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An extended Kalman filter is derived for estimating the relative position and attitude

of a pair of uninhabited air vehicles, designated leader and follower. All leader states

are assumed known, while the relative states are estimated using line-of-sight measure-

ments between the vehicles along with angular rate and acceleration measurements of the

follower. Noise is present on all measurements, while biases are present only on the lat-

ter two. Line-of-sight measurements are generated using visual navigation beacons. The

global attitude is parameterized using a quaternion, while the local attitude error is given

by a three-dimensional attitude representation. The quaternion normalization constraint

is maintained using a multiplicative error quaternion. Simulation results show that the rel-

ative states and measurement biases converge within their respective covariance bounds.

The number of visual navigation beacons is shown to affect estimator convergence in the

presence of initial condition errors.

I. Introduction

F
ormation flight of aircraft has been an active and growing area of study in recent years. Maintaining
a desired spatial formation requires accurate knowledge of the relative position and speed between the

individual vehicles. Control algorithms designed for formation flight are given in Ref. 1–5. Johnson et al.6

demonstrate a vision-based method of formation control and state estimation. Two approaches are used.
The first incorporates an extended Kalman filter (EKF) developed in Ref. 7 with camera based images to
determine the relative states. The second approach uses image size and location to directly regulate the
control algorithm.

The integration of Global Positioning System (GPS) signals with Inertial Measurement Units (IMUs)
has become a standard approach for position and attitude determination of a moving vehicle. An Inertial
Navigation System (INS) is best described in the Preface section of the excellent book by Chatfield,8 who
states “Inertial navigation involves a blend of inertial measurements, mathematics, control system design,
and geodesy.” Historically, INS’s were primarily used for military and commercial aircraft applications due
to their high cost. However, with the advent of cheaper sensors, especially micro-mechanical ones,9 sev-
eral new applications have become mainstream, including uninhabited air vehicles, micro-robots, and even
guided munitions.‡ Although these cheaper sensors do not perform as well as high-grade sensors in terms of
drift and white-noise measurement errors, they can be used to meet the requirements of several vehicle po-
sition/attitude knowledge specifications when aided with GPS. This allows for an attractive approach since
a completely self-contained system can be used to calibrate IMUs online using GPS-determined position
observations, while also determining vehicle attitude and rates in realtime. By far the primary mechanism
historically used to blend GPS measurements with IMU data has been the extended Kalman filter (EKF).10

Other implementations include an unscented Kalman filter11 and particle filters.12

The earliest discussion on the use of GPS and an INS for relative navigation occurs in Ref. 13. Relative
position is propagated using a linear discrete equation, though the exact form of the state transition matrix
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Figure 1. Definitions of Various Reference Frames

is not provided. Increased accuracy is achieved due to the high correlation of GPS errors aboard the leader
and follower. The results are extended to vehicle platooning in Ref. 14.

This paper examines the use of INS equations for relative navigation of a formation of uninhabited air
vehicles (UAVs). INS equations are developed for a two-UAV system. An extended Kalman filter is derived
for estimation of the relative position and relative attitude between the two aircraft. Relative attitude is
parameterized using the four-component quaternion. Measurements between the UAVs are made using the
vision-based navigation (VISNAV) system discussed in Ref. 15. This consists of an optical sensor combined
with a specific light source (beacon) in order to achieve a selective vision. The sensor is made up of a Position
Sensing Diode (PSD) placed in the focal plane of a wide angle lens, yielding a one hundred degree field of
view. When the rectangular silicon area of the PSD is illuminate by energy from a beacon focused by the
lens, it generates electrical currents in four directions the can be processed to estimate the energy centroid of
the image. This is then used to determine the line-of-sight (LOS) vector between the sensor and the beacon.

The VISNAV system is applied to the spacecraft formation flying problem in Ref. 16. State estimation is
performed using an optimal observer design. Simulations show that accurate estimates of relative position
and attitude are possible. A predictive filter is combined with the VISNAV system for estimation of relative
position and attitude in Ref. 17. Kim et al. apply an extended Kalman filter to the VISNAV-based relative
position and attitude estimation problem in Ref. 18. The effects of beacon location errors on estimation
accuracy are analyzed in Ref. 19. In this current work, the aforementioned previous work is expanded for
relative navigation between UAVs using LOS observations.

The organization of this paper is as follows. First, a summary of the various coordinate frames used in the
theoretical developments is provided. This is followed by a review of quaternion attitude parameters and the
associated kinematics. The relative INS equations are then derived. Next, an EKF for estimation of relative
position and attitude is developed. Finally, simulations are performed to demonstrate the effectiveness of
the filter.

II. Reference Frames

This section summarizes the various reference frames used in the remainder of this paper, as shown in
Figure 1:

• Earth-Centered-Inertial (ECI): denoted by {̂i1, î2, î3}. The origin is at the center of the Earth, with
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the î1 axis pointing in the direction of the vernal equinox, the î3 axis pointing towards the North pole,
while î2 completes the right-handed coordinate system. This frame is fixed in space, with associated
vectors identified by the letter I.

• Earth-Centered-Earth-Fixed (ECEF): denoted by {ê1, ê2, ê3}. The origin of this frame is also located
at the center of the Earth. The primary difference is that this frame rotates with the Earth. The
ê3} axis points towards the north pole and is equal to î3. The ê1 axis is directed toward the prime
meridian, and the ê2 axis completes the right-handed system. The letter E signifies a vector defined
with respect to this reference frame.

• North-East-Down (NED): denoted by {n̂, ê, d̂}. This reference frame is formed by fitting a tangent
plane to the geodetic reference ellipse at a given point of interest.10 The n̂ axis points North, the ê axis
is directed East, and the d̂ axis completes the right-handed system. This reference frame is generally
used for local navigation purposes. The letter N signifies a vector defined with respect to this reference
frame.

• Body Frames: denoted by {b̂1, b̂2, b̂3}. These are fixed to the vehicle body, rotating with it. Body
frames fixed to the two UAVs are designated leader (l) and follower (f).

The convention applied in this paper is to use these letters as a superscript following the vector or matrix
that is being described.

Transformations between reference frames are made using direction cosine or attitude matrices. A trans-
form from the inertial frame to a generic body frame B is mathematically described as











b̂1

b̂2

b̂3











=







cosα11 cosα12 cosα13

cosα21 cosα22 cosα23

cosα31 cosα32 cosα33

















î1

î2

î3











= AB
I











î1

î2

î3











(1)

where αij is the angle between the ith body unit vector and the jth inertial unit vector. AB
I is the attitude

matrix.
An overview of the conversion between the ECEF and NED reference frames is provided here. For a

more complete discussion, see Ref. 10. Given the latitude (λ), longitude (φ), and height (h), the ECEF
coordinates are given by the equations

x = (N + h) cosλ cosφ (2a)

y = (N + h) cosλ sinφ (2b)

z = [N(1 − e2) + h] sinλ (2c)

where e = 0.0818 is the eccentricity of the Earth’s ellipsoid, and N is the length of the normal to the ellipsoid
given by the equation

N =
a

√

1 − e2 sin2 λ
(3)

a is the semimajor axis of the ellipsoid and is equal to 6,378,137 meters. The direction cosine matrix relating
the two reference frames is given in Ref. 10:

AN
E =







− sinλ cosφ − sinλ sinφ cosλ

− sinφ cosφ 0

− cosλ cosφ − cosλ sinφ − sinλ






(4)

The concept of Euler angles are often used to provide a more physical interpretation of attitude param-
eters. These parameters define the attitude as three successive rotations about sequentially displaced body
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axes. The Euler rotation about the ith body axis, Mi(θ), is given by

M1(θ) =







1 0 0

0 cos θ sin θ

0 − sin θ cos θ






(5a)

M2(θ) =







cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ






(5b)

M3(θ) =







cos θ sin θ 0

− sin θ cos θ 0

0 0 1






(5c)

For an (α, β, γ) Euler sequence with angles θ1, θ2, θ3, the direction cosine matrix (DCM) will be given by

A = Mγ(θ3)Mβ(θ2)Mα(θ1) (6)

In the simulations shown later in this paper, the errors will be computed based on a (3,2,1) sequence using
roll (ψ), pitch (θ) and yaw (φ) angles. The corresponding DCM is

A =







1 0 0

0 cosφ sinφ

0 − sinφ cosφ













cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ













cosψ sinψ 0

− sinψ cosψ 0

0 0 1







=







cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ







(7)

where cθ = cos θ, and sθ = sin θ. When the DCM is known, the corresponding Euler angles can be computed
from the individual elements by the following equations:20

ψ = tan−1

(

A12

A11

)

(8a)

θ = − sin−1(A13) (8b)

φ = tan−1

(

A23

A33

)

(8c)

III. Attitude Kinematics

A variety of parameterizations can be used to specify attitude including Euler angles, quaternions, and
Rodrigues parameters.21 This paper uses the quaternion, which is based off of the Euler angle/axis param-
eterization. The quaternion is defined as q ≡ [ qT

13 q4 ]T with q13 = [ q1 q2 q3 ]T = ê sin(ν/2), and
q4 = cos(ν/2), where ê and ν are the Euler axis of rotation and rotation angle, respectively. This vector
must satisfy the constraint qT q = 1. The attitude matrix can be written as a function of the quaternion:

A = ΞT (q)Ψ(q) (9)

where

Ξ(q) ≡

[

q4I3×3 + [q13×]

−qT
13

]

(10a)

Ψ(q) ≡

[

q4I3×3 − [q13×]

−qT
13

]

(10b)
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with

[q13×] =







0 −q3 q2

q3 0 −q1

−q2 q1 0






(11)

The attitude kinematic equation is given by20

ȦB
I = −[ωB

B|I×]AB
I (12)

where ωB
B|I is the angular velocity of the body frame with respect to the inertial frame, given in body frame

coordinates, and AB
I is the attitude matrix that converts from the body frame to the inertial frame.

The relative quaternion qf |l and corresponding attitude matrix are defined by

qfl ≡ qf ⊗ q−1
l (13a)

Af
l ≡ A(qf |l) = A(qf )AT (ql) (13b)

which are consistent with Refs. 21 and 22. The symbol ⊗ denotes the quaternion multiplication, given by

qa ⊗ qb ≡
[

Ψ(qa) qa

]

qb =
[

Ξ(qb) qb

]

qa (14)

and q−1 is the quaternion inverse, defined by

q−1 ≡
[

−q1 −q2 −q3 q4

]T

(15)

Reference 23 shows the quaternion kinematics to be given by

q̇f |l =
1

2
Ξ(qf |l)ω

f
f |l (16)

where ωf
f |l is the relative angular velocity defined as

ω
f
f |l ≡ ω

f
f |E −Af

l ω
l
l|E (17)

To reduce the computational load, a discrete form of the quaternion propagation is used. This is given in
Ref. 23 as

qflk+1
= Ω̄(ωf

fk
)Γ̄(ωl

lk
)qflk (18)

where

Ω̄(ωf
fk

) ≡





cos
(

1
2
‖ωf

fk
‖∆t

)

I3×3 − [ψk×] ψk

−ψT
k cos

(

1
2
‖ωf

fk
‖∆t

)



 (19a)

ψk ≡
sin

(

1
2
‖ωf

fk
‖∆t

)

ω
f
fk

‖ωf
fk
‖

(19b)

Γ̄(ωl
lk

) ≡

[

cos
(

1
2
‖ωl

lk
‖∆t

)

I3×3 − [ζk×] −ζk

ζT
k cos

(

1
2
‖ωl

lk
‖∆t

)

]

(19c)

ζk ≡
sin

(

1
2
‖ωlk‖∆t

)

ωlk

‖ωlk‖
(19d)

and ∆t is the sampling interval.
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IV. Relative INS Equations

The relative INS equations to be used in the extended Kalman filter are developed in this section. The
relative position vector is defined as

r
f
f |l = r

f
f |I −Af

l r
l
l|I

= Af
l A

l
EA

E
I (rI

f |I − rI
l|I) (20)

where AE
I is the attitude matrix which converts from the inertial frame to the ECEF frame. The corre-

sponding angular velocity is ωE
E|I = [ 0 0 ωe ]T , where ωe is the Earth’s rotational rate.

Taking two time derivatives of Eq. (20) gives

r̈
f
f |l =

d2

dt2

(

r
f
f |l

)

=
d2

dt2

(

Af
l A

l
EA

E
I

)

(rI
f |I − rI

l|I) + 2
d

dt

(

Af
l A

l
EA

E
I

) d

dt
(rI

f |I − rI
l|I) +Af

l A
l
EA

E
I

d2

dt2

(

rI
f |I − rI

l|I

)

(21)

and using the appropriate identities and substitutions yields

r̈
f
f |l = −[(ω̇f

f |E)×]rf
f |l − [(ωf

f |I)×][(ωf
f |I)×]rf

f |l + [(ωf
f |I ×Af

l A
l
Eω

E
E|I)×]rf

f |l − 2[(ωf
f |I)×]ṙf

f |l

+r̈I
f |I − r̈I

l|I (22)

The inertial accelerations of the leader and follower are given by Newton’s law:

r̈I
l|I = aI

l + gI
l (23a)

r̈I
f |I = aI

f + gI
f (23b)

The gravity model in ECEF coordinates is given by

gE =
−µ

‖rE‖3
rE (24)

where µ = 3.986×105 km3/s2. Equation (24) provides the only nonlinear term relative acceleration equation.
Equation (22) is then written as

r̈
f
f |l = −[(ω̇f

f |E)×]rf
f |l − [(ωf

f |I)×][(ωf
f |I)×]rf

f |l + [(ωf
f |I ×Af

l A
l
Eω

E
E|I)×]rf

f |l − 2[(ωf
f |I)×]ṙf

f |l

+a
f
f −Af

l a
l
l +Af

l A
l
E

(

gE
f − gE

l

)

(25)

The acceleration measurement model is defined as

ã
f
f = a

f
f + bfa + ηfav (26a)

ḃfa = ηfau (26b)

where bfa is the accelerometer bias and ηfav and ηfau are zero-mean Gaussian white noise processes. Their
respective spectral densities are σ2

avI3×3 and σ2
auI3×3.

The gyro measurement model has a similar form:

ω̃
f
f |I = ω

f
f |I + bfg + ηfgv (27a)

ḃfg = ηfgu (27b)

where ηfgv and ηfgu are zero-mean Gaussian white noise processes with spectral densities σ2
gvI3×3 and

σ2
guI3×3. bfg is the gyro bias. See the appendix of Ref. 11 for a more detailed discussion on the gyro bias

model.
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V. Extended Kalman Filter Equations

This section shows the development of an extended Kalman filter for estimation of relative position and
attitude. The states of interest are relative attitude, relative position, relative velocity, and biases on the
inertial acceleration and angular velocity measurements:

x =
[

qT
f |l (rf

f |l)
T (ṙf

f |l)
T bT

fg bT
fa

]T

(28)

Leader states are assumed to be known without any time lag. The truth and estimate equation pairs are as
follows:

q̇f |l =
1

2
Ξ(qf |l)ω

f
f |l (29a)

˙̂qf |l =
1

2
Ξ(q̂f |l)ω̂

f
f |l (29b)

r̈
f
f |l = −[(ω̇f

f |E)×]rf
f |l − [(ωf

f |I)×][(ωf
f |I)×]rf

f |l + [(ωf
f |I ×Af

l A
l
Eω

E
E|I)×]rf

f |l − 2[(ωf
f |I)×]ṙf

f |l

+ a
f
f −Af

l a
l
l +Af

l A
l
E

(

gE
f − gE

l

)

(30a)

¨̂rf
f |l = −[( ˙̂ωf

f |E)×]r̂f
f |l − [(ω̂f

f |I)×][(ω̂f
f |I)×]r̂f

f |l + [(ω̂f
f |I × Âf

l A
l
Eω

E
E|I)×]r̂f

f |l − 2[(ω̂f
f |I)×] ˙̂rf

f |l

+ â
f
f − Âf

l a
l
l + Âf

l A
l
E

(

ĝE
f − gE

l

)

(30b)

a
f
f = ã

f
f − bfa − ηfav (31a)

â
f
f = ã

f
f − b̂fa (31b)

gE
f =

−µ

‖rE
f |E‖

3
rE

f |E (32a)

ĝE
f =

−µ

‖r̂E
f |E‖

3
r̂E

f |E (32b)

ω
f
f |E = ω̃

f
f |I − bfg − ηfgv −Af

l A
l
Eω

E
E|I (33a)

ω̂
f
f |E = ω̃

f
f |I − b̂fg − Âf

l A
l
Eω

E
E|I (33b)

ḃfa = ηfau (34a)

˙̂
bfa = 0 (34b)

ḃfg = ηfgu (35a)

˙̂
bfg = 0 (35b)

The state-error vector is given as

∆x =
[

δαT
f |l (∆r

f
f |l)

T (∆̇r
f

f |l)
T ∆bT

fg ∆bT
fa

]T

(36)

The first term is defined by

δαf |l = 2δqf |l13 (37a)

δqf |l = qf |l ⊗ q̂−1
f |l (37b)
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where the subscript “13” denotes the first three components of the four component vector. This is used
due to the assumption that the estimate is close to the truth. For this case, the fourth error-component is
approximately one and its derivative is near zero.22 The remaining state-error terms are defined by

∆x = x − x̂ (38)

The process noise vector consists of the four Gaussian noise terms from the measurement equations.

w =
[

ηT
fgv ηT

fgu ηT
fav ηT

fau

]T

(39)

The next step is to determine time derivatives of the error states. The equation for δα̇f |l is given in
Ref. 24 as

δα̇f |l = −[(ω̂f
f |l)×]δαf |l + δωf

f |l (40)

where
δω

f
f |l = ω

f
f |l − ω̂

f
f |l (41)

Based upon the definitions in Eqs. (17) and (33a), along with the approximation

Af
l = (I3×3 − [(δαf |l)×])Âf

l (42)

Equation (41) becomes

δω
f
f |l = −∆bfg − ηfgv − [(Âf

l A
l
Eω

E
E|I + Âf

l ω
l
l|E)×]δαf |l (43)

Equation (40) then simplifies to

δα̇f |l = −[(ω̂f
f |E)×]δαf |l − ∆bfg − ηfgv (44)

Time derivative of the position error state vector is simply equal to the velocity error state vector:

d

dt
(∆r

f
f |l) = ∆ṙ

f
f |l (45)

The time derivative of the velocity vector is more complicated. To keep this document concise, the algebraic
derivation of this equation will be omitted. The final result makes use of several of the relations already
mentioned in this paper, along with Euler’s equation20

ω̇
f
f |E = −J−1

f [(ωf
f |E)×]Jfω

f
f |E + J−1

f Lf (46)

where Jf is the inertia matrix of the follower and Lf is the applied torque. An expansion of the gravity
model in Eq. (24) is also required:

gE
f = ĝE

f +
∂gE

f

∂∆r
f
f |l

∆r
f
f |l +

∂gE
f

∂δαf |l
δαf |l (47)

where

∂gE
f

∂∆r
f
f |l

= −µAE
l Â

l
f‖r

E
l|I +AE

l Â
l
f r̂

f
f |l‖

−3

−µ
(

rE
l|I +AE

l Â
l
f r̂

f
f |l

)

(

−
3

2

)

‖rE
l|I +AE

l Â
l
f r̂

f
f |l‖

−5
(

2(rE
l|I)

TAE
l Â

l
f + 2(r̂f

f |l)
T
)

= −µAE
l Â

l
f‖r

E
l|I +AE

l Â
l
f r̂

f
f |l‖

−3

+3µ
(

rE
l|I +AE

l Â
l
f r̂

f
f |l

) (

(rE
l|I)

TAE
l Â

l
f + (r̂f

f |l)
T
)

‖rE
l|I +AE

l Â
l
f r̂

f
f |l‖

−5 (48)
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∂gE
f

∂δαf |l
= −µAE

l [(Âl
f r̂

f
f |l)×]‖rE

l|I +AE
l Â

l
f r̂

f
f |l‖

−3 − µ
(

rE
l|I +AE

l Â
l
f r̂

f
f |l

)

×

(

−
3

2

)

‖rE
l|I +AE

l Â
l
f r̂

f
f |l‖

−5
(

2(rE
l|I)

TAE
l [(Âl

f r̂
f
f |l)×] + 2(r̂f

f |l)
T Âf

l [(Âl
f r̂

f
f |l)×]

)

= −µAE
l [(Âl

f r̂
f
f |l)×]‖rE

l|I +AE
l Â

l
f r̂

f
f |l‖

−3 + 3µ
(

rE
l|I +AE

l Â
l
f r̂

f
f |l

)

×
(

(rE
l|I)

TAE
l [(Âl

f r̂
f
f |l)×] + (r̂f

f |l)
T Âf

l [(Âl
f r̂

f
f |l)×]

)

‖rE
l|I +AE

l Â
l
f r̂

f
f |l‖

−5 (49)

Using the above relations, the velocity error dynamics equation is written as

d

dt
∆ṙ

f
f |l = F3−1δαf |l + F3−2∆r

f
f |l + F3−3∆̇r

f

f |l + F3−4∆bfg + F3−5∆bfa +G3−1ηfgv +G3−3ηfav

(50)

where

F3−1 = −[(r̂f
f |l)×]J−1

f

{

[(Jf ω̂
f
f |E)×] − [(ω̂f

f |E)×]Jf

}

[(Âf
l A

l
Eω

E
E|I)×]

− [(r̂f
f |l)×][(ω̃f

f |I − b̂fg)×][(Âf
l Â

l
Eω

E
E|I)×] − [(Âf

l a
l
l)×] + [(Âf

l A
l
E

(

ĝE
f − gE

l

)

)×]

− µÂf
l A

l
E

{

AE
l [(Âl

f r̂
f
f |l)×]‖rE

l|I +AE
l Â

l
f r̂

f
f |l‖

−3 − 3
(

rE
l|I +AE

l Â
l
f r̂

f
f |l

)

×
(

(rE
l|I)

TAE
l [(Âl

f r̂
f
f |l)×] + (r̂f

f |l)
T Âf

l [(Âl
f r̂

f
f |l)×]

)

‖rE
l|I +AE

l Â
l
f r̂

f
f |l‖

−5
}

(51a)

F3−2 = −[(ω̃f
f |I − b̂fg)×][(ω̃f

f |I − b̂fg)×] + [((ω̃f
f |I − b̂fg) × Âf

l A
l
Eω

E
E|I)×] − [( ˙̂ωf

f |E)×]

− µÂf
l A

l
E

{

AE
l Â

l
f‖r

E
l|I +AE

l Â
l
f r̂

f
f |l‖

−3

− 3
(

rE
l|I +AE

l Â
l
f r̂

f
f |l

)(

(rE
l|I)

TAE
l Â

l
f + (r̂f

f |l)
T
)

‖rE
l|I +AE

l Â
l
f r̂

f
f |l‖

−5
}

(51b)

F3−3 = −2[(ω̃f
f |I − b̂fg)×] (51c)

F3−4 = − [(r̂f
f |l)×]J−1

f

{

[(Jf ω̂
f
f |E)×] − [(ω̂f

f |E)×]Jf

}

− [(r̂f
f |l)×][(Âf

l A
l
Eω

E
E|I)×] − 2[( ˙̂rf

f |l)×]

−
(

[((ω̃f
f |I − b̂fg) × r̂

f
f |l)×] + [(ω̃f

f |I − b̂fg)×][(r̂f
f |l)×]

) (51d)

F3−5 = −I3 (51e)

G3−1 = −[(r̂f
f |l)×]J−1

f

{

[(Jf ω̂
f
f |E)×] − [(ω̂f

f |E)×]Jf

}

− [(r̂f
f |l)×][(Âf

l A
l
Eω

E
E|I)×] − 2[( ˙̂rf

f |l)×]

−
(

[((ω̃f
f |I − b̂fg) × r̂

f
f |l)×] + [(ω̃f

f |I − b̂fg)×][(r̂f
f |l)×]

) (51f)

G3−3 = −I3 (51g)

Lastly, the time derivatives of the bias states are found by using Eqs. (34a) through (35b) along with
Eq. (38):

∆ḃfa = −ηfau (52a)

∆ḃfg = −ηfgu (52b)

The overall error dynamics are governed by the equation

∆ẋ = F∆x +Gw (53)
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where the F and G matrices are given by

F =

















−[(ω̂f
f |E)×] 03×3 03×3 −I3×3 03×3

03×3 03×3 I3×3 03×3 03×3

F3−1 F3−2 F3−3 F3−4 F3−5

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

















(54a)

G =















−I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

G3−1 03×3 G3−3 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3















(54b)

The covariance matrix used in the EKF is

Q =











σ2
fgvI3×3 03×3 03×3 03×3

03×3 σ2
fguvI3×3 03×3 03×3

03×3 03×3 σ2
favI3×3 03×3

03×3 03×3 03×3 σ2
fauI3×3











(55)

A discrete propagation is used for the covariance matrix in order to reduce the computational load:

P−
k+1 = ΦkP

+
k ΦT

k + Qk (56)

where Φk is the state transition matrix and Qk is the covariance matrix. Van Loan (See Ref. 25) gives a
numerical solution for these matrices. The first step is to set up the following 2n by 2n matrix:

A =

[

−F GQGT

0n×n FT

]

∆t (57)

The matrix exponential is then calculated:

B = eA =

[

B11 B12

0n×n B22

]

=

[

B11 Φ−1
k Qk

0n×n ΦT
k

]

(58)

The state transition and covariance matrices are then given as

Φk = BT
22 (59a)

Qk = ΦkB12 (59b)

VI. Measurement Equations

The measurements used in this filter consist of the relative LOS observations between the two UAVs. A
schematic of this system is shown in Fig. 2. Beacons are located on the follower at coordinates specified in
the follower reference frame by (Xi, Yi, Zi).

The relation between image space measurements of the PSD to the object space are given by26

αi = −f
A11(Xi + x) +A12(Yi + y) +A13(Zi + z)

A31(Xi + x) +A32(Yi + y) +A33(Zi + z)
(60a)

βi = −f
A21(Xi + x) +A22(Yi + y) +A23(Zi + z)

A31(Xi + x) +A32(Yi + y) +A33(Zi + z)
(60b)
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Leader

Follower

Beacon

(Xi, Yi, Zi)

(x, y, z)

(Xi+x, Yi+y, Zi+z)

||(Xi+x, Yi+y, Zi+z)||

Figure 2. Vision Based Navigation System

where f is the focal length, and the A matrix transforms from the follower frame to the leader frame and is
therefore equal to (Af

l )T . Writing these equations in terms of Af
l yields

αi = −f
Af

l11
(Xi + x) +Af

l21
(Yi + y) +Af

l31
(Zi + z)

Af
l13

(Xi + x) +Af
l23

(Yi + y) +Af
l33

(Zi + z)
(61a)

βi = −f
Af

l12
(Xi + x) +Af

l22
(Yi + y) +Af

l32
(Zi + z)

Af
l13

(Xi + x) +Af
l23

(Yi + y) +Af
l33

(Zi + z)
(61b)

Since observations can be given as αi/f and βi/f , the focal length is set equal to one in order to simplify

the math. The (x, y, z) coordinates are the components of the vector r
f
f |l.

Consider a measurement vector denoted by

γ̃i = γi + v (62a)

γi ≡

[

αi

βi

]

(62b)

A frequently used covariance of v is given by Ref. 27 as

RFOCAL
i =

σ2

1 + d(α2
i + β2

i )

[

(1 + dα2
i )

2 (dαiβi)
2

(dαiβi)
2 (1 + dβ2

i )2

]

(63)

where d is on the order of 1 and σ is assumed to be known. Note that the components of this covariance
matrix will increase as the image space coordinates increase. This demonstrates that errors will increase as
the observation moves away from the boresight. Reference 27 also states that for practical purposes, the
estimated values of αi and βi must be used in place of the true quantities. This only leads to second order
error effects.

The problem with using Eq. (62a) as the measurement vector is that the definitions of αi and βi in
Eqs. (61a) and (61b) are highly nonlinear in both the position and attitude components. A simpler obser-
vation vector is given in unit vector form as

bi = (Af
l )T ri (64)

where

ri ≡
1

√

(Xi + x)2 + (Yi + y)2 + (Zi + z)2







Xi + x

Yi + y

Zi + z






(65)
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and for a sensor facing in the positive Z direction,

bi =
1

√

1 + α2
i + β2

i







−αi

−βi

1






(66)

Similar equations for the positive X and Y directions are found by rotating the elements of the vector in a
cyclic manner. Sensors facing in the negative direction use the same equations multiplied by negative one.

In Ref. 28, Shuster and Oh showed that when measurement noise is present, nearly all the probability
errors are concentrated on a small area about the direction of bi, allowing the sphere containing that point
to be approximated by a tangent plane. The measurement vector is defined as

b̃i = bi + νi (67)

where the sensor error νi is assumed Gaussian with

E{νi} = 0 (68a)

RQUEST
i ≡ E{νiν

T
i } = σ2(I3×3 − bib

T
i ) (68b)

Equation (68b) is known as the QUEST measurement model. Once again, this is a function of the true values

since bi is present. The matrix RQUEST
i is also a singular matrix, which causes singularity issues in the gain

computation of the EKF. In Ref. 29, Shuster showed that the measurement covariance can effectively be
replaced by σ2I3×3, which is both non-singular and not a function of true state values.

The QUEST measurement model works well for small field of view sensors, but may produce significant
errors for larger field of views, such as the VISNAV sensor. A new covariance model is developed in Ref. 30
that provides better accuracy than the QUEST model for this case. It is based upon a first-order Taylor
series expansion of the unit vector observation. The primary assumption is that the measurement noise is
small compared to the signal. The new covariance is defined as

RNEW
i = JiR

FOCAL
i JT

i (69)

where Ji is the Jacobian of Eq. (66) and is given by

Ji ≡
∂bi

∂γi
=

1
√

1 + α2
i + β2

i







−1 0

0 −1

0 0






−

1

1 + α2
i + β2

i

bi

[

αi βi

]

(70)

Appropriate modifications to the Jacobian must be made for sensors facing along the other axes. It should
be noted that RNEW

i is also a singular matrix. This issue must be overcome before the covariance can be used
within the EKF framework. A rank-one update approach is shown effective to overcome this difficulty, as
shown in Ref. 30. The basic idea is to add an additional term cibib

T
i (ci > 0) to the measurement covariance

matrix to ensure that the new covariance matrix is nonsingular and does not change the overall result in the
EKF. This is mathematically written as

RNEW
i = RNEW

i + cibib
T
i (71)

The coefficient ci is recommended to be given by

ci =
1

2
trace(RNEW

i ) (72)

where trace is the mathematical function denoting trace of a matrix.
The next step is to determine the partial of the measurement vector with respect to the state vector in

order to form the H matrix of the filter. Using Eq. (42), Eq. (64) becomes

bi = (Âf
l )T (I3×3 + [(δαf |l)×])ri

= (Âf
l )T ri + (Âf

l )T [(δαf |l)×]ri

= (Âf
l )T ri − (Âf

l )T [(ri)×]δαf |l (73)
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Table 1. Summary of Extended Kalman Filter for Relative Inertial Navigation

Initialize

q̂fl(t0) = qf |l0
r̂

f
f |l(t0) = r

f
f |l0

v̂
f
f |l(t0) = v

f
f |l0

βfg(t0) = βfg0

βfa(t0) = βfa0

P (t0) = P0

Gain
Kk = P−

k H
T
k (x̂−

k )[Hk(x̂−
k )P−

k H
T
k (x̂−

k ) +Rk]−1

Hk(x̂−
k ) =

[

∂bi

∂δα
f
l

∂bi

∂r
f
f|l

03×3 03×3 03×3

]∣

∣

∣

tk

Update

P+
k = [I −KkHk(x̂−)]P−

k

∆ˆ̃x+
k = Kk[ỹk − ŷ−

k ]

∆ˆ̃x+
k ≡

[

δα+T
f |lk ∆r

f
f |lk ∆v

f
f |lk ∆β+T

fgk
∆β+T

fak

]

q̂+
f |lk = q̂−

f |lk + 1
2
Ξ(q̂−

f |lk)δαf |lk

q̂+
f |lk =

q̂
+

f|lk

‖q̂+

f|lk
‖

r̂
f+

f |lk = r̂
f−
f |lk + ∆r

f
f |lk

v̂
f+

f |lk = v̂
f−
f |lk + ∆v

f
f |lk

β̂+
fgk

= β̂−
fgk

+ ∆β̂+
fgk

β̂+
fak

= β̂−
fak

+ ∆β̂+
fak

Propagation

â
f+
fk

= ã
f
fk

− β̂+
fak

ω̂
f+

f |lk = ω̃
f
f |Ik

− Âf
l ω

l
l|Ek

− β̂+
fgk

q̂−
f |lk+1

= Ω̄(ω̂+
f |lk)Γ̄(ω̂+

f |lk)q̂+
f |lk

P−
k+1 = ΦkP

+
k ΦT

k + Qk

¨̂rf
f |l = −[( ˙̂ωf

f |E)×]r̂f
f |l − [(ω̂f

f |I)×][(ω̂f
f |I)×]r̂f

f |l + [(ω̂f
f |I × Âf

l A
l
Eω

E
E|I)×]r̂f

f |l

−2[(ω̂f
f |I)×] ˙̂rf

f |l + â
f
f − Âf

l a
l
l + Âf

l A
l
E

(

ĝE
f − gE

l

)

ĝE
f = −µ

‖r̂E
f|E

‖3 r̂
E
f |E

The partial derivative with respect to the attitude states is simply given by

∂bi

∂δαf
l

= −(Âf
l )T [(ri)×] (74)

The partial derivative with respect to the position vector is more complicated, and given by Ref. 18:

∂bi

∂rf
f |l

= (Af
l )T ∂ri

∂rf
f |l

= (Af
l )T 1

C
L (75)

13 of 25

American Institute of Aeronautics and Astronautics



0 50 100 150 200 250 300
−0.1

0

0.1

0 50 100 150 200 250 300
−0.1

0

0.1

0 50 100 150 200 250 300
−0.1

0

0.1

Time (sec)

R
o
ll

(d
eg

)
P

it
ch

(d
eg

)
Y
aw

(d
eg

)

(a) Angle Errors (3 Beacons)

0 50 100 150 200 250 300
−0.1

0

0.1

0 50 100 150 200 250 300
−0.1

0

0.1

0 50 100 150 200 250 300
−0.1

0

0.1

Time (sec)

R
o
ll

(d
eg

)
P

it
ch

(d
eg

)
Y
aw

(d
eg

)

(b) Angle Errors (2 Beacons)

Figure 3. Relative Attitude Errors (Scenario I)

where C and the elements of the matrix L are given by

C =
[

(Xi + x)2 + (Yi + y)2 + (Zi + z)2
]3/2

(76a)

L11 = [(Yi + y)2 + (Zi + z)2] (76b)

L12 = L21 = −(Xi + x)(Yi + y) (76c)

L13 = L31 = −(Xi + x)(Zi + z) (76d)

L22 = [(Xi + x)2 + (Zi + z)2] (76e)

L23 = L32 = −(Yi + y)(Zi + z) (76f)

L33 = [(Xi + x)2 + (Yi + y)2] (76g)

The overall H matrix is then given as

Hi =

[

∂bi

∂δαf
l

∂bi

∂rf
f |l

03×3 03×3 03×3

]

(77)

The complete extended Kalman filter is summarized in Table 1, where Rk is the block-diagonal matrix made
up of all the individual RNEW

ik
matrices, and ỹk ≡ [b̃T

1k
· · · b̃T

Nk
]T and ŷ−

k ≡ [b̂−T
1k

· · · b̂−T
Nk

]T , where N is
the total number of LOS observations at time tk.
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Figure 4. Kinematic Errors (Scenario I)

VII. Modified Kalman Filter

A modification to the previously derived extended Kalman filter will also be tested. Since the relative
distance between the leader and follower is small compared to the radius of the Earth, there is a possibility
that the gravity terms will be negligible. To remove the gravity terms from the filter, Eqs. (51a) through
(51g) are reexamined. It can be seen that only the F3−1 and F3−2 terms need to be modified. Their new
values are given by

F3−1 = −[(r̂f
f |l)×]J−1

f

{

[(Jf ω̂
f
f |E)×] − [(ω̂f

f |E)×]Jf

}

[(Âf
l A

l
Eω

E
E|I)×]

− [(r̂f
f |l)×][(ω̃f

f |I − b̂fg)×][(Âf
l A

l
Eω

E
E|I)×] − [(Âf

l a
l
l)×]

(78a)

F3−2 = −[(ω̃f
f |I − b̂fg)×][(ω̃f

f |I − b̂fg)×] + [((ω̃f
f |I − b̂fg) × Âf

l A
l
Eω

E
E|I)×] − [( ˙̂ωf

f |E)×] (78b)

The remainder of the filter is the same and is given by Table 1.

VIII. Simulations

This section shows simulation results for a leader/follower pair of UAVs. Trajectories are defined in the
NED reference frame for a location of interest at λ = 38 degrees and φ = −77 degrees over a five minute
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Figure 5. Bias Errors (Scenario I)

period. The position trajectories are given by

rN
l|N =







50t+ 5 cos(0.01t)

1000 sin(0.05t)

−10t






(79a)

rN
f |l =







50t+ 5 cos(0.01t) + 30 cos(0.1t+ π
6
) + 100)

1000 sin(0.05t) + 20 cos(0.1t) + 100

−10t+ 40 cos(0.1t+ π
4
)






(79b)

They are then converted to the ECEF frame using Eq. (4). The leader and follower UAVs are given the
following constant rotational rates:

ωl
l|I =

[

1 1 1
]T deg

min
(80a)

ω
f
f |I =

[

−10 5 −2.5
]T deg

min
(80b)
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Figure 6. Relative Attitude Errors (Scenario II)

The initial quaternion attitude parameters are given as

ql|E =
[

− 1
2

1

2
√

2
− 1

2
√

2

√
2

2

]T

(81a)

qf |E =
[

1

2
√

3

1

2
√

3

1

2
√

3

√
3

2

]T

(81b)

Gyro, accelerometer and relative position measurements are taken every 0.1 seconds. The gyro noise pa-
rameters are σgv = 8.7266 × 10−7 rad

s1/2 and, σgu = 2.15 × 10−8 rad
s3/2 . The accelerometer noise parameters are

σav = 1.5 × 10−5 m
s3/2 and, σau = 6.0 × 10−5 m

s5/2 . The initial gyro and accelerometer biases are given by

βfg = [ 0.8 −0.75 0.6 ]T
deg

s
(82a)

βfa = [ −0.002 0.0375 −0.004 ]T
m

s2
(82b)

Both the accelerometer and gyro biases are initially assumed to be zero. The initial covariance matrix P0 is
diagonal. The attitude components of the covariance are initialized to a 3σ bound of 1 degree. The position
and velocity parts have 3σ bounds of 20 meters and 0.5 meters per second, respectively. The accelerometer
and gyro bias components have 3σ bounds 1 degree per hour and 0.1 meters per second squared, respectively.
Scenarios will be tested with varying numbers of beacons, with locations given in Table 2.

Scenarios with the following sets of initial condition errors will be tested on the full EKF:

17 of 25

American Institute of Aeronautics and Astronautics



0 50 100 150 200 250 300
−0.5

0

0.5

0 50 100 150 200 250 300
−0.5

0

0.5

0 50 100 150 200 250 300
−0.5

0

0.5

Time (sec)

x
(m

)
y

(m
)

z
(m

)

(a) Relative Position Errors (3 Beacons)

0 50 100 150 200 250 300
−0.1

0

0.1

0 50 100 150 200 250 300
−0.1

0

0.1

0 50 100 150 200 250 300
−0.1

0

0.1

Time (sec)

x
(m

/
s)

y
(m

/
s)

z
(m

/
s)

(b) Relative Velocity Errors (3 Beacons)

0 50 100 150 200 250 300
−1

0

1

0 50 100 150 200 250 300
−1

0

1

0 50 100 150 200 250 300
−1

0

1

Time (sec)

x
(m

)
y

(m
)

z
(m

)

(c) Relative Position Errors (2 Beacons)

0 50 100 150 200 250 300
−0.1

0

0.1

0 50 100 150 200 250 300
−0.1

0

0.1

0 50 100 150 200 250 300
−0.1

0

0.1

Time (sec)

x
(m

/
s)

y
(m

/
s)

z
(m

/
s)

(d) Relative Velocity Errors (2 Beacons)

Figure 7. Kinematic Errors (Scenario II)

Table 2. List of Beacon Locations

Beacon Number (i) Xi Yi Zi

1 0 m 7 m 0 m

2 0 m −7 m 0 m

3 3.75 m 0 m 0 m

4 −3.75 m 0 m 0 m

5 −3.75 m −2.25 m −1.5 m

6 −3.75 m 2.25 m −1.5 m

7 1.5 m 0 m 0 m

8 −1.5m 0 m 0 m

I Gyro bias and accelerometer bias

II Relative quaternion and both biases

III Relative position, relative velocity and both biases
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Figure 8. Bias Errors (Scenario II)

IV All states

For all scenarios, plots are shown of the two and three beacon cases. The use of only one beacon is insufficient
for estimator convergence, while higher numbers of beacons simply yield lower errors and tighter covariance
bounds. Figures 3 through 5 show the results of scenario one where the only initial condition errors present
are on the bias terms. The angle errors corresponding to the error quaternion are shown in Fig. 3. All states
are seen to converge quickly within their covariance bounds. The primary reason for showing the two beacon
case is seen in Fig. 4. The two beacon case is seen to have an intermediate increase in covariance in both
the relative position and relative velocity states. Three beacons is needed to maintain smooth covariance
bounds.

The second scenario uses an initial quaternion given by

q̂
f
f |l(t0) = δq ⊗ q

f
f |l(t0) (83)

where

δq =

[

δa

1

]

(84a)

δa =
[

1 −2 −2
]T

×
π

180
(84b)
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Figure 9. Relative Attitude Errors (Scenario III)

Figures 6 through 8 show the resulting errors for the two and three beacon scenarios. Convergence occurred
for all states, though it took significantly longer for the two beacon case. The same intermediate covariance
increase can be seen in the two beacon case for the relative position and relative velocity states.

The next scenario contains initial condition errors in the relative position and velocity. These errors are
given by

r̂
f
f |l(t0) = 0.9rf

f |l(t0) (85)

v̂
f
f |l(t0) = v

f
f |l(t0) +

[

5 −5 3
]T

m/s (86)

Results of the two and three beacons cases are shown in Figs. 9 through 11. The relative position and relative
velocity errors of Fig. 10 show the same intermediate covariance increase for the two beacon case. The two
most significant features of these plots are that the errors are smaller than that of scenario two, and the
states remain within their covariance bounds for a much greater percentage of the simulation.

Scenario four simply uses all of the previously stated initial condition errors. The results of the three
beacon case are shown in Figs. 12 through 14. The estimate errors and covariance bounds are seen to be
similar to that of scenario two. The use of three beacons again allows all states to be estimated effectively
and quickly. These figures also demonstrate that initial condition errors in the relative quaternion have more
influence that initial condition errors on the relative position and relative velocity.

The final simulations are of the extended Kalman filter that was modified to remove gravity-related
terms. As was seen in previous simulations, one beacon was insufficient to achieve accurate estimates while

20 of 25

American Institute of Aeronautics and Astronautics



0 50 100 150 200 250 300
−0.5

0

0.5

0 50 100 150 200 250 300
−0.5

0

0.5

0 50 100 150 200 250 300
−0.5

0

0.5

Time (sec)

x
(m

)
y

(m
)

z
(m

)

(a) Relative Position Errors (3 Beacons)

0 50 100 150 200 250 300
−0.2

0

0.2

0 50 100 150 200 250 300
−0.2

0

0.2

0 50 100 150 200 250 300
−0.2

0

0.2

Time (sec)

x
(m

/
s)

y
(m

/
s)

z
(m

/
s)

(b) Relative Velocity Errors (3 Beacons)

0 50 100 150 200 250 300
−0.5

0

0.5

0 50 100 150 200 250 300
−0.5

0

0.5

0 50 100 150 200 250 300
−0.5

0

0.5

Time (sec)

x
(m

)
y

(m
)

z
(m

)

(c) Relative Position Errors (2 Beacons)

0 50 100 150 200 250 300
−0.2

0

0.2

0 50 100 150 200 250 300
−0.2

0

0.2

0 50 100 150 200 250 300
−0.2

0

0.2

Time (sec)

x
(m

/
s)

y
(m

/
s)

z
(m

/
s)

(d) Relative Velocity Errors (2 Beacons)

Figure 10. Kinematic Errors (Scenario III)

two beacons resulted in an intermediate covariance increase. The results of the three beacon case are shown
in Figs. 15 through 17. Comparing these with the prior simulations, they are seen to be nearly identical
to that of Figs. 9 through 11. This shows that the absence of gravity terms has the same effect as initial
condition errors in the relative position and relative velocity.

IX. Conclusion

An extended Kalman filter is derived for the relative navigation of uninhabited autonomous vehicles.
Relative attitude is parameterized using a quaternion. Its estimation is reduced from four states to three by
using a multiplicative error quaternion. Measurements are taken by simulating visual navigation beacons.
These beacons are assumed to be placed on the follower while the sensors are on board the leader. Simulations
are performed using a number of beacons ranging from one to eight.

For all simulations, estimator convergence occurred only when two or more beacons were present. The
use of two beacons showed some states to converge from outside of the covariance bounds, several of which
requiring a significant amount of time to actually converge. Adding initial condition errors to the relative
position and relative velocity yielded no observable difference. The most notable feature occurred in the
relative position and relative velocity states for the two beacon simulations. An intermediate increase in the
covariances was observed. This is likely due to a physical arrangement of the beacons with respect to the
leader that temporarily made these states unobservable.

The final set of simulations used the extended Kalman filter modified to remove all gravity related terms.
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Figure 11. Bias Errors (Scenario III)

The only initial condition errors present were on the bias terms. Results showed that this filter is comparable
to the full version scenario where initial condition errors in the relative position and relative velocity were
added. The use of one beacon was insufficient for producing accurate estimates, while the results of the two
beacon case showed the same intermediate covariance increase seen in previous simulations. Overall, the
derived filter has been shown effective in a variety of scenarios. The use of three beacons allows accurate
estimates to be achieved for any set of testing conditions.
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Figure 13. Kinematic Errors (Scenario IV)
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Figure 15. Relative Attitude Errors (Modified EKF)
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Figure 16. Kinematic Errors (Modified EKF)
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Figure 17. Bias Errors (modified EKF)
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