquardt method. Also, cycle slip detection and a repair

subsystem are added. A flowchart of the new approach is shown in Figure 2, where M is

the total number of sightlines and zij will be defined later.
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Figure 2: Flowchart of the New Self Survey Algorithm

3.1 Cycle Slip Detection and Repair

When a receiver acquires a GPS signal for the first time, the fractional part of the phase

difference between the satellite transmitted carrier and a receiver generated replica signal

is observed, and an integer counter is initialized [1]. During the tracking, the counter is

incremented by one cycle whenever the fractional phase changes from 1 to 0. The initial

integer number, n, of cycles between the satellite and the receiver remains constant as

long as no loss of signal lock occurs. When the signal lock is lost, the integer counter is

restarted. Therefore, a cycle jump, called cycle slip, may occur. Sources of cycle slips are:

1) obstruction of GPS signal due to trees, buildings, mountains, etc., 2) a low signal-to-noise

ratio due to weak signals, high multipath, or signal tracking errors, or 3) a failure in the

receiver software or hardware [1].

Single differences of the phase measurements collected by a Trimble Advanced Navigation

System (TANS) Vector receiver and their cycle slip repaired counterparts are shown in Figure

3. As can be seen from this figure, initial and end raw measurements contain numerous cycle

slips with signal lock losses. Also, the duration of signal lock loss lasts several minutes for

this case. Therefore, the determination of cycle slip size becomes complicated. However, by

monitoring its time derivative, large signal lock loss cases can be successfully compensated.

An example of the time derivative comparison between the measurements and the esti-

mates is shown in Figure 4. The estimates are determined by fitting a simple polynomial

to the measurements using a least squares algorithm. A first-order polynomial fit works

successfully for the early 30 to 50 minutes of data because the sightlines are moving slowly

for the static receiver case. After then, a real-time sequential estimator is used for the cycle
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Figure 4: Measured and Estimated ∆φ̇ Example

slip detection and repair, since the slope of the time derivative changes. Since a higher-order

polynomial fit is required, at least 30 minutes of data are needed for the initialization of the

estimator. In real data applications an 8-th order polynomial is sometimes required for a

correct result. However, this order does not pose any problems in the sequential estimator

solution.
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3.2 Integer Ambiguity Resolution

The integer ambiguities need to be resolved during the self survey. However, existing in-

teger ambiguity algorithms cannot be applied due to the line bias errors present in the

measurements. This problem can be resolved by taking double differences, because the

line bias errors cancel in the double differenced phase measurements [15]. Still, the double

differenced integer ambiguities still need to be resolved. A modified fast integer ambigu-

ity resolution algorithm is derived here for this purpose. Since double differences between

sightlines are applied, the cost function and the geometric constraint of Ref. [8] are recon-

structed. After resolving the double differenced integer ambiguities, the baselines in the

reference frame and line biases can be determined using least squares. Finally, the integer

ambiguities of the single differenced phase measurements can be obtained by taking the

integer part of the residual between the measurement and the dot product of the baseline

estimates and the sightlines.

3.2.1 Double Differences

For single differenced carrier phase measurements, line biases in the baselines are trouble-

some. This problem can be resolved by taking between-receiver, between-sightlines double

difference measurements. If the differences of the single differences in the sightlines j and

k can be taken, the line bias on the i-th baseline, τi would be eliminated. Therefore, the

double differenced phase measurements can be written by

2∆φ̃jk
i = bT

i A(sj − sk) − (nij − nik) + (ǫij − ǫik) (2)

where 2∆φ̃jk
i denotes the double differenced phase between single differenced phases ∆φ̃ij

and ∆φ̃ik, and ǫij denotes the phase measurement error. Note that the measurement noise

increases by a factor of
√

2 times that of the single difference noise though. Still, double

differenced phase measurements are useful since line biases do not need to be determined.

3.2.2 Geometric Constraint for Double Differences

Using double differenced phase measurements, the identity of the three-dimensional vectors

in Ref. [8] pertaining to the geometric constraint for single differenced phase measurements
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is rewritten as

[(Asjk) · (b1 × b2)]
2

= (Asjk × b1) · [(b1 × b2) · (b2 ×Asjk)]

= (Asjk)
2
(b1)

2
(b2)

2 − (Asjk)
2
(b1 · b2)

2

− (b1)
2 (Asjk · b2)

2 − (b2)
2 (Asjk · b1)

2

+2 (Asjk · b2) (Asjk · b2) (b1 · b2)

= ||sjk||2||b1||2||b2||2 − ||sjk||2 (b1 · b2)
2

−||b1||2
(

2∆φ̃jk
2 + njk

2

)2

− ||b2||2
(

2∆φ̃jk
1 + njk

1

)2

+2
(

2∆φ̃jk
1 + njk

1

)(
2∆φ̃jk

2 + njk
2

)
(b1 · b2)

> 0

(3)

where sjk = sj − sk and njk
i is the double differenced integer for the i-th baseline between

the j-th and k-th sightlines. Although double differences may increase the search space size

twice as much as using single differences, a significant reduction of the search space size is

achieved by using the constraint in Eq. (3). For example, with three baselines (assuming

that κ denotes all possible integers associated with each baseline) the search space required

to determine the integers is on the order of (2κ)3; however, with the reduced subset using

Eq. (3) the search space is now on the order of 3(2κ)2 [5]. Furthermore, by taking the

common integers corresponding to each baseline, found between any two baseline pairs, the

search space becomes much smaller. In a few meters baselines scenario, it was found that

the number of integers that pass the geometric constraint test is approximately 5%∼40% of

the total number.

3.2.3 Integer Ambiguity Resolution

After reducing the search space, the double differenced integer ambiguities in Eq. (3) can

now be resolved using the cost function in Eq. (5), which is modified from the cost function

in Ref. [8] for double differenced phase measurements. Since three baselines are used, the

double differenced integer ambiguities contained in the double differenced phase between

the j-th sightline and the k-th sightline can be defined by

njk ≡
[
njk

1 , n
jk
2 , n

jk
3

]T

(4)
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Then, the modified cost function is given by

J(njk) = 1
2

L∑
m=1

{
1

σ2

jk
(m)

[
||S−1

jk (m)Γjk(m)
(

2∆Φ̃jk(m) − njk
)
||2

−||bi||2 + trace{S−1
jk (m)}

]2

+ log σ2
jk(m)

} (5)

with

σ2
jk =

(
2∆Φ̃jk − njk

)T

ΓT

jkS
−3
jk Γjk

(
2∆Φ̃jk − njk

)
− trace2{S−1

jk } (6a)

Γjk ≡
[
̟−2

12 s12, ̟
−2
13 s13, ̟

−2
14 s14

]
(6b)

2∆Φ̃jk ≡
[
2∆φ̃jk

1 ,
2∆φ̃jk

2 ,
2∆φ̃jk

3

]T

(6c)

Sjk = ̟−2
12 s12s

T

12 +̟−2
13 s13s

T

13 +̟−2
14 s14s

T

14 (6d)

where ̟jk is the weighting for the double differenced phase measurements 2∆Φ̃jk, which is

given by
√

2 times the standard deviation of the measurement error for single differences,

i.e., ̟jk = 0.026
√

2 cycles. Also, L is the total number of data points (when L = 1

an instantaneous solution is provided). As can be seen in Eq. (6b), only three double

differenced sightlines are used because three baselines need to be determined. Equation

(5) can be used to determine the double differenced integer ambiguities instantaneously or

using a small amount of data (i.e. L > 1), by checking the remaining integers that pass the

inequality condition in Eq. (3). The integer set that minimizes Eq. (5) is chosen as the final

solution. Then, for further applications the integer ambiguities, nij , contained in the single

differenced phase measurements need to be resolved. First, the baselines in the reference

frame are estimated using linear least squares that minimize the cost function given by

J
(
b̄i

)
=

1

2

∑

all jk

̟−2
jk

(
2∆φ̃jk

i − b̄T

i sjk

)2

(7)

where b̄i is the i-th baseline in the reference frame. The solution to minimize Eq. (7) is

straightforward [3], which is given by

b̄i = N−1
i yi (8)

where

Ni =
∑

all jk

̟−2
jk sjk s

T

jk (9a)
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yi =
∑

all jk

̟−2
jk

2∆φ̃jk
i sjk (9b)

After determining the baselines in the reference frame, the integer ambiguities of the single

differential phase measurements are resolved by taking the integer part of the residual given

by

nij = floor
(
∆φ̃ij − b̄T

i sj

)
(10)

where floor is the MATLAB command which rounds the residual to the nearest integer

towards minus infinity. This approach may not resolve the integers if the line bias errors

are close to 0 or 1, however, for this case the line bias errors can be considered as integer

ambiguities.

3.3 Levenberg-Marquardt Algorthm

Since the integer ambiguities now are resolved, Eq. (1) can be rewritten as

∆φ ′

ij = gbT

i Asj + zij (11)

where gb represents the geometric baseline vector in the body frame that connects the

geometric center of two antennas, ∆φ ′

ij = ∆φij − nij , and zij is a dummy parameter used

in the baseline estimation, given by

zij = ∆bT

i Asj + τi (12)

where ∆bi ∈ R3 is the additive error of a baseline in the body frame. To estimate the

attitude parameters and zij in Eq. (11), NLS can be used. However, NLS may not converge

to the correct solution unless the initial guess is close to the true value. The method of

steepest descent may help to avoid this problem, however, the convergence is very poor

close to the solution [16]. These difficulties can be overcome by the Levenberg-Marquardt

(LM) method [17, 18]. In the LM method, the search direction is intermediate between the

steepest descent and the differential correction direction. As the scale factor goes to zero,

it is equivalent to the differential correction method, however, as the scale factor goes to

infinity it becomes a steepest descent search along the negative gradient of the loss function

(see Ref. [17] for more details).

By using the Modified Rodriguez Parameters (MRPs) [19] as attitude parameters, the
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optimal estimates are obtained to minimize the loss function given by

J (p̂, z) =

N∑

i=1

M∑

j=1

[
∆φ̃ ′

ij − ∆φ ′

ij (p̂, z)
]2

(13)

where p̂ ∈ R3 denotes MRP estimates and z represents a row vector of which an element is

zij . The Jacobian matrix, H , used in the NLS and LM algorithms is given by [19]

H =




4gbT

i [A (p) sj×]

total M sightlines

,
︷ ︸︸ ︷
0, 0, · · · , 0︸ ︷︷ ︸, 1, 0, · · · , 0

(j-1) zeros before 1

...




for i = 1, 2, 3 (14)

where

[a×] ≡




0 −a3 a2

a3 0 −a1

−a2 a1 0




(15)

3.4 Baseline Estimation

By using the estimation results of the LM method, the differences in the baselines in the

body reference frame and the line bias errors are determined. Referring to Eq. (12), linear

least squares is sufficient to estimate the baseline differences and line bias errors since z can

be written by

z =




s
T

1A
T, 1

...

s
T

MAT, 1







∆bi

τi


 (16)

Then, the baselines in the body frame are determined by

bi = gbi + ∆bi (17)

Since the antenna phase errors can be as much as 2 cm, baseline estimation is important in

the self survey if the baselines are short [20].
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4 Simulation Results

To test the new algorithm, Monte-Carlo like simulations are used. Eight hours of phase

measurement data are generated using the ‘351.al3’ SEM GPS almanac data, three baselines

shown in section 5 and the phase measurement model shown in Figure 1. Then, 100 different

random attitude matrices and line biases are generated to simulate the phase measurements.

Multipath errors are not considered in the measurement data. Also, 100 different large initial

guesses errors are applied.

The integers are resolved first using the double differences technique, since the cycle

slips are not considered in the simulated measurements. Then, both the NLS and LM algo-

rithms are applied for the nonlinear estimation to compare the convergence behavior. From

the simulation results, comparing the estimation errors, there are no significant differences

between the solutions from the NLS and LM algorithms for small initial errors. The NLS

algorithm converges faster than LM algorithm; however, the convergence to the correct es-

timate is not guaranteed for the NLS algorithm, as shown by the simulation results. For

the comparisons using large initial attitude errors, the NLS algorithm fails two times out

of 100 simulations while the LM algorithm works successfully every time. A comparison of

the number of iterations required for each algorithm is shown in Figure 5.
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Figure 5: Iteration Number Comparison Between NLS and LM

In the following, the self survey errors between the NLS and LM algorithms are shown.

Figure 6 shows the Euler angles errors, derived from the MRP errors, and their associated
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3-σ bounds derived from the covariance matrix. The triangle marker represents the NLS

Euler angle errors and the circle marker denotes the LM Euler angle errors. As can be

seen from Figure 6, both the NLS and LM algorithms show the same level of estimation

errors. For the pitch axis, the errors are well inside the 3-σ boundary bounds, however,

for other axes some errors are outside the 3-σ bounds. This is because the baselines are

nearly coplanar, which are aligned with body x-y axes. Also, the geometry of the sightlines

affects the covariance. Figure 7 shows the line bias errors obtained by both the NLS and
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Figure 6: Attitude Error Comparison Between NLS and LM

LM algorithms. The line bias errors are well below the 3-σ bounds for baselines 2 and 3.

The line bias in the baseline 1 is not; however, it is still below the 3-σ bound of the phase

measurement errors of 3 × 0.026. Also, the third baseline estimation errors are shown in

Figure 8. As can be seen from this figure, all estimation errors are well inside their respective

3-σ bounds.

In the simulation study, the convergence performance of the LM algorithm for rela-

tively large initial errors seems to be improved over the NLS algorithm. To compare the

convergence behaviors of the LM and NLS algorithms, large initial errors are considered as




δφ

δθ

δψ




=




−106.07◦

73.247◦

153.15◦



,




∆τ1

∆τ2

∆τ3




=




.0547

0.9129

0.5019




(Cycles)
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Figure 7: Line Bias Error Comparison Between NLS and LM
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Figure 8: Baseline Error Comparison Between NLS and LM

where δφ, δθ and δψ are Euler angle errors, which are converted to MRP errors. The

convergence properties of the NLS and LM algorithms are compared in Figure 9. The cost

function, J , values of each iteration for both the NLS and LM algorithms are shown. As can

be seen from this figure, the iteration number required for the LM algorithm to converge

is larger than that of NLS; however, the LM algorithm converges to the correct estimates

after 16 iterations, while the NLS algorithm does not converge to the correct estimates.
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Figure 9: Convergence Comparison Between NLS and LM

5 Real Data Application

The new self survey algorithm is applied with real data collected by the Navigation Systems

and Technology Laboratory (NSTL) at NASA’s Johnson Space Center (JSC) in Houston,

Texas. A TANS Vector receiver with a four antenna set is used for the test. To minimize the

adverse effects from multipath errors, the antennas are installed on the roof of a building.

Since the TANS Vector receiver provides an internal self survey solution, the result of new

algorithm is compared with it. It should be noted that the self survey algorithm used by

the TANS Vector is unknown. It is merely used to compare results with the new algorithm,

which has been shown to be robust to large initial guess errors in the previous simulations.

The baselines in the East-North-Up (ENU) coordinate system shown in Figure 10 are

given by

[ gb1
gb2

gb3] =




−115.91775 −42.66246 −20.74898

−45.57186 114.46932 −135.93129

−11.68865 −7.79448 −12.01909




(Cycles)

Although the baselines between geometric centers are not known, the TANS Vector receiver

baselines output can be used as gb. The phase measurements from the TANS Vector receiver

have a range of -32 ∼ 32 cycles. Since the lengths of the baselines are longer than 32 cycles,

the phase measurement jumps to -32 cycles when it reaches 32 cycles or vice versa. Thus,
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Figure 10: Baselines in the ENU Coordinate System

jumps of 64 cycles need to be compensated. Also, cycle slips are detected and repaired by the

algorithm described in subsection 3.1. Nonlinear least squares converges after 9 iterations.

The values of the change in the loss function, denoted by ∆J , after each iteration is shown

in Table 1. The resolved integer ambiguities are shown in Table 2. The differences in the

Table 1: Convergence of Nonlinear Least Squares

Iteration J ∆J

1 2.6512e+007 2.6512e+007

2 1.0413e+007 1.6098e+007

3 4.8126e+006 5.6007e+006

4 8.0795e+004 4.7318e+006

5 9.0319e+003 7.1763e+004

6 1.4622e+002 8.8857e+003

7 6.9967e-001 1.4552e+002

8 6.9942e-001 2.5235e-004

9 6.9942e-001 7.2299e-011

baseline estimates using the TANS Vector and new algorithm solutions are given by

[∆b1,∆b2,∆b3] =




0.0147 −0.0059 −0.0029

−0.0005 0.0042 0.0098

−0.0171 −0.0125 −0.0188




(Cycles)

The differences are well below the 3-σ bound of the phase measurement errors. The line bias

estimates are compared with the TANS Vector receiver output in Table 3. The differences

are less than 0.05 cycles.
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Table 2: Integer Ambiguities

s2 s4 s7 s8 s11 s19 s24

b1 -73 -46 -114 -24 58 56 -81

b2 -80 88 70 -87 94 9 73

b3 46 -147 -118 80 -63 33 -116

Table 3: Line Biases (Unit: Cycles)

Line Biases Self Survey TANS Receiver

τ1 0.2637 0.2240

τ2 0.9367 0.8954

τ3 0.3056 0.3196

The determined attitude matrix is given by

A =




−0.0003 −0.6662 0.7457

−0.2844 0.7150 0.6387

−0.9587 −0.2119 −0.1897




By using the estimated baselines, line biases and attitude matrix, the single differenced

phases are computed and compared with the measurement data. Figures 11 through 13

show the residual errors between the measured and the estimated phases. Since multipath

errors still exist in the measurements, oscillations are shown in the residual error. Also, the

residual errors increase both in the early part and in the end data. However, in the other

regions the residual errors are below the measurement 3-σ bound of 3 × 0.026. Figure 11
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Figure 11: The Residual Error of ∆̃φi2 − ∆φi2 for i = 1, 2, 3
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shows the residual errors for the pseudo random noise (PRN) 2 signal phase. The residuals

between 100 and 300 minutes are well below the 3-σ measurement bound, while the residuals

before 80 minutes and after 300 minutes begin to increase. Similar trends are shown for

the PRN 4, 7, 8 and 24 signal phases. However, as can be seen in Figures 12 and 13, the

signal phases are different for PRN 11 and 19. There exist oscillations in the residual since

multipath errors are more likely present in these measurements. Still, the magnitudes of

these residuals are near the assumed noise levels of the measurements. The results obtained

using the actual data indicate that the new self survey algorithm provides good overall

parameter estimates.
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Figure 12: The Residual Error of ∆̃φi11 − ∆φi11 for i = 1, 2, 3

6 Conclusions

A new self survey method has been developed and compared with a commercial GPS receiver

self survey result. The new method includes cycle slip detection and a repair algorithm to

compensate the cycle counter re-initialization problem when the GPS signal lock is lost.

Also, it includes a double differencing scheme to resolve integer ambiguities when line bias

errors are present in the measurements. For cycle slip detection and repair, a first-order

polynomial fit is used for early-time data segments since frequent signal lock loss may occur.

Then, after 30 minutes an 8-th order polynomial replaces it because the sightlines are
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Figure 13: The Residual Error of ∆̃φi19 − ∆φi19 for i = 1, 2, 3

moving. To verify the new algorithm, real data collected by the TANS Vector GPS receiver

is used for the cycle slip detection and repair algorithm. Integer ambiguity resolution using

double differenced phase measurements is then accomplished. Then, nonlinear least squares

and the Levenberg-Marquardt algorithm are used to determine attitude parameters. Finally,

baselines in the body frame and line biases are determined. In the comparison of NLS and

LM algorithms using 100 simulations with random initial conditions, the LM algorithm

shows more robust results for large initial errors, although the convergence speed of the

NLS algorithm is faster. In the comparison with the TANS Vector receiver self survey

output, the integer ambiguities match exactly. Also, line biases and baselines differences

were within their respective 3-σ error bounds.
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