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This paper provides a survey of modern nonlinear filtering methods

for attitude estimation. Early applications relied mostly on the extended

Kalman filter for attitude estimation. Since these applications, several new

approaches have been developed that have proven to be superior to the

extended Kalman filter. Several of these approaches maintain the basic

structure of the extended Kalman filter, but employ various modifications

in order to provide better convergence or improve other performance char-

acteristics. Examples of such approaches include: filter QUEST, extended

QUEST and the backwards-smoothing extended Kalman filter. Filters that

propagate and update a discrete set of sigma points rather than using lin-

earized equations for the mean and covariance are also reviewed. A two-

step approach is discussed with a first-step state that linearizes the mea-

surement model and an iterative second step to recover the desired attitude

states. These approaches are all based on the Gaussian assumption that the

probability density function is adequately specified by its mean and covari-

ance. Other approaches that do not require this assumption are reviewed,
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including particle filters and a Bayesian filter based on a non-Gaussian,

finite-parameter probability density function on SO(3). Finally, the pre-

dictive filter, nonlinear observers and adaptive approaches are shown. The

strengths and weaknesses of the various approaches are discussed.

Nomenclature

AEKF = Additive Extended Kalman Filter

ALEXIS = Array of Low-Energy X-Ray Imaging Sensors

BF = Bootstrap Filter

BSEKF = Backwards-Smoothing Extended Kalman Filter

CAPER = Cleft Accelerated Plasma Experimental Rocket

EKF = Extended Kalman Filter

GA = Genetic Algorithm

GA-QPF = Genetic Algorithm-Embedded Quaternion Particle Filter

GPS = Global Positioning System

GRP = Generalized Rodrigues Parameter

IRP = Integrated Rate Parameter

KF = Kalman Filter

LOM = Linearized Orthogonalized Matrix

MAP = Maximum a posteriori Probability

MEKF = Multiplicative Extended Kalman Filter

MRP = Modified Rodrigues Parameter

PDF = Probability Density Function

PF = Particle Filter

QPF = Quaternion Particle Filter

QUEST = QUaternion ESTimator

RADCAL = Radar Calibration

REQUEST = REcursive QUaternion ESTimator

SO(3) = Special Orthogonal Group for Three-Dimensional Space

SPARS = Space Precision Attitude Reference System

USQUE = UnScented QUaternion Estimator

UVF = Unit Vector Filter

(P υυ, P yy, P xy) = Innovations, Output and Cross-Correlation Covariances

(Rww, Rqq, Rxq, Rxx) = Weighting Matrices in Extended QUEST

(Nv, Nu) = Zero-Mean Gaussian White-Noise Processes

03×3 = 3× 3 Matrix of Zeros
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Y = First-Step State in Two-Step Estimator

q̂ = Estimated Quaternion

x̂ = State Estimate Vector

Ŷ = First-Step Estimate in Two-Step Estimator

Â = Estimated Attitude Matrix

P = Covariance for First Step of Two-Step Estimator

b̃ = Unit Vector Measurement

ỹ = Measurement Vector

A = Attitude Matrix

A(q) = Attitude Matrix Parameterized using the Quaternion

AR(q) = Ray Representation of the Attitude Matrix

E{·} = Expectation

I3×3 = 3× 3 Identity Matrix

P = Covariance

Q = Process Noise Covariance

R = Measurement Noise Covariance

V = Lyapunov Function

b = Body-frame vector

d = Model-Error Vector

e = Euler Axis

F = External Disturbance Vector

h(x) = Nonlinear Measurement Model

p = Vector of Modified Observations of Rodrigues Parameters

q = Quaternion

r = Reference-frame vector

u = General Control Input Vector

v = Measurement Noise Vector

w = Process Noise Vector

wd = Deterministic Dynamic Disturbance Vector

wy = Deterministic Measurement Disturbance Vector

x = State Vector

q4 = Scalar Part of the Quaternion

(ηv, ηu) = Gyro Noise Vectors

(σ2
v , σ2

u) = Gyro Noise Spectral Densities

β = Angular Rate Drift Vector

δp̂ = Estimated Error Generalized Rodrigues Parameter Vector

δq(φ) = Multiplicative Error Quaternion
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ω = Angular Rate Vector

υ = Noise for Unit Vector Measurement

δ(t− τ) = Dirac Delta Function

δq4 = Scalar Part of Error Quaternion

∆β = Difference Between True and Estimated Drift

Φ3×3 = Attitude State Transition Matrix

Φ4×4 = Quaternion State Transition Matrix

σ = Standard Deviation for QUEST Measurement Model

ω̃ = Measured Angular Rate Vector

σ = Sigma Points

δ̺ = Vector Part of Error Quaternion

φ = Vector for Error Quaternion

̺ = Vector Part of the Quaternion

∆t = Sampling Interval

∆q = Difference Between True and Estimated Quaternion

ϑ = Rotation Angle

I. Introduction

Attitude estimation involves a two-part process: 1) estimation of a vehicle’s orientation

from body measurements and known reference observations, such as line-of-sight measure-

ments to known observed stars, and 2) filtering of noisy measurements. The second part is

achieved by combining the measurements with models, which in itself can be done a num-

ber of different ways. One way is to use a kinematics model propagated with three-axis

rate integrating gyros. However, the rates measured by gyros drift over time. Therefore,

the attitude state vector is usually appended by three more states to determine this drift.

This leads to a complementary approach, where the gyros are used to filter the noisy body

measurements and the measurements are used to determine the drift inherent in the gyros.

Another way involves combining the kinematics model with a dynamics model for the an-

gular rate. However, even a detailed dynamics model, such as Euler’s rotational equations,

will have inherent errors. For example, the inertia matrix may not be well known. This

is compensated in filter designs by using process noise, which leads to the classic “tuning”

problem in the filter. Throughout this paper the terms “filter” and “estimator” are used

synonymously, because noisy measurements are involved. When perfect observations are

given, then the term “observer” is used. Another term is “smoother,” which refers to a

batch algorithm, i.e. not executed in real time, to provide better estimates than a real-time

filtering algorithm. Various attitude filters, observers and smoothers are shown here.
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The extended Kalman filter1–7 (EKF) is the workhorse of real-time spacecraft attitude

estimation. Since the group SO(3) of rotation matrices has dimension three, most atti-

tude determination EKFs use lower-dimensional attitude parameterizations than the nine-

parameter attitude matrix itself. The fact that all three-parameter representations of SO(3)

are singular or discontinuous for certain attitudes8 has led to extended discussions of con-

straints and attitude representations in EKFs.6,7, 9–11 These issues are now well understood,

however, and the EKF, especially in the form known as the multiplicative extended Kalman

filter5–7 (MEKF), has performed admirably in the vast majority of attitude determination ap-

plications. Nevertheless, poor performance or even divergence arising from the linearization

implicit in the EKF has led to the development of other filters. Several of these approaches

retain the basic structure of the EKF, such as additive EKF approaches,12–17 a backwards-

smoothing EKF,18 and deterministic EKF-like estimators,19–21 which are closely related to

H∞ control design.22 Another approach applies a two-step optimal estimator, where the first

is a transformation of the measurement equation to a linear one, thus providing a linear filter

design, and the second step is a least squares solution for the estimate.23

Other designs use various assumptions to derive simplified filters. These generally provide

suboptimal performance characteristics in relation to the EKF, but involve linear or pseudo-

linear equations that are used to estimate the states of a nonlinear dynamical system. There-

fore, linear design and analysis tools can be used to construct the filter and assess its overall

performance. Some of these use a point-by-point solution of the attitude, e.g. methods that

are based on the QUEST attitude determination solution.24 Simple filter designs based on

QUEST include filter QUEST25 and recursive QUEST.26 A more complicated but far more

robust approach, called extended QUEST,27 uses a full nonlinear propagation along with a

novel measurement update. This approach can be used to estimate attitude and additional

parameters as well.

Several new alternatives to the standard EKF have been recently introduced, such as

unscented filters (UFs),28–31 also known as sigma-point filters, and particle filters.32–35 Un-

scented filters are essentially based on second or higher-order approximations of nonlinear

functions, which are used to estimate the mean and covariance of the state vector. Though

the mean and covariance are sufficient to represent a Gaussian distribution, they are not suffi-

cient to represent a general probability distribution. This may be overcome by using particle

filters32–35 (PFs). A PF for attitude estimation based on the bootstrap filter33 is shown in

Ref. 34. Oshman and Carmi35 use a bootstrap filter to estimate the quaternion and employ

a genetic algorithm to estimate the gyro bias parameters, avoiding the need to augment the

particle filter’s state and thus reducing the number of particles required. Another approach

uses a higher-order Taylor series expansion than the standard EKF to predict the estimate

at the current time, based on current-time measurements and previous-time estimates.36
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The optimal solution of the nonlinear estimation problem requires the propagation of

the conditional PDF of the state given the observation history.35 All practical nonlinear fil-

ters are approximations to this ideal. Exact finite dimensional filters37 can be found that

solve some nonlinear problems by using the Fokker-Planck equation2,38 to propagate a non-

Gaussian PDF between measurements and Bayes’ formula1,2 to incorporate measurement

information. A recently proposed filter39 follows this pattern, but does not solve the nonlin-

ear attitude filtering problem exactly. This is referred to as an orthogonal filter, because it

represents the attitude by an orthogonal rotation matrix, rather than by some parameteri-

zation of the rotation matrix. Nonlinear observers often exhibit global convergence, which

is to say that they can converge from any initial guess, as discussed in the survey paper of

Ref. 40. More recent observers are high gain observers,41 normal form observers,42 backstep-

ping observers,43 observers based on a moving horizon,44,45 and pseudospectral observers.46

Several applications of observers for attitude control have been proposed Refs. 47–52.

Adaptive approaches generally fall into two categories. One category encompasses ap-

proaches that adaptively tune the Kalman filter through the identification of either the

process noise covariance or measurement noise covariance, or both simultaneously.53 An ex-

ample is the approach demonstrated in Ref. 54 that uses linearized equations. Another

approach develops adaptive filters that address both colored and white noise statistics.55 An

adaptive filter is also proposed in Ref. 17 to account for inaccuracy in the knowledge of the

process noise statistical model, which uses a linear pseudo-measurement model. Other adap-

tive approaches use adaptive methods for fault tolerant estimation purposes.56,57 The other

category includes approaches that adaptively estimate unknown system parameters, such as

the inertia matrix. These generally fall into two basic categories: 1) parameter estimation

or filter-based methods, and 2) nonlinear adaptive techniques. Least squares methods to

determine the inertia matrix and other constant parameters, such as disturbance model pa-

rameters and biases, are shown in Refs. 58–60. A disturbance accommodation technique that

models the unknown disturbance angular rate using polynomials in time as basis functions

is shown in Ref. 61. Nonlinear adaptive techniques are similar to nonlinear observers in

that they usually provide global stability proofs that guarantee convergence of the estimated

parameters.62–64

This paper will review the basic assumptions of these filters, observers and smoothers,

presenting enough mathematical detail to give a general orientation. First, reviews of the

quaternion parameterization and gyro model equations are given. Then, attitude estima-

tion methods based on the EKF are shown, followed by QUEST-based approaches. Next,

the two-step estimator is shown. The UF and PF approaches are then shown, followed by

the orthogonal filter. Then, the predictive filter, as well as nonlinear observers and adap-

tive approaches are reviewed. The paper concludes with a discussion of the strengths and
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weaknesses of the various filters.

II. The Quaternion Parameterization and Gyro Model

The attitude of a vehicle is defined as its orientation with respect to some reference frame.

If the reference frame is non-moving, then it is commonly referred to as an inertial frame.

To describe the attitude two coordinate systems are usually defined: one on the vehicle body

and one on the reference frame. For most dynamical applications these coordinate systems

have orthogonal unit vectors that follow the right-hand rule. The attitude matrix, A, often

referred to as the direction cosine matrix or rotation matrix, maps one frame to another.

The attitude matrix is an orthogonal matrix, i.e. its inverse is given by its transpose, and

proper, i.e. its determinant is +1.65 For spacecraft applications the attitude mapping is

usually applied from the reference frame to the vehicle body frame. Mathematically, the

mapping from the reference frame to the body frame is given by

b = Ar (1)

where b is the body-frame vector and r is the reference-frame vector.

Several parameterizations of the attitude are possible.66 Minimal parameterizations, such

as the Euler angles, the Rodrigues parameters (Gibb’s vector) and the modified Rodrigues

parameters (MRPs), are often avoided in filter designs for the “global attitude” due to their

associated singularities.8 They are often used to define the “local error attitude” though,

which is discussed later. For modern-day applications, i.e. since the early 1980s, the quater-

nion67 has been the most widely used attitude parameterization. The quaternion is a four-

dimensional vector, defined as

q ≡





̺

q4



 (2)

with

̺ ≡ [q1 q2 q3]
T = e sin(ϑ/2) (3a)

q4 = cos(ϑ/2) (3b)

where e is the unit Euler axis and ϑ is the rotation angle. Since a four-dimensional vector

is used to describe three dimensions, the quaternion components cannot be independent of

each other. The quaternion satisfies a single constraint given by qTq = 1. The attitude
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matrix is related to the quaternion by

A(q) =
(

q2
4 − ||̺||

2
)

I3×3 + 2̺̺T − 2q4[̺×] = ΞT (q)Ψ(q) (4)

where I3×3 is a 3× 3 identity matrix and

Ξ(q) ≡





q4I3×3 + [̺×]

−̺T



 (5a)

Ψ(q) ≡





q4I3×3 − [̺×]

−̺T



 (5b)

Also, [̺×] is the cross-product matrix defined by

[̺×] ≡









0 −q3 q2

q3 0 −q1

−q2 q1 0









(6)

For small angles the vector part of the quaternion is approximately equal to half angles,66

which will be used later.

The quaternion kinematics equation is given by

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (7)

where ω is the three-component angular rate vector and

Ω(ω) ≡









−[ω×] ω

−ωT 0









(8)

A useful identity is given by

Ψ(q)ω = Γ(ω)q (9)

where

Γ(ω) ≡









[ω×] ω

−ωT 0









(10)

A major advantage of using the quaternion is that the kinematics equation is linear in

the quaternion and is also free of singularities. Another advantage of the quaternion is
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that successive rotations can be accomplished using quaternion multiplication. Here the

convention of Ref. 6 is adopted, where the quaternions are multiplied in the same order

as the attitude matrix multiplication, in contrast to the usual convention established by

Hamilton.67 A successive rotation is written using

A(q′)A(q) = A(q′ ⊗ q) (11)

The composition of the quaternions is bilinear, with

q′ ⊗ q =
[

Ψ(q′) q′

]

q =
[

Ξ(q) q

]

q′ (12)

Also, the inverse quaternion is defined by

q−1 ≡





−̺

q4



 (13)

Note that q⊗q−1 = [0 0 0 1]T , which is the identity quaternion. A computationally efficient

algorithm to extract the quaternion from the attitude matrix is given in Ref. 68. A more

thorough review of the quaternion parameterization, as well as other parameterizations, can

be found in the survey paper by Shuster66 and in the book by Kuipers.69

A common sensor that measures the angular rate is a rate-integrating gyro. For this

sensor, a widely used three-axis continuous-time model is given by70

ω̃ = ω + β + ηv (14a)

β̇ = ηu (14b)

where ω̃ is the measured rate, β is the drift, and ηv and ηu are independent zero-mean

Gaussian white-noise processes with

E
{

ηv(t)η
T
v (τ)

}

= σ2
vδ(t− τ)I3×3 (15a)

E
{

ηu(t)η
T
u (τ)

}

= σ2
uδ(t− τ)I3×3 (15b)

where E{·} denotes expectation and δ(t − τ) is the Dirac delta function. A more general

gyro model includes scale factors and misalignments, which can also be estimated in real

time.71,72 For simulation purposes, discrete-time gyro measurements can be generated using
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the following equations:73

ω̃k+1 = ωk+1 +
1

2
[βk+1 + βk] +

[

σ2
v

∆t
+

1

12
σ2

u ∆t

]1/2

Nv (16a)

βk+1 = βk + σu ∆t1/2Nu (16b)

where the subscript k denotes the kth time-step, ∆t is the gyro sampling interval, and Nv

and Nu are zero-mean Gaussian white-noise processes with covariance each given by the

identity matrix.

III. Extended Kalman Filter

The most straightforward way to attack a nonlinear estimation problem is to linearize

about the current best estimate. This leads, of course, to the EKF,3 which is the workhorse of

satellite attitude determination. There are several different implementations of the attitude

EKF, depending on both the attitude representation66 used in the state vector and the form

in which observations are input. It is a well-known fact that all globally continuous and

nonsingular representations of the rotations have at least one redundant component,8 leading

to alternatives using an attitude representation that is either singular or redundant. These

alternatives can be divided into three general classes, which are referred to as the minimal

representation EKF, the multiplicative EKF (MEKF) and the additive EKF (AEKF). An

overview of Kalman filtering for spacecraft attitude estimation emphasizing the quaternion

representation, with a complete list of references through 1981 is shown in Ref. 6. This

section will provide a brief overview, emphasizing developments since 1981.

A. Observation Preprocessing in an EKF

Almost all attitude measurements can be converted to unit vectors: centroids in a star

tracker’s focal plane to star unit vectors, horizon sensor measurements to a nadir-pointing

unit vector, or triaxial magnetometer measurements to a unit vector along the magnetic field,

for example. It has proved convenient, therefore, to develop a standard unit vector interface

for the EKF, resulting in the unit vector filter (UVF).74,75 The UVF also employs a very

useful approximation to the errors in the unit vector measurements. In particular, Shuster24

has shown that nearly all the probability of the errors is concentrated on a very small area

about the direction of Ar, so the sphere containing that point can be approximated by a

tangent plane, characterized by

b̃ = Ar + υ, υTAr = 0 (17)

10 of 48



where b̃ denotes the measurement and the sensor error υ is approximately Gaussian, which

satisfies

E {υ} = 0 (18a)

R ≡ E
{

υυT
}

= σ2
[

I3×3 − (Ar)(Ar)T
]

(18b)

Equation (18b) is known as the QUEST measurement model.24,74, 75 This model is quite

accurate for small field-of-view sensors. The approximations in this error model are discussed

in Ref. 11 and 76. Equation (18b) gives a rank-deficient R matrix, which would appear to

give rise to problems for the EKF, but Shuster has shown that the simpler, full-rank form

R = σ2I3×3 (19)

gives equivalent results in this context.74,77 The QUEST measurement model has been ex-

panded for large field-of-views in Ref. 76.

Using QUEST24 or an equivalent quaternion estimator as a data compressor simplifies

the interface even further. This is especially useful since many modern star trackers compute

a quaternion from multiple star vectors, and the quaternion output from the star tracker

provides a convenient “measurement” for input to an EKF.7,74, 78

B. Minimal Representation EKF

The rotation group has three dimensions, so the most straightforward implementation of

an EKF employs a three-dimensional parameterization of the attitude. The earliest known

published attitude EKF used the 1-2-3 sequence of Euler angles.4 It is well known that these

angles have a “gimbal lock” singularity when the magnitude of the middle angle is 90◦, so

this form of the EKF is most appropriate when the spacecraft does not stray too far from a

reference attitude. A good example is an Earth-pointing spacecraft, with the attitude being

defined with respect to a local-vertical/local-horizontal coordinate frame. If the gimbal lock

condition arises, the coordinate axes to which the vehicle attitude is referenced must be

repeatedly shifted to avoid singularity.4

Euler angles are inappropriate for agile spacecraft, such as astronomical observatories.

Minimal representation EKFs employing the Rodrigues parameters79 and the MRPs have

been developed for this application.80 The MRPs are nonsingular for rotations less than 360◦,

and the singularity can be avoided by changing to a “shadow set” of parameters.81 This form

of the EKF has not found wide application, however.
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C. Multiplicative EKF

The MEKF represents the attitude as the product of an estimated attitude and a deviation

from that estimate. A nonsingular representation of the estimated attitude and a three-

parameter representation of the deviation are employed. The most usual implementation

uses the quaternion representation for the attitude.5–7,82–84 In this case the product is

q = δq(φ)⊗ q̂ (20)

where q̂ is the unit estimated quaternion and δq(φ) is a unit quaternion representing the

rotation from q̂ to the true attitude q, parameterized by a three-component vector φ.

An alternative formulation, which has some advantages, reverses the order of multiplica-

tion in Eq. (20) so that φ represents the attitude errors in the inertial reference frame rather

than in the body frame.85–87 It is also possible to represent the reference attitude by an

estimated attitude matrix Â rather than by an estimated quaternion.7,85, 88, 89 This requires

more parameters, but may save computations if the attitude matrix is explicitly required.

An argument in favor of the quaternion is that it is easy to restore normalization that may

be lost due to numerical errors, while restoring the orthogonality of Â is nontrivial. Gray

has argued that this argument is not compelling if reasonable computational care is taken.85

The representation of Eq. (20) is clearly redundant. The basic idea of the MEKF is

that the EKF estimates the three-vector φ while the correctly normalized four-component q̂

provides a globally nonsingular attitude representation. If φ̂ ≡ E{φ} is the estimate of φ,

then Eq. (20) says that δq(φ̂)⊗ q̂ is the estimate of the true attitude quaternion q. This is

equal to q̂ if the redundancy in the attitude representation is removed by ensuring that φ

has zero mean so that δq(φ̂) = δq(0) is the identity quaternion. This choice means that φ

is a three-component representation of the attitude error and its covariance is the attitude

error covariance in the body frame. The fundamental advantages of the MEKF are that q̂

is a unit quaternion by definition, the covariance matrix has the minimum dimensionality,

and the three-vector φ never approaches a singularity, since it represents only small attitude

errors.

Several choices for φ have been used,7 including the vector of infinitesimal rotation an-

gles,84 two times the vector part of the quaternion,6 two times the vector of Rodrigues

parameters,7 four times the vector of MRPs, or the integrated rate parameters (IRPs).89 All

these choices have the small-angle approximation

δq(φ) =





φ/2

1



+O
(

||φ||2
)

(21)
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and MEKFs employing them differ only in third order in the measurement updates to the

error angle.7

The MEKF was first used in the Space Precision Attitude Reference System (SPARS)

in 1969,82,88 was later developed for NASA’s Multimission Modular Spacecraft,5 and has

been used for attitude estimation on board several NASA spacecraft. It has been discussed

in detail in Refs. 6 and 7. The latter reference discusses the extension of the MEKF to a

second-order filter, following earlier work by Vathsal.90

D. Additive EKF

An AEKF uses a nonsingular parameterization of the attitude in the filter’s state vector.

Almost all AEKFs have employed the quaternion,12–17 but the attitude matrix itself has

also been employed.91 The AEKF can be either unconstrained or constrained so that the

attitude matrix is orthogonal or, equivalently, that the quaternion has unit norm. A properly

constrained AEKF is mathematically equivalent to the MEKF.6,9, 10

Only the unconstrained quaternion AEKF will be discussed here. This filter relaxes the

quaternion normalization condition and treats the four components of the quaternion as

independent parameters. It defines the estimate q̂ and error ∆q by

q̂ ≡ E{q | ỹ} and ∆q ≡ q− q̂ (22)

This means that

E{||q||2 | ỹ} = E{||q̂ + ∆q||2 | ỹ} = ||q̂||2 + E{||∆q||2 | ỹ} ≥ ||q̂||2 (23)

where ỹ denotes the measurement vector. The equality in Eq. (23) is valid only if ∆q is

identically zero. Equation (23) shows that if the random variable q has unit norm and is not

error-free, the norm of its expectation must be less than unity. The usual expression for the

attitude matrix as a homogenous quadratic function of the quaternion gives an orthogonal

matrix only if the quaternion has unit norm. Many unconstrained AEKFs have used the

homogenous quadratic form, which means that the attitude matrix is only approximately

orthogonal. It can be shown to approach orthogonality as the filter converges, however.12–14

The attitude matrix is guaranteed to be orthogonal if it is computed using the normalized

quaternion q/||q|| in the homogenous quadratic form, giving

AR(q) = ||q||−2
{(

q2
4 − ||̺||

2
)

I3×3 + 2̺̺T − 2q4[̺×]
}

(24)

The subscript R identifies this as the ray representation model, since any quaternion along

a ray in Euclidean quaternion space (a straight line through the origin) represents the same
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attitude, with the exception of the zero quaternion at the origin. This is also known as

the linearized orthogonalized matrix (LOM) model.13,14 The ray representation form of the

unconstrained AEKF, which is effectively equivalent to the MEKF in the limit of continuous

measurements,11 has been applied to attitude estimation of the Array of Low-Energy X-Ray

Imaging Sensors (ALEXIS) and Cleft Accelerated Plasma Experimental Rocket (CAPER)

spacecraft.15,16

Choukroun et al. formulate a measurement model based on the matrix factorization of

the attitude matrix17 shown in Eq. (4). This gives a measurement model that is linear in

the quaternion, but with state-dependent measurement noise:

ỹ = Ξ(q) (b + v)−Ψ(q) r =





−[(b + r)×] (b− r)

−(b− r)T 0



q + Ξ(q)v (25)

where v is the measurement noise, which may or may not correspond to a unit-vector observa-

tion. This model gives the same covariance and state propagation as the ray representation

AEKF, in the limit of continuous measurements,11 but has subtle differences for discrete

measurements.

The relative merits of the AEKF and the MEKF have been discussed at length.9–11,92

One disadvantage of the unconstrained AEKF is that its covariance matrix includes elements

expressing the variance of the quaternion norm uncertainty and the correlation of the norm

uncertainty with all other estimated parameters. These terms, which are not present in the

MEKF, are neither conceptually nor computationally desirable.

E. Backwards-Smoothing EKF

The kth step in a nonlinear filtering problem can be posed as a maximum a posteriori

probability (MAP) estimation problem by writing the PDF as pk = exp(−Jk) with the loss

function

Jk =
1

2

k−1
∑

i=0

{

[ỹi+1 − hi+1(xi+1)]
T R−1

i+1 [ỹi+1 − hi+1(xi+1)] + wT
i Q−1

i wi

}

+
1

2
(x0 − x̂0)

T P−1
0 (x0 − x̂0)

(26)

The MAP estimate x̂k is the vector xk that, along with xi and process noise wi for i =

0, 1, . . . , k − 1, minimizes Jk subject to the dynamics equation

xi+1 = fi(xi, wi) for i = 0, 1, . . . , k − 1 (27)
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The process noise covariance is Qi, the measurement noise covariance is Ri, ỹi+1 is the

measurement at time ti+1, hi+1(xi+1) is the nonlinear measurement model, and x̂0 is the a

priori estimate of the state with covariance P0. It can be seen that the size of this problem

grows with k. The usual EKF avoids this growth by not explicitly recomputing the values

of x̂i for i < k when xk is optimized in the kth step. The iterated EKF improves upon the

EKF by iterating the nonlinear measurement update equation for x̂k, re-linearizing about

the updated state estimate at each iteration,1,93 but it does not explicitly recompute the

values of x̂i for i < k. Any Kalman filter implicitly recomputes the past state estimates at

a new measurement update; but this point is often overlooked because estimates in the past

are generally of no interest. For linear dynamics and measurements, these past estimates are

optimal, but they are not optimal with nonlinear dynamics or measurements. Thus the EKF

linearizations of the past measurements and dynamics are not about the optimal estimates.

The backwards-smoothing EKF (BSEKF), or super-iterated EKF,18 improves on the

iterated EKF by relinearizing a finite number of measurements in the past when a new

measurement is processed. The BSEKF therefore combines some of the properties of an

EKF, a smoother and a sliding-batch estimator. It finds xk along with xi and wi for i =

k −m(k), . . . , k − 1 to minimize the loss function

Jk =
1

2

k−1
∑

i=k−m(k)

{

[ỹi+1 − hi+1(xi+1)]
T R−1

i+1 [ỹi+1 − hi+1(xi+1)] + wT
i Q−1

i wi

}

+
1

2
[xk−m(k) − x̂∗

k−m(k)]
T [P ∗

k−m(k)]
−1[xk−m(k) − x̂∗

k−m(k)]

(28)

subject to the dynamics of Eq. (27) for i ≥ k −m(k). The loss function of Eq. (28) retains

all of the nonlinearities of the most recent m(k) stages, but the nonlinear effects of all the

previous stages are represented by the quadratic second term, which is an approximation to

the loss function Jk−m(k) for fixed xk−m(k) optimized over all the xi and wi for i < k−m(k).

A value mtarget for the number of stages to be retained is chosen to balance accuracy and

computational effort. When k ≤ mtarget, the BSEKF uses m(k) = k stages, and when

k > mtarget, it uses m(k) = mtarget stages. The detailed steps of this procedure are presented

in Ref. 18.

F. Deterministic EKF-Like Estimator

Nonlinear attitude estimators have been developed based on H∞ control design techniques.19–21

They have a structure similar to the EKF, but do not depend on the questionable assump-

tion of white noise. One of these estimators has been applied to the attitude determination
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of the Radar Calibration (RADCAL) satellite using Global Positioning System (GPS) mea-

surements.21

The quaternion kinematic model is given by Eq. (7), but Eq. (14) is replaced by

ω̃ = ω + β + B1wd (29a)

β̇ = B2wd (29b)

where wd is a square-integrable six-component deterministic dynamic disturbance vector, and

B1 and B2 are known matrices. It is assumed that B1B
T
2 = 03×3, although this assumption

is not necessary. The kinematics can be written with x = [qT βT ]T as

ẋ = f(x) + G(x)wd (30)

where

f(x) =





1
2
Ξ(q)(ω̃ − β)

03×1



 and G(x) =





−1
2
Ξ(q)B1

B2



 (31)

Continuous measurements are modelled as

ỹ = h(x) + D(x)wy (32)

where h(x) is the known m-component output vector, wy is a square-integrable m-component

deterministic measurement disturbance vector and D is a known matrix function of x. The

H∞ estimation problem is defined as follows. Let

˙̂x = f(x̂) + K(x̂, t) [ỹ − h(x̂)] (33)

with initial value x̂(0) = x̂0, and define an error function z by

z = ζ(x)− ZT (x) x̂ (34)

where all the functions and matrices are smooth functions with appropriate dimensions.

Then the H∞ estimation problem is to choose, for a given γ > 0 and a given metric N , the

function K(x̂, t) for which

∫ T

0

‖z(τ)‖2 dτ ≤ γ2

{

N(x0, x̂0) +

∫ T

0

[

‖wd(τ)‖2 + ‖wy(τ)‖2
]

dτ

}

(35)

Standard arguments show that a sufficient condition for the solution of this problem is the
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existence of a non-negative function V (x, x̂, t) with V (x0, x̂0, t) = γ2N(x0, x̂0) that satisfies

J ≡ ∂V/∂t + (∂V/∂x) f(x) + (∂V/∂x̂) {f(x̂) + K(x̂, t) [h(x)− h(x̂)]}+ zTz

+
1

4
γ−2

[

(∂V/∂x) G(x)GT (x) (∂V/∂x)T + (∂V/∂x̂) K(x̂, t)R(x)KT (x̂, t) (∂V/∂x̂)T
]

≤ 0

(36)

where R(x) ≡ D(x)DT (x).

For the attitude estimation case, ζ(x) = [01×3 β
T ]T is taken and

Z(x) =





Ξ(q) 04×3

03×3 I3×3



 (37)

so that

z =





−ΞT (q) q̂

β − β̂



 (38)

The first three components of z are the vector part of q⊗q̂−1, the estimation error quaternion.

A significant amount of algebra using some small-error approximations shows that Eq. (36)

is satisfied for

V (x, x̂, t) = γ2zT P−1z (39)

with the gain matrix

K(x̂, t) = Z(x̂)P





HT (q̂)

03×m



R−1 (40)

where H(q̂) is the m× 3 sensitivity matrix, which is a function of the estimated quaternion,

and the 6× 6 matrix P satisfies the Riccati-like equation

−Ṗ + F (x̂) P + P F T (x̂) + P





γ−2I3×3 −HT (q̂)R−1H(q̂) 03×3

03×3 γ−2I3×3



P +





1
4
Q1 03×3

03×3 Q2



 ≤ 0

(41)

with

F (x̂) = −





[(ω̃ − β̂)×] 1
2
I3×3

03×3 03×3



 (42a)

Q1 = B1B
T
1 and Q2 = B2B

T
2 (42b)

The scalar γ is a tuning parameter for this estimator. It can be seen that a smaller value

of γ makes it more difficult to satisfy Eqs. (35) and (41), and these equations cannot be
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satisfied at all if γ is chosen too small. As γ becomes infinitely large, on the other hand, the

equality limit of Eq. (41) goes to the usual Riccati equation of the Kalman filter, and the

deterministic estimator becomes the continuous measurement limit of the MEKF.6

IV. QUEST-Based Methods

Filter QUEST and its variants are based on Wahba’s problem,94 which is the problem of

finding the proper orthogonal matrix A that minimizes the loss function

J(A) =
1

2

m
∑

i=1

ai ‖b̃i −Ari‖
2 (43)

where ai are non-negative weights and m is the total number of measurements. Writing the

loss function as

J(A) = λ0 − trace(ABT ) (44)

with

λ0 ≡

m
∑

i=1

ai (45)

and

B ≡

m
∑

i=1

aib̃ir
T
i (46)

makes it clear that J(A) is minimized when trace(ABT ) is maximized. This is equivalent

to the orthogonal Procrustes problem95 of finding the orthogonal matrix A that is closest

to B in the Frobenius (or Euclidean, or Schur, or Hilbert-Schmidt) norm, with the proviso

that A have the determinant +1. Shuster noted that the nine components of the attitude

profile matrix B contain full information about the three attitude degrees of freedom and

the six independent components of the angular error covariance matrix, and that choosing

the weights to be inverse variances, ai = σ−2
i makes Wahba’s problem a maximum likelihood

estimation problem.77

There are many algorithms for solving this problem,96 of which the most useful are

Davenport’s q method97 and QUEST.24 Davenport parameterized the attitude matrix by a

unit quaternion, as shown by Eq. (4), giving

trace(ABT ) = qT Kq (47)
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where K is the symmetric traceless matrix

K ≡











B + BT − trace(B)I3×3

∑m
i=1 aib̃i × ri

(

∑m
i=1 aib̃i × ri

)T

trace(B)











= −

m
∑

i=1

aiΩ(b̃i)Γ(ri) (48)

The relation on the right-hand-side of Eq. (48) can be derived by using the matrix identities

in Eqs. (7) and (9). Note that the matrices Ω and Γ commute, which has some useful

consequences.98 The optimal attitude is represented by the quaternion maximizing the right-

hand-side of Eq. (47), subject to the unit constraint ||q|| = 1. It is not difficult to see that the

optimal quaternion is equal to the normalized eigenvector of K with the largest eigenvalue,

i.e. the solution of

Kqopt = λmaxqopt (49)

With Eqs. (44) and (47), this gives the optimized loss function as

J(Aopt) = λ0 − λmax (50)

The QUEST algorithm is based on Shuster’s observation that λmax can be obtained by a

Newton-Raphson iteration starting from λ0 as the initial estimate, since Eq. (50) shows that

λmax is very close to λ0 if the optimized loss function is small. In fact, a single iteration is

generally sufficient. QUEST is less robust than Davenport’s q method in principle, but has

proved itself to be reliable in practical applications.

A. Filter QUEST

Since a filtering algorithm is usually preferred when observations are obtained over a range of

times, Shuster proposed the filter QUEST algorithm,25 based on propagating and updating

B:

B(tk) = µΦ3×3(tk, tk−1)B(tk−1) +

mk
∑

i=1

aib̃ir
T
i (51)

where Φ3×3(tk, tk−1) is the state transition matrix for the attitude matrix, µ < 1 is a fading

memory factor and mk is the number of observations at time tk. The optimal attitude at

time tk is found from B(tk) by the QUEST algorithm. Shuster also formulated a smoother

on the same basis.

An alternative sequential algorithm, recursive QUEST or REQUEST,26 propagates and
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updates Davenport’s K matrix by

K(tk) = µΦ4×4(tk, tk−1)K(tk−1)Φ
T
4×4(tk, tk−1) +

mk
∑

i=1

aiKi (52)

where Φ4×4(tk, tk−1) is the quaternion state transition matrix and Ki is the Davenport matrix

for a single observation:

Ki =









b̃ir
T
i + rib̃

T
i − (b̃T

i ri)I3×3 (b̃i × ri)

(b̃i × ri)
T b̃T

i ri









(53)

Filter QUEST and REQUEST are mathematically equivalent, but filter QUEST requires

fewer computations. Neither has been competitive with an EKF in practice, largely due to

the suboptimality of the fading memory approximation to the effect of process noise. Com-

puting the fading memory factor by a Kalman-gain-like algorithm gives better performance,

but sacrifices much of the attractive simplicity of this method.99

B. Extended QUEST

Extended QUEST27 is an algorithm that solves for the attitude along with additional param-

eters. This is accomplished by finding the attitude quaternion qk and the vector of auxiliary

filter states xk, along with qk−1, xk−1, and the process noise vector wk−1 that minimize the

loss function

J =
1

2

mk
∑

i=1

σ−2
i ‖b̃i −A(qk)ri‖

2 +
1

2
‖Rww(k−1)wk−1‖

2 +
1

2
‖Rqq(k−1)(qk−1 − q̂k−1)‖

2

+
1

2
‖Rxq(k−1)(qk−1 − q̂k−1) + Rxx(k−1)(xk−1 − x̂k−1)‖

2

(54)

subject to the attitude dynamics equation,

qk = Φ(tk, tk−1; xk−1, wk−1)qk−1 (55)

the transition equation for the auxiliary filter states,

xk = fx(tk, tk−1; qk−1, xk−1, wk−1) (56)

and the norm constraint ||qk|| = 1. The vectors q̂k−1 and x̂k−1 are the a posteriori (or best)

estimates of q and x at sample time tk−1, and the various R matrices are weights in the loss

function.
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The minimization employs an extended square-root information filtering algorithm100

that proceeds in two stages per sampling period. The first phase dynamically propagates

the a posteriori estimates at stage k − 1 to compute a priori estimates at stage k. The

propagated state estimates use the full nonlinear propagation and the mean value, zero, of

the process noise, as in the EKF:

q̃k = Φ(tk, tk−1; x̂k−1, 0)q̂k−1 (57)

and

x̃k = fx(tk, tk−1; q̂k−1, x̂k−1, 0) (58)

The result of the propagation step is a modified form of the loss function

J(qk, xk) =
1

2

mk
∑

i=1

σ−2
i ‖b̃i −A(qk)ri‖

2 +
1

2
‖R̃qq(k)(qk − q̃k)‖

2

+
1

2
‖R̃xq(k)(qk − q̃k) + R̃xx(k)(xk − x̃k)‖

2

(59)

where the R̃ matrices are obtained by a QR factorization in the propagation step that

employs a linearization about the a priori estimates at stage k − 1 as in an EKF.

The second phase, the measurement update, is the novel part of extended QUEST. The

optimum xk is easily given by

xk = x̃k − R̃−1
xx(k)R̃xq(k)(qk − q̃k) (60)

Substituting this in Eq. (59) and using Eqs. (44), (46) and (53) gives

J(qk, x̂k) = −qT
k

(

mk
∑

i=1

σ−2
i Ki

)

qk +
1

2

[

R̃qq(k)(qk − q̃k)
]T [

R̃qq(k)(qk − q̃k)
]

(61)

Minimizing this loss function gives the best estimate q̂k. The minimization differs from

Wahba’s problem because of the linear terms in qk. Substituting q̂k into Eq. (60) gives

x̂k = x̃k − R̃−1
xx(k)R̃xq(k)(q̂k − q̃k) (62)

The remaining step is to express the optimized loss function in the form of Eq. (54) to

prepare for the next step in the recursion. The details are in Ref. 27.
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V. Two-Step Attitude Estimator

The two-step optimal estimator is an alternative to the standard EKF.23 An imple-

mentation of the two-step optimal estimation for recursive spacecraft attitude estimation is

presented in Ref. 101. The general cost function of the two-step optimal estimator is given

by

Jk =
1

2

k−1
∑

i=0

{

[ỹi+1 − hi+1(xi+1)]
T R−1

i+1 [ỹi+1 − hi+1(xi+1)] + wT
i Q−1

i wi

}

+
1

2
(x0 − x̂0)

T P−1
0 (x0 − x̂0)

(63)

subject to the dynamics equation

xi+1 = fi(xi, wi) for i = 0, 1, . . . , k − 1 (64)

The process noise covariance is Qi, ỹi+1 is the measurement with covariance Ri+1, hi+1(xi+1)

is the nonlinear measurement model and x̂0 is the a priori estimate of the state with covari-

ance P0. The state estimate x̂k that minimizes the above cost function is the MAP estimate

if the process noise, the measurement noise and the initial estimate error satisfy the Gaussian

assumption.

The main point of the two-step optimal estimator is to define a first-step state Y = F(x)

in which the nonlinear measurement model is linear, i.e. ỹ = h(x) + v = HY + v, where

v is the measurement noise, so that a linear measurement update of the first-step state

can be applied. The first-step state Y relates the desired or second-step state x and the

measurement ỹ through the nonlinear mapping F and the linear “measurement” matrix H,

respectively. All the information contained in the initial guess and the measurements is fused

in the first-step state using a Kalman filter that performs a nonlinear and sometimes higher-

order time update and a linear measurement update. The initial mean Ŷ0 and covariance

P0 of the first-step state can be obtained from x̂0 and P0, e.g. using a Monte Carlo approach.

In general, (x0 − x̂0)
T P−1

0 (x0 − x̂0) is not equivalent to (Y0 − Ŷ0)
TP−1

0 (Y0 − Ŷ0) because

of the nonlinear relationship between x and Y . The desired state estimate x̂k is obtained

from the first-step state estimate Ŷk and its error covariance matrix Pk as the minimum of

the cost function

Jx =
1

2

[

Ŷk −F(x)
]T

P−1
k

[

Ŷk −F(x)
]

(65)

The constraints in x̂k may also be included by use of the Lagrangian multiplier method.

A numerical least-squares algorithm such as the Gauss-Newton or Levenberg-Marquardt

method is used to solve the second-step minimization problem. Note that in order to guar-
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antee the uniqueness of the solution, the size of the first-step state should in general be larger

than or equal to that of the desired state and the covariance matrix of the first-step state

should be positive definite. When there are no dynamics, i.e. xk+1 = xk, or initial guess,

Eq. (63) reduces to

Jk =
1

2

k
∑

i=1

[ỹi − hi(x)]T R−1
i [ỹi − hi(x)] (66)

The two-step attitude estimator for this special case amounts to 1) formulating the cost

function in terms of ỹi and Ri in an equivalent form in terms of Ŷk and Pk that are ob-

tained with a linear least-squares scheme and 2) obtaining x̂k by solving the converted cost

function. The first-step estimate Ŷk and the covariance matrix Pk are simply an equivalent

representation of all the measurements.

In the two-step attitude estimator, the desired or second-step state is the attitude quater-

nion (for attitude-only estimation) or the attitude quaternion and the gyro biases (for atti-

tude and gyro bias estimation). The assumed attitude measurement model is the unit vector

model, which is independent of the gyro biases, linear in the attitude matrix and quadratic in

the attitude quaternion. With this measurement model, the first-step state for attitude-only

estimation can be chosen as

Y = [A11, A12, A13, A21, ..., A33]
T (67)

where Aij , i, j = 1, 2, 3 are the elements of the attitude matrix. The measurement matrix H

that relates Y in Eq. (67) to a unit vector observation is given by

H =









rT 01×3 01×3

01×3 rT 01×3

01×3 01×3 rT









(68)

where r is the representation of the unit vector in the reference frame. The first-step state

is expanded to include the gyro biases when both the attitude and the gyro biases are to be

estimated.

The attitude part of the augmented first-step estimate may be understood as the usual

arithmetic mean of the attitude matrix in the space of 3×3 matrices, which is not an orthog-

onal matrix in general. As Kasdin and Weaver noted, this first-step estimate is not to be used

as an estimate of attitude because it does not take the six constraints on the attitude matrix

into account.101 The purpose of the first step is to optimally filter the vector measurement

sensor noise. It is not until the second-step minimization that the best attitude estimate (as

a unit quaternion) becomes available. The details of the second-step minimization of the
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two-step attitude estimator are in Ref. 101.

The dynamic propagation equation of the attitude part of the first-step state, Y in

Eq. (67), is given by

Ẏ(t) = Ω̃(ω)Y(t) (69)

where Ω̃(ω) is given by

Ω̃(ω) =









03×3 ω3I3×3 −ω2I3×3

−ω3I3×3 03×3 ω1I3×3

ω2I3×3 −ω1I3×3 03×3









(70)

Because the attitude quaternion does not appear in the above equation, the corresponding

time update of the first-step estimate is not a function of the unit quaternion estimate.

Therefore, there is no need to find the unit quaternion estimate in order to process the filter.

Only when the attitude estimate is desired does the second-step minimization need to be com-

puted. In most of the two-step optimal estimators, however, the dynamics for the first-step

state is explicitly dependent on the second-step state in a nonlinear fashion. Consequently,

the time update of the first-step state is complex and computationally expensive.101

When the angular rate ω in Eq. (69) is perfectly known, only a linear Kalman filter

needs to be implemented for the first-step state, i.e. Y in Eq. (67). When the angular rate

is obtained from noisy gyro measurements and both the attitude and the gyro biases are to

be estimated, the dynamic propagation equation of the augmented first-step state becomes

nonlinear because of the state-dependent process noise and the product terms of the attitude

matrix elements and the gyro biases. In this case a nonlinear time-update scheme must be

implemented for the first-step state.

The two-step attitude estimator for attitude-only estimation consists of:

1. Time update of the first-step estimate as a nonorthogonal matrix.

2. Measurement update of the first-step estimate as a nonorthogonal matrix.

3. Second-step minimization for the unit quaternion or the orthogonal attitude matrix

(run on demand).

It has similar properties with the recursive attitude estimation algorithms in Ref. 91, al-

though the gyro measurement and vector measurement models used therein are slightly

different. In Ref. 91, the algorithm without orthogonalization corresponds to the first two

steps only; the algorithm with orthogonalization corresponds to the first two steps followed

by an iterative orthogonalization procedure, which is run at every measurement update. The
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convergence of the two algorithms in Ref. 91 is not always assured when they are initialized

with the identity matrix.

VI. Unscented Filtering

The Unscented filter28,29 works on the premise that with a fixed number of parameters it

should be easier to approximate a Gaussian distribution than to approximate an arbitrary

nonlinear function. The filter is derived for discrete-time nonlinear equations, where the

system model is given by

xk+1 = f(xk, k) + wk (71a)

ỹk = h(xk, k) + vk (71b)

Note that a continuous-time model can always be written using Eq. (71a) through an ap-

propriate numerical integration scheme. It is again assumed that wk and vk are zero-mean

Gaussian noise processes with covariances given by Qk and Rk, respectively.

Assuming no process noise, the formulation for the prediction equations and computation

of the gain matrix is given by computing the following sigma points:

σk ← 2n columns from ±γ
√

P+
k (72a)

χk(0) = x̂+
k (72b)

χk(i) = σk(i) + x̂+
k (72c)

where γ is a design parameter and
√

P+
k denotes the matrix square root of P+

k .95 Due to the

symmetric nature of this set, its odd central moments are zero, so its first three moments

are the same as the original Gaussian distribution. The transformed set of sigma points are

evaluated for each of the points by

χk+1(i) = f(χk(i), k) for i = 0, 1, . . . , 2n (73)

The predicted mean at time tk+1 for the state estimate is calculated using a weighted sum

of the points χk+1(i), which is given by

x̂−
k+1 =

2n
∑

i=0

Wmean
i χk+1(i) (74)

where Wmean
i is a weighting parameter. The innovations process is υk ≡ ỹk − ŷ−

k , where

ŷ−
k ≡ h(x̂−

k , k). The predicted covariance, output covariance and cross-correlation between
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x̂−
k and ŷ−

k are computed by

P−
k+1 =

2n
∑

i=0

W cov
i [χk+1(i)− x̂−

k+1] [χk+1(i)− x̂−
k+1]

T (75a)

P yy
k+1 =

2n
∑

i=0

W cov
i [γk+1(i)− ŷ−

k+1] [γk+1(i)− ŷ−
k+1]

T (75b)

P xy
k+1 =

2n
∑

i=0

W cov
i [χk+1(i)− x̂−

k+1] [γk+1(i)− ŷ−
k+1]

T (75c)

where W cov
i is another weighting parameter and

γk+1(i) = h(χk+1(i), k + 1) (76)

Since the measurement noise appears linearly in Eq. (71b), the covariance of the innovations

process at time tk+1 is P υυ
k+1 = P yy

k+1 + Rk+1. The Kalman gain and updated covariance are

rewritten in the form given by102

Kk+1 = P xy
k+1(P

υυ
k+1)

−1 (77a)

P+
k+1 = P−

k+1 −Kk+1P
υυ
k+1K

T
k+1 (77b)

The state update is given by the usual EKF form:

x̂+
k+1 = x̂−

k+1 + Kk+1υk+1 (78)

Methods to handle process noise for the computation of the predicted covariance and to

handle nonlinearly appearing measurement noise are discussed in Ref. 29.

As with the standard EKF, using the UF directly with a quaternion parameterization

of the attitude yields a nonunit quaternion estimate, as seen by Eq. (74). To overcome

this problem an unconstrained three-component vector is used, based on the generalized

Rodrigues parameters81 (GRPs) to represent an attitude error quaternion.31 The algorithm

is called the UnScented QUaternion Estimator, or USQUE. The state vector includes the

attitude error and bias vectors:

χk(0) = x̂+
k ≡





δp̂+
k

β̂+
k



 (79)

where the estimated error-GRP δp̂k is used to propagate and update a nominal quater-

nion. This estimate, as well as the corresponding sigma points, can be used to form error
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quaternions, denoted by δq+
k (i), through a simple transformation from GRPs to quaternions.

Then, the following quaternions are computed:

q̂+
k (0) = q̂+

k (80a)

q̂+
k (i) = δq+

k (i)⊗ q̂+
k , i = 1, 2, . . . , 12 (80b)

A reset of the attitude error to zero after the previous update is required, which is used

to move information from one part of the estimate to another part.7 This reset rotates the

reference frame for the covariance, so it is expected the covariance be rotated, even though

no new information is added. But the covariance depends on the assumed statistics of the

measurements, not on the actual measurements. Therefore, since the update is zero-mean,

the mean rotation caused by the reset is actually zero, so the covariance is in fact not affected

by the reset. The quaternions in Eq. (80) are propagated using Eq. (7) with the estimated

angular rate. The propagated error-quaternions are then computed using

δq−
k+1(i) = q̂−

k+1(i)⊗
[

q̂−
k+1(0)

]−1
, i = 0, 1, . . . , 12 (81)

Note that δq−
k+1(0) is the identity quaternion. Finally, the propagated error-GRPs are

computed using a simple transformation from quaternions to GRPs. The error-GRPs can be

propagated directly, however this approach requires the integration of nonlinear equations.

The advantage of converting the GRPs to quaternions is that a closed-form discrete-time

solution exists for Eq. (7).

VII. Particle Filters

There is no such thing as “the PF,” just as there is no such thing as “the EKF.”103 Par-

ticle filters comprise a very broad class of suboptimal nonlinear filters based on sequential

Monte Carlo simulations, in which the distributions are approximated by weighted particles

(random samples) that are generated using pseudo-random number generators. The compu-

tational expense and attainable estimation accuracy of PFs vary greatly. Numerous theories,

improving strategies and applications of the PFs can be found in Refs. 32, 33 and 104.

The general discrete-time model used in PFs is given by

xk+1 = fk(xk,uk,wk) (82a)

ỹk = hk(xk,vk) (82b)

The main difference between PFs and other filters is the process noise wk and the mea-

surement noise vk are not necessarily assumed to be normally distributed processes. The
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distributions of x0, wk and vk, denoted by p(x0), p(wk) and p(vk), respectively, are assumed

to be known and mutually independent. The probabilities p(xk+1|xk) and p(ỹk|xk) can be

derived from the above model and are assumed to be available for sampling and evaluation.

The variables Xk and Ỹk are used to denote the state trajectory {xj}
k
j=0 and measure-

ment history {ỹj}
k
j=1, respectively. From the sampling perspective, the empirical, discrete

approximation of the posterior distribution p(xk|Ỹk) with N weighted particles {x
(i)
k , w

(i)
k }

N
i=1

is given by32

PN(dxk|Ỹk) ≈

N
∑

i=1

w
(i)
k δ

x
(i)
k

(dxk) (83)

where x
(i)
k are the particles drawn from the importance function or proposal distribution

q(xk+1|X
(i)
k , Ỹk+1), w

(i)
k are the normalized importance weights, satisfying

∑N
i=1 w

(i)
k = 1,

and δ
x

(i)
k

(dxk) denotes the Dirac-delta mass located in x
(i)
k . The importance function can

be chosen from a large class of distributions. It is only required that the support of the

importance function include the support of p(xk|Ỹk). The importance weight is the ratio of

the posterior distribution to the importance function evaluated at x
(i)
k . The expectation of a

known function f(xk) with respect to p(xk|Ỹk) is then approximated by
∑N

i=1 w
(i)
k f(x

(i)
k ).32

For example, the approximation to the arithmetic mean of xk is
∑N

i=1 w(i)x(i). Crisan and

Doucet showed that the upper bound on the variance of the estimation error of the expec-

tation has the form cO(N−1), with c a constant.104,105 Daum argued that c in the upper

bound depends heavily on the state vector dimension.103,104

A PF updates the particle representation {x
(i)
k , w

(i)
k }

N
i=1 in a recursive manner. A cycle

of a generic PF includes104

• Sequential Importance Sampling

– For i = 1, . . . N , sample x
(i)
k+1 from the importance function q(xk+1|X

(i)
k , Ỹk+1)

– For i = 1, . . . N , evaluate and normalize the importance weights

w
(i)
k+1 ∝ w

(i)
k

p(ỹk+1|x
(i)
k+1)p(x

(i)
k+1|x

(i)
k )

q(x
(i)
k+1|X

(i)
k , Ỹk+1)

(84)

• Resampling: Multiply/Discard particles {x
(i)
k+1}

N
i=1 with respect to high/low importance

weights w
(i)
k+1 to obtain N new particles {x

(i)
k+1}

N
i=1 with equal weights.

A popular suboptimal choice of the importance function is q(xk+1|X
(i)
k , Ỹk+1) = p(xk+1|x

(i)
k ).

The PF with this importance function is known as the bootstrap filter (BF). Sampling x
(i)
k+1

from p(xk+1|x
(i)
k ) is equivalent to the dynamic propagation of x

(i)
k to time tk+1. The infor-

mation contained in the measurement ỹk+1 is not employed in the sampling process. The
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corresponding update of the importance weight, Eq. (84), has a simple form, i.e. w
(i)
k+1 ∝

w
(i)
k p(ỹk+1|x

(i)
k+1), which is appealing especially when the evaluation of p(xk+1|xk) is diffi-

cult. Note that this choice becomes inefficient when the overlap between p(xk+1|x
(i)
k ) and

p(ỹk+1|xk+1) is small. In contrast with this simple importance function, the optimal impor-

tance function p(xk+1|x
(i)
k , ỹk+1) that minimizes the variance of the importance weight w

(i)
k

conditional upon x
(i)
k and ỹk+1 fully incorporates the latest measurement ỹk+1, but usually

cannot be evaluated exactly or have samples drawn from it. The resampling step alleviates

the inherent particle degeneracy of sequential importance sampling, but also reduces the

number of distinct particles, which is often called the problem of particle impoverishment.

Simple remedies for the impoverishment problem include roughening and regularization.104

Particle filters are superior to conventional nonlinear filters for strongly nonlinear and

non-Gaussian filtering problems, but they are also known for being computationally expen-

sive. A main issue of PFs is the computational complexity for high-dimensional systems. For

a 100-dimensional linear and Gaussian system, a linear KF can give the optimal Bayesian

estimate, but the simulation-based PF without employing the linear Gaussian structure of

the system may be unable to produce useful results.

Recent applications of PFs in spacecraft attitude estimation are reported in Refs. 34,

35, 106 and 107. The PFs employed therein are essentially the BF, in which the attitude is

propagated through attitude kinematics or dynamics and the measurements are only used

to update the importance weights. In Ref. 34, a simple BF was designed to simultaneously

estimate the attitude and the gyro biases (or the attitude and the attitude rate in gyro-less

applications). The uniform attitude distribution is used as the initial attitude distribution

for the case of no initial attitude knowledge. A gradually decreasing measurement variance

is used in the computation of the importance weights. This application showed that a simple

BF with careful design can tackle a nontrivial six-dimensional attitude estimation problem.

In Refs. 35 and 106, the Genetic Algorithm-Embedded Quaternion Particle Filter (GA-QPF)

is presented for attitude and gyro bias estimation. The adaptive version of the GA-QPF is

given in Ref. 107, which estimates the measurement noise distribution on the fly, along with

the estimation of the spacecraft attitude and gyro biases. The noise distribution estimation

scheme is based on an analysis of the filter-generated innovations process.

In Refs. 35, 106 and 107 the problem of attitude and gyro bias estimation is divided

into two easier problems. The resulting GA-QPF has an interlaced structure. The QPF

that estimates the attitude quaternion for a given gyro bias estimate is interlaced with an

external maximum likelihood estimator for the estimation of the gyro bias. The likelihood
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function for gyro bias estimation is approximated as35

k2
∏

j=k1

p[ỹj|Φ4×4(ω̃j − β) q̂j−1] (85)

where Φ4×4(·) is the quaternion transition matrix derived from the continuous-time quater-

nion kinematics and q̂j−1 is obtained from the QPF. In the likelihood function, the gyro

bias β is treated as constant over [tk1, tk2 ]. The dynamic gyro noise model, for example

Eq. (14), is not incorporated into the likelihood function. The GA algorithm maximizes the

likelihood sequentially in time. The number of attitude particles is dramatically reduced by

a simple initialization procedure of the QPF. The idea is based on the fact that the first

vector observation defines a quaternion of rotation up to one degree of freedom. This degree

of freedom is used to generate the initial set of particles from the first observation only.

Unlike the filters that work directly with the state mean and covariance, PFs compute

the mean and covariance as derived quantities of the particle representation {x
(i)
k , w

(i)
k }

N
i=1.

The interactions between the mean and covariance as in the EKFs no longer exist in PFs,

and the issues such as attitude representations and attitude error definitions are much less

significant in PFs than in EKFs. Three methods for computing the attitude estimate have

been proposed:

1. As the usual arithmetic mean of three-component attitude representations such as the

MRPs,34 or

2. As the attitude particle with the largest importance weight,107 or

3. As the minimum of the cost function107

N
∑

i=1

w
(i)
k ||A(q

(i)
k )− Â||2 (86)

subject to ÂT Â = ÂÂT = I3×3.

The third method is the MMSE estimate in SO(3) and can be computed using the singular

value decomposition method.107 The metric in SO(3) associated with the cost function of

the MMSE estimate is given by108

dF (A1, A2) = ||A1 −A2|| (87)

which is in general not identical with the Riemannian metric in SO(3) corresponding to the
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length of the shortest geodesic curve, given by108

dR(A1, A2) = || log(AT
1 A2)|| (88)

The third method is superior to the other two but is also more computationally expensive. A

problem with the second method is that the particle with the largest importance weight does

not necessarily have the maximum a posteriori probability because the importance weight

is defined as the ratio between the posterior distribution and the importance function. The

choice of the importance function may have great impact on the maximum of the impor-

tance weights and the corresponding attitude estimate. The second method for computing

the attitude estimate is also known to be inaccurate. The first method is not attitude-

parameterization independent or invariant under rotations; it treats the attitude particles

in a three-component attitude representation like real vectors in the Euclidian space. This

approximation is good when the attitude particles are distributed over a small angle.

VIII. Orthogonal Attitude Filter

The orthogonal filter39 represents the attitude by an orthogonal rotation matrix, rather

than by some parameterization of the rotation matrix. This avoids questions about singular-

ities of representations or covariance matrices arising in other filters, and has the additional

advantage of providing a consistent initialization for a completely unknown initial attitude,

owing to the fact that SO(3), the group of rotation matrices, is a compact space.109 The PDF

is a non-Gaussian function defined on the Cartesian product of SO(3) and the Euclidean

space R
N of bias parameters. The Fokker-Planck equation38 propagates the PDF between

measurements and Bayes’ formula1 incorporates measurement information. This approach

is related to earlier work by Daum37 and Lo.110–112 It is well known that the Fokker-Planck

equation for linear dynamics and Bayes’ formula for a linear measurement model lead to the

usual Kalman filter with a Gaussian PDF.

The non-Gaussian PDF of the attitude on SO(3) is defined by

pAµ|Yv
(A) = exp

[

−JAµ|Yv
(A)
]

(89)

where the negative-log-likelihood function is given by

JAµ|Yv
(A) = −trace(BT

µ|vA) + constant (90)

The real 3× 3 matrix Bµ|v has the correct number of free parameters to represent the mean

and covariance of an attitude state, as in Wahba’s problem. In fact, a filter based on this
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PDF will look very much like filter QUEST. Equation (90) contains the first two terms,

ℓ = 0 and ℓ = 1, of an expansion of the negative-log-likelihood function in the irreducible

representations of SO(3).113 An attitude PDF of this form was first considered by Lo,110–112

who referred to it as an exponential Fourier density. Lo included the higher-order ℓ = 2

term, but treated neither process noise nor non-attitude bias parameters.

Three attitude estimates can be defined for this PDF: the conditional expectation

Āµ/v ≡

∫

SO(3)

A pAµ|Yv
(A) dµ(A) (91)

the MAP estimate

Âµ/v ≡ arg max
A∈SO(3)

[

pAµ|Yv
(A)
]

(92)

and the MMSE estimate

AMMSE
µ/v ≡ arg min

A′∈SO(3)







∫

SO(3)

‖A− A′‖2 pAµ|Yv
(A) dµ(A)






(93)

where dµ(A) is an invariant volume element on SO(3). The conditional expectation is not

an acceptable attitude estimate, since it is not an orthogonal matrix in general. The MAP

and MMSE attitude estimates are orthogonal matrices by definition, and they can be shown

to be identical for this PDF.39

A PDF describing uncorrelated bias parameters obeying Gaussian statistics and an atti-

tude with a PDF specified by Eqs. (89) and (90) would be the exponential of the sum of the

right-hand-side of Eq. (90) and a quadratic function of the bias parameters. The simplest

generalization to include correlations between the bias vector and the attitude matrix in the

orthogonal filter is

JAµ,xµ|Yv
(A, x) =

1

2
xT F x

µ|vx−ψ
T
µ|vx− trace[BT

µ|v(x)A] + constant (94)

where

Bµ|v(x) ≡ Bµ|v, 0 +

N
∑

k=1

Bµ|v, k xk (95)

where xk is the kth component of x. Propagation and update equations for the parameters

F x
t|µ, ψt|µ, and Bµ|v, k for k = 0, . . . , N are derived from the Fokker-Planck equation and

Bayes’ formula, respectively. The MAP and MMSE estimates will differ for the general

correlated problem. Therefore, the method uses the more easily computed MAP estimates,
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which are found by simultaneously satisfying the equations

Âµ/v = arg min
A∈SO(3)

[

JAµ, xµ|Yv
(A, x̂µ|v)

]

(96)

and

x̂µ/v = arg min
x∈RN

[

JAµ, xµ|Yv
(Âµ|v, x)

]

(97)

Defining a vector function ηµ|v(A) with components given by

[ηµ|v(A)]k = trace(BT
µ|v, kA) for k = 1, . . . , N (98)

allows Eq. (97) to be rewritten as

x̂µ/v = arg min
x∈RN

{

1

2
xT F x

µ|vx−
[

ψµ|v + ηµ|v(Âµ|v)
]T

x− trace(BT
µ|v, 0Âµ|v)

}

=
(

F x
µ|v

)−1
[

ψµ|v + ηµ|v(Âµ|v)
]

(99)

The attitude estimate Âµ|v can be found by maximizing trace[BT
µ|v(x̂)A] for some initial

guess for x̂µ|v, using one of the algorithms developed for Wahba’s problem, then updating

x̂µ|v using Eq. (99), and iterating this procedure until it converges.

Since the Fokker-Planck equation is nonlinear, the ℓ = 1 term in the PDF leads to

ℓ = 2 terms in the propagation, which cannot be accommodated in the filter. More realistic

measurement models may also require the ℓ = 2 irreducible representation to be included

in the PDF. If ℓ = 2 terms are included in the PDF, however, the nonlinear Fokker-Planck

equation will introduce ℓ = 3 and ℓ = 4 terms that would have to be ignored. It appears

that no PDF including a finite number of irreducible representations of SO(3) can provide

an exact solution of the Fokker-Planck equation, and it remains to be seen if a consistent

algorithm of this type can be found.

IX. Predictive Filtering

In the nonlinear predictive filter it is assumed that the state and output estimates are

given by a preliminary model and a to-be-determined model error vector, given by36

˙̂x(t) = f [x̂(t)] + G[x̂(t)]d(t) (100a)

ŷ(t) = h[x̂(t)] (100b)
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where d(t) is the model error, which may include both model variations and external distur-

bances. A Taylor series expansion of the output estimate in Eq. (100b) is given by

ŷ(t + ∆t) = ŷ(t) + z[x̂(t), ∆t] + Λ(∆t)S[x̂(t)]d(t) (101)

where the ith element of z[x̂(t), ∆t] is given by

zi[x̂(t), ∆t] =

pi
∑

j=1

∆tj

j!
Lj

f(hi) (102)

where pi, i = 1, 2, . . . , m, is the lowest order of the derivative of hi[x̂(t)] in which any

component of d(t) first appears due to successive differentiation and substitution for ˙̂xi(t)

on the right side, and Lj
f(hi) is a jth-order Lie derivative.114 The matrix Λ(∆t) is diagonal

with elements given by ∆tpi/pi!, and the ith row of S[x̂(t)] is given by

Si[x̂(t)] =
{

Lg1

[

Lpi−1
f (hi)

]

, . . . , Lgq

[

Lpi−1
f (hi)

]}

(103)

where q is the number of columns of G[x̂(t)] and Lgj

[

Lpi−1
f (hi)

]

is another Lie derivative.

Equation (103) is in essence a generalized sensitivity matrix for nonlinear systems.

A cost functional consisting of the weighted sum square of the measurement-minus-

estimate residuals plus the weighted sum square of the model correction term is minimized

to determine d(t). This yields36,115

d(t) =
(

{Λ(∆t)S[x̂(t)]}T R−1 {Λ(∆t)S[x̂(t)]}+ W
)−1

× {Λ(∆t)S[x̂(t)]}T R−1 {ỹ(t + ∆t)− ŷ(t)− z[x̂(t), ∆t]}
(104)

where the matrix R is the measurement covariance and the matrix W serves to weight the

amount of model error added to correct the assumed model in Eq. (100). As W decreases,

more model error is added to correct the model, so that the estimates more closely follow

the measurements. As W increases, less model error is added, so that the estimates more

closely follow the propagated model. An optimal W can be computed using an output

covariance constraint which is that the covariance of the measurement residual matches the

actual measurement covariance in a statistical sense.36 Equation (104) is used in Eq. (100a)

to perform a nonlinear propagation of the state estimates to time tk, then the measurement

is processed at time tk+1 to find the new d(t) in [tk, tk+1], and then the state estimates are

propagated to time tk+1.

An example of the predictive filter involves using the following model to estimate the
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quaternion:

˙̂q =
1

2
Ξ(q̂)d (105)

where d is determined from attitude measurements, such as GPS carrier-phase difference.116

The advantage of the predictive filter over the EKF for attitude estimation applications is

that the linearization is performed at the output, not at the system dynamics. Therefore,

the issue of quaternion normalization is never a problem in the predictive filter, since d is

used to propagate the quaternion kinematics directly. Another advantage of the predictive

filter is that it can be used to provide a point-by-point solution by setting W = 0. Other

applications of the predictive filters for attitude estimation are shown in Refs. 117 and 118.

X. Nonlinear Observers

Many nonlinear observers exist that provide attitude and angular rate estimates.47,48, 50–52, 119

Each has its various advantages and disadvantages. In this section the observer designed by

Thienel et al.52,119 is shown, since it is the most recent of the aforementioned references. In

their approach, the measured angular rate of Eq. (14a) is rewritten as

ω̃ = ω + β (106)

where the vector β is now assumed to be constant. The estimated angular rate is given by

ω̂ = ω̃ − β̂, where β̂ is the estimated bias. Noiseless observations of the true quaternion,

q, are assumed in Ref. 52, but this assumption is relaxed in Ref. 119. The error quaternion

between the “measured” quaternion and the estimated quaternion follows Eq. (20) with

δq ≡





δ̺

δq4



 = q⊗ q̂−1 (107)

The nonlinear observer for the quaternion and bias is given by

˙̂q =
1

2
Ξ(q̂)AT (δq) [ω̂ + k δ̺ sign(δq4)] (108a)

˙̂
β = −

1

2
δ̺ sign(δq4) (108b)
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where k is any positive constant. The error-dynamics of the observer can be shown to be

given by

δq̇ = −
1

2
Ξ(δq) [∆β + k δ̺ sign(δq4)] (109a)

∆β̇ =
1

2
δ̺ sign(δq4) (109b)

where ∆β ≡ β − β̂. The equilibrium states for Eq. (109) are δq = [0 0 0 ± 1]T and

∆β = [0 0 0]T .

In order to prove global stability of the observer, the following candidate Lyapunov

function is chosen:

V =
1

2
∆βT ∆β +

1

2







(δq4 − 1)2 + δ̺Tδ̺, δq4 ≥ 0

(δq4 + 1)2 + δ̺Tδ̺, δq4 < 0
(110)

Taking the time derivative of Eq. (110) and using Eq. (109) leads to

V̇ = −
k

2
δ̺Tδ̺ (111)

for all t. This establishes that ∆β, δ̺ and δq4 are globally uniformly bounded. The second

derivative is given by

V̈ =
k

2
δ̺T (δq4I3×3 + [δ̺×]) [∆β + k δ̺ sign(δq4)] (112)

which is also bounded. Barbalat’s lemma120 then shows that ||δ̺|| → 0 as t→∞.

Nonlinear observers are especially useful since they are often accompanied with global

stability proofs. The property of guaranteed convergence from any initial condition is es-

pecially desired by designers of spacecraft attitude estimation applications. The observers

in Refs. 47–52 all require an attitude measurement, which limits their use to cases where a

point-by-point determined attitude is known. Although nonlinear observers are still in their

infancy, these methods show great promise for future applications.

XI. Adaptive Methods

Many adaptive methods exist that either update noise covariances in a filter design,17,54–56

or update model parameters through least-squares techniques58–61 or by using nonlinear

techniques.62–64 In this section a noise adaptive approach using a quaternion Kalman fil-

ter,17 and a nonlinear adaptive approach to determine both inertia parameters and constant
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disturbance62 are shown.

A. A Noise Adaptive Approach

The adaptive filter described in this section is based on a linear pseudo-measurement, given

by Eq. (25). The adaptive filter processes the measurement residuals to optimally com-

pensate for system errors. The case of process noise adaptive estimation is considered in

Ref. 17. The process noise covariance matrix is assumed to be a scalar times identity ma-

trix Qk = η I3×3, where η is the to-be-estimated parameter using an adaptive scheme. The

process noise covariance is initialized using Qk = I3×3. Denoting the sensitivity matrix that

multiplies q in Eq. (25) as H , the i-step residual is given by

νi
k = −H i

k q̂i
k (113)

for i = 1, 2, . . . , m, where H i
k is computed from a single measurement and q̂i

k is the prop-

agated quaternion estimate. Note that Eq. (113) implies that the pseudo-measurement is

zero.17 The sample mean of m predicted residuals is defined by

ν̄m ≡
1

m

m
∑

i=1

νi
k (114)

The squared residual sample mean, denoted by the matrix Mm is computed as

Mm =
1

m

m
∑

i=1

(νi
k)(ν

i
k)

T (115)

and the covariance of ν̄m is denoted by Sm. The adaptive procedure determines η that solves

the following minimization problem:

min
η≥0

{

J(η) = ‖Mm − Sm(η)‖2
}

(116)

where the norm || · || denotes the Frobenius norm, i.e. ||M ||2 = trace(M MT ). The solution

to this minimization problem is given through a series of steps. First, the following variables

are initialized: q̂0
k = q̂+

k , P0
k = P+

k , M0 = 04×4, L0 = 04×4 and M0 = 04×4, where q̂+
k and

P+
k are the updated quaternion estimate and covariance, respectively. Then, the following

steps are given, starting with i = 1:

1. Compute Ξ(q̂i−1
k ), where Ξ is defined by Eq. (5a).
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2. Propagate the quaternion and covariance using

q̂i
k = Φi−1

k q̂i−1
k (117a)

P i
k = (Φi−1

k )P i−1
k (Φi−1

k )T (117b)

where Φi−1
k is the state transition matrix from the quaternion kinematics.

3. Compute Ξ(q̂i
k) and νi

k from Eq. (113), along with the following variables

M i =
i− 1

i
M i−1 +

1

i
(νi

k)(ν
i
k)

T (118a)

Ri
k =

1

4
[Ξ(q̂i

k)]R
i
k[Ξ(q̂i

k)]
T + αI4×4 (118b)

Z i =
{

(Φi−1
k )[Ξ(q̂i−1

k )][Ξ(q̂i−1
k )]T (Φi−1

k )T + [Ξ(q̂i
k)][Ξ(q̂i

k)]
T
} ∆t2

4
(118c)

Mi =Mi−1 + (H i
k)P

i
k(H

i
k)

T +Ri
k (118d)

Li = Li−1 + (H i
k)Zi(H

i
k)

T (118e)

where Ri
k is the measurement covariance for the ith measurement and α is a small number

in order to ensure that Ri
k is nonsingular. The procedure continues through i ≤ m. The

estimate for η, denoted by η̂, is computed by

η̂ =
trace

[

(Mm −Mm)(Lm)T
]

trace [(Lm)(Lm)T ]
(119)

Then, the process noise covariance is updated. This covariance is then converted into a 4× 4

matrix using the matrix Ξ, which is then used in the additive filter after the normalization

stage.

B. A Nonlinear Adaptive Approach

The nonlinear adaptive approach described in this section estimates both the inertia matrix

components and a constant vector of unknown disturbances.62 The kinematics are given by

the vector of MRPs,66 denoted by p, and Euler’s dynamics equations:121

ṗ =
1

4

{

(1− pT p) I3×3 + 2[p×] + 2ppT
}

ω ≡
1

4
B(p)ω (120a)

J ω̇ + [ω×]Jω = T + F (120b)
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where F is the external vector of disturbances, which is assumed constant. p and ω are

assumed with no noise. The adaptive control law is given by

T =

[

L̂
... Ĵ

... F̂

]









g

ϕ

−1









≡ Q̂x (121a)

g ≡ [ω2
1 ω2

2 ω2
3 ω1ω2 ω2ω3 ω1ω3]

T (121b)

ϕ = −Kvω −

[

ωωT +

(

4Kp

1 + ||p||2
−
||ω||2

2

)

I3×3

]

p− 4KiB
−1(p)

∫ t

0

p dt (121c)

where Ĵ is the estimated inertia matrix, F̂ is the estimated disturbance, Kp, Kv and Ki are

scalar control gains and L̂ ≡ [L̂1
... L̂2] is a matrix of estimated inertia components, with

L̂1 ≡









0 Ĵ23 −Ĵ23

−Ĵ13 0 Ĵ13

Ĵ12 −Ĵ12 0









, L̂2 ≡









Ĵ13 Ĵ33 − Ĵ22 −Ĵ12

−Ĵ23 Ĵ12 Ĵ11 − Ĵ33

Ĵ22 − Ĵ11 −Ĵ13 Ĵ23









(122)

The adaptive update law is given by

˙̂
Q = −

1

4
BT (p)S3e xT Γ (123)

where Γ is a 10× 10 matrix of learning design parameters and e is given by

e =









∫ t

o
(p− pr) dt

p− pr

ṗ− ṗr









(124)

where pr and ṗr are reference trajectories. The matrix S3 is a 3× 9 sub-matrix of the 9× 9

matrix S = [S1
... S2

... S3], which is determined by solving the following Lyapunov equation:

S E + ET S = −D (125)

where

E =









03×3 I3×3 03×3

03×3 03×3 I3×3

−KiI3×3 −KpI3×3 −KvI3×3









(126)

Once a matrix D is chosen, then the positive definite matrix S is determined numerically.

The stability of the adaptive control law is proven using a Lyapunov analysis.
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Clearly, from the definition of L̂2 in Eq. (122) the inertia matrix cannot be uniquely

determined. Rather, the inertia matrix terms and products, using this redundant formulation

to make the other parameters appear linear, are estimated such that the closed-loop dynamics

assumes a prescribed linear form. The inertia matrix term adaptation is to enforce this

desired linear closed loop dynamics, not to actually identify the true inertia terms. Due to

the redundancy of the inertia terms, there is an infinity of solutions of these inertia terms

which will all yield the desired behavior.

XII. Conclusions

Many nonlinear filtering methods have been applied to the problem of spacecraft attitude

determination in the past 25 years. This paper has provided a survey of the methods that

its authors consider to be most promising. It remains the case, however, that the extended

Kalman filter, especially in the form known as the multiplicative extended Kalman filter,

remains the method of choice for the great majority of applications. It is a relatively simple

and flexible tool with extensive heritage that can incorporate a great variety of measure-

ments. The extended Kalman filter can fail in cases that have highly nonlinear dynamics or

measurement models, or that lack a good a priori estimate of the state. Spacecraft engineers

usually employ conservative designs with good initial estimates for filters, but increasingly

powerful processors promote increased spacecraft autonomy, including autonomous initial-

ization of attitude estimation filters.

Unscented filters are an attractive alternative for applications where the nonlinearities

of the dynamics model or of the measurement models are severe, or when a good a priori

estimate of the state is unavailable. These filters require the probability density function

to be approximately Gaussian, as the central limit theorem leads one to expect in all but

pathological cases, and to be at worst unimodal. Unscented filters are especially attractive

when it is difficult or impossible to compute analytic partial derivatives of the dynamics or

measurement models. They also have the advantage of being well suited to parallel compu-

tation. The backwards-smoothing extended Kalman filter has shown promise in situations

similar to those for which unscented filters are indicated. The computational burden of the

backwards-smoothing extended Kalman filter is such that it is probably not competitive with

a well-designed unscented filter in most cases, though.

Particle filters are the only recourse when the density function is significantly non-

Gaussian, especially if it is multimodal. Particle filters face the curse of dimensionality

if more than a few parameters are to be estimated, however. Creative ways around this

problem coupled with increases in computing power may make particle filters more generally

useful for future spacecraft applications, but they are confined to niche applications at the
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present.

Some of the attitude estimation approaches presented in this paper, such as filter QUEST

and recursive QUEST, are simple linear or pseudo-linear filters but are suboptimal compared

to the standard extended Kalman filter. These are however useful for spacecraft contingency

designs in case of anomalies or as simple tools for analysis purposes. The orthogonal attitude

filter represents the first approach to a truly nonlinear filter, but the theory is still not

complete for attitude estimation. The predictive filter is useful for point-by-point estimation,

but its advantages over the other filtering approaches have not been shown yet. Nonlinear

observers are attractive since they usually are proven to be asymptotically stable, but due

to their infancy they have not yet found widespread use on actual spacecraft. Adaptive

approaches can be useful when system parameters are not known well or in the advent of

spacecraft failures.

Although the new approaches surveyed here have been shown to have some advantages,

it is wise to apply the old adage “if it ain’t broke don’t fix it” to the standard extended

Kalman filter, which has proved its worth on a multitude of spacecraft missions. Ultimately,

future mission requirements coupled with enhanced confidence in the new approaches may

bring about their greater use for onboard spacecraft applications.
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