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A colored-noise Kalman filter is designed to diminish the error effects caused by sensors

placed on vibrating structures. This paper deals with sensors that are used to estimate

position, attitude or both. Here we focus on a vision-based system, which uses a set of light-

emitting diode beacons with a focal plane detector to determine line-of-sight measurements.

Estimation of both position and attitude is possible with this system. Vibrational effects

are added to the beacon locations and a colored-noise filter is designed to mitigate the

effects of the beacon movements on state estimation. A sensitivity study is conducted

for this paper work, where the effects of beacon location errors on the estimation of a

vehicle’s position and attitude are examined. Beacon location variation is introduced into

the standard vision-based navigation problem as second-order vibration noise. Further, an

error in the process-noise covariance is assumed and its effect on the estimated quantity

is observed. Different magnitudes of vibration are added to the beacons position and

the robustness properties of the colored-noise filter is analyzed. Results indicate that the

colored-noise filter provides significant improvements over a filter that does not account

for vibrational effects.

I. Introduction

Various sensors can be used for vehicle systems that require position and/or attitude knowledge. The
choice of sensors is mainly dictated by the particular application. Oftentimes the position and attitude
determination problems are decoupled. For example, in most spacecraft applications position sensors, such
as standard Global Positioning System (GPS) receivers, are used to determine the orbital position while
attitude sensors, such as star trackers, are used to determine the orientation. Sometimes, one sensor package
can be used for both. For example, the International Space Station uses GPS to determine both position
and attitude.1 For this application, carrier-based measurements must be employed with multiple antennas
for attitude determination, which isn’t necessarily required for position determination. Other applications
involve using GPS with an Inertial Navigation System (INS), consisting of gyros and accelerometers, to
determine an aircraft’s absolute position and attitude.2 Vision-based systems for robotic navigation are now
commonplace,3 and have even been used for automatic rendezvous and docking system applications.4 With
the advent of greater signal processing capabilities coupled with smaller and cheaper sensor technology, the
amount of sensors available for attitude and position estimation within an autonomous operations framework
will surely grow in the future.

Most studies on sensors focus on errors that degrade state and parameter estimation accuracies, which
has been an issue for many years now. For example, sensitivity studies on random and systematic errors
in sensors provide a mechanism to discovery possible anomalous characteristics or problems at an early
stage.5 Placement of sensor locations is also important to overall estimation performance. The traditional
sensor-placement problem is based on static process conditions, which can be extended to linear dynamic
processes.6 Another approach to determine optimal sensor locations is by minimizing the condition number
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of the observability matrix.7 Reference 8 presents an observability analysis for determining both position
and attitude from line-of-sight (LOS) measurements. When three of more LOS measurements are available
the associated attitude/position covariance has full rank in most cases, and a unique solution for attitude
and position exists for four or more LOS measurements. An interesting scenario involves the case where
the endpoints of the position vectors of the sensors are connected by a straight line, which leads to an
unobservable system, not matter how LOS measurements are available. All of these studies can be used to
quantify the expected performance using various sensors through systematic design tools.

Another issue that clearly affects the performance of position/attitude determination systems is sensor
movements. These movements can arise from a number possibilities, but the most common are from vi-
brational effects where sensors are placed on flexible structures. For example, GPS antennae have been
placed on spacecraft solar arrays, which are very flexible and can lead to errors of several degrees in attitude
performance.9 Reference 10 shows actual flight tests results of using GPS to determine the attitude of an
aircraft. Two of the GPS antennae are placed on the wing tips, which can have a deflection of almost 10
cm steady-state for the particular aircraft used. Another antenna of the main fuselage was also assumed to
deflect, although not as much as the wing antennae. In addition to estimating attitude, the effect of the
baseline deflections was also studied. Deflection in the symmetric up-down bending of the wings is assumed,
so that only one parameter needed to be estimated for the baseline correction due to flexible motion of
the wing. The deflection was not determined by the estimation process though. Rather, various values of
the deflection scalar variable were studied and it was determined that a nonzero value did provide better
estimates when compared to the onboard inertial navigation solution.

In this paper an approach is introduced to mitigate the errors induced from sensors placed on flexible
structures. The approach relies on a colored-noise Kalman filter, because the noise on the measurements is
no longer Gaussian due to the flexible motion of the sensors. Colored-noise filters are design by incorporating
shaping filters that are driven by zero-mean Gaussian noise processes.11 The filter state is augmented to
include the shaping filter states, but the overall structure of the colored-noise filter follows the Kalman
structure with the exception when a correlation exists between that measurement noise and process noise.
Here we employ a vision-based system that provides LOS measurements.12 A thirteen-state extended Kalman
filter (EKF) is first designed to estimate position, orientation, linear velocity and angular velocity. Beacon
location variation is introduced into the standard vision-based estimation problem as second-order vibration
noise. The effects of the vibration noise are mitigated by using a forty-nine colored-noise filter. Further, an
error in the covariance is assumed and its effect on the estimated quantity is observed. Different magnitudes
of vibration are added to the beacons position and the robustness properties of the colored-noise filter is
analyzed. Simulation results will show the effectiveness of the colored-noise filter using a realistic sensor
based on vision technology.12

The organization of this paper is as follows. First, the basic sensor systems used for the work are described,
which also includes the measurement covariance. Then a review of the quaternion attitude parameterization
is given. Next, the EKF for position and attitude estimation using the sensor systems is derived. A discrete-
time propagation of the states and covariance is used in this work. Then, the colored-noise EKF is developed,
which incorporates a vibration model for the sensor movements. Finally, simulation results are presented
that show comparisons between the EKFs with and without the colored-noise model.

II. Sensor Systems

In this section, the main sensor used to obtain the LOS measurements and gyro model are summarized. As
previously mentioned the colored-noise Kalman filter approach shown in the paper is applicable to any sensor
system that involves deformation of the structure where the sensor is located. In this paper a vision-based
(VISNAV) navigation system is studied because it can be used to determine both position and attitude.
The design methodology for other sensor systems can easily be incorporated from the basic structure of the
colored-noise filter developed in this paper.

A. Vision-Based Navigation

The VISNAV system was first introduced by Junkins, Hughes, Wazni and Pariyapong in Ref. 12. Gunman
et al. presented detailed work with the digital signal processing (DSP) optical navigation sensor in Ref. 13.
Target beacons are fixed in the target vehicle with known position in some reference frame and an optical
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sensor is attached in the chase vehicle. The sensor is made up of a Position Sensing Diode (PSD) placed
in the focal plane of a wide angle lens. Current imbalances are produced when the silicon area of the
PSD is illuminated by a beacon focused by the lens. The PSD photodetector, combined with an omni-
directional lens, is an analog detector that inherently captures incident light, from which a LOS vector can
be determined. PSDs have rise times of about five microseconds, making them relatively fast when compared
even to high speed cameras. The idea behind the concept of intelligent vision is that the PSD can be used
to see only specific light sources. This can be done by frequency domain structuring of the target lights and
with analog signal processing. With this approach, light sources, called beacons are used to establish the
LOS vector. Each beacon is comprised of a series of Light Emitting Diodes (LEDs) which radiate energy over
nearly a hemisphere. A beacon orchestration process distinguishes one beacon from another and an elaborate
modulation/demodulation technique washes out the effects of surrounding environmental light sources.

There are many applications of the VISNAV system. Relative navigation and attitude estimation of
spacecraft flying in formation with the use of the VISNAV system is shown in Ref. 14. The approach uses
information from the optical sensor to provides a LOS vector from the chief spacecraft to the secondary satel-
lite. The overall system provides a reliable and autonomous relative navigation and attitude determination
system, employing relatively simple electronic circuits with modest digital signal processing requirements and
is fully independent of any external systems. State estimation is achieved through a Kalman filter model
coupled with a relative orbital model and gyro measurements that drive a kinematics model. Valasek et
al. present the use of the VISNAV system for autonomous aerial refueling in Ref. 15. This paper presented
the preliminary design of an accurate and reliable vision-based sensor and controller for autonomous aerial
refueling of unmanned air vehicles. Results indicate that the integrated sensor and controller provide precise
aerial refueling with good disturbance rejection characteristics.
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Figure 1. Vision-Based Navigation System

Photogrammetry is the technique of measuring objects (2D or 3D) from photographic images or LOS
measurements. Photogrammetry can generally be divided into two categories: far range photogrammetry
with camera distance settings to infinity (commonly used in star cameras), and close-range photogramme-
try with camera distance settings to finite values. In general close-range photogrammetry can be used to
determine both the attitude and position of an object, while far range photogrammetry can only be used to
determine attitude. The VISNAV system comprises an optical sensor of a new kind combined with specific
light sources (beacons), which can be used for close-range photogrammetry-type applications. The relation-
ship between the attitude/position and the observations used in photogrammetry involves a set of colinearity
equations, which are reviewed in this section. Figure 1 shows a schematic of the typical quantities involved in
basic photogrammetry from LOS measurements, derived from light beacons in this case. It is assumed that
the location of the sensor focal plane is known within the image-space coordinate system, which is usually
obtained through calibration. If we choose the z-axis of the sensor coordinate system to be directed outward
along the boresight, then given object space and image space coordinate frames, the ideal object to image
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space projective transformation (noiseless) can be written as follows:16

χi = −f
A11(Xi − x) + A12(Yi − y) + A13(Zi − z)

A31(Xi − x) + A32(Yi − y) + A33(Zi − z)
, i = 1, 2, . . . , N (1a)

γi = −f
A21(Xi − x) + A22(Yi − y) + A23(Zi − z)

A31(Xi − x) + A32(Yi − y) + A33(Zi − z)
, i = 1, 2, . . . , N (1b)

where N is the total number of observations, (χi, γi) are the image space observations for the ith LOS,
(Xi, Yi, Zi) are the known object space locations of the ith beacon, (x, y, z) are the unknown object space
location of the sensor, f is the known focal length, and Ajk are the unknown coefficients of the attitude
matrix, A, associated to the orientation from the object plane to the image plane. The goal of the inverse

problem is given observations (χi, γi) and object space locations (Xi, Yi, Zi), for i = 1, 2, . . . , N , determine
the attitude (A) and position (x, y, z).

The observation can be reconstructed in unit vector form as

bi = Ari, i = 1, 2, . . . , N (2)

where

bi ≡
1

√

f2 + χ2
i + γ2

i







−χi

−γi

f






(3a)

ri ≡
1

√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2







Xi − x

Yi − y

Zi − z






(3b)

When measurement noise is present, the measurement model becomes

b̃i = Ari + υi (4)

where b̃i denotes the ith measurement, and the sensor error υi is approximately Gaussian which satisfies17

E {υi} = 0 (5a)

Ri ≡ E
{

υiυ
T
i

}

= Ji RFOCAL
i JT

i (5b)

where E { } denotes expectation and

Ji ≡
1

√

1 + χ2
i + γ2

i







−1 0

0 −1

0 0






− 1

1 + χ2
i + γ2

i

bi

[

χi γi

]

(6a)

RFOCAL
i =

σ2
i

1 + d (χ2
i + γ2

i )

[

(1 + dχ2
i )

2 (dχiγi)
2

(dχiγi)
2 (1 + d γ2

i )2

]

(6b)

where σ2
i is the variance of the measurement errors associated with χi and γi, and d is on the order of

one. Note that as χi or γi increases then the individual components of RFOCAL
i increase, which realistically

shows that the errors increase as the observation moves away from the boresight. As stated in Ref. 18, the
covariance model is a function of the true variables χi and γi, which are never available in practice. However,
using the measurements themselves or estimated quantities from the EKF leads to only second-order error
effects.

Equation (5) does not make the small field-of-view (FOV) assumption, which is more useful for the
VISNAV sensor since it incorporates a wide angle lens. Rather, the assumption leading to Eq. (5) is that the
measurement noise is “small” compared to the signal, so that a first-order Taylor series exansion accurately
captures the error process (see Ref. 17 for details). However, there may be circumstances where all the LOS
measurements are within a small FOV. For this case Shuster19 has shown that nearly all the probability of
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the errors is concentrated on a very small area about the direction of Ari, so the sphere containing that
point can be approximated by a tangent plane, characterized by

E {υi} = 0 (7a)

Ri = σ2
i

(

I3×3 − bib
T
i

)

(7b)

where I3×3 denotes a 3× 3 identity matrix. Equation (7b) approximates Eq. (5b) well under the small FOV
assumption, but can lead to fairly large estimation errors if this assumption is not valid.17

The covariance matrices in Eqs. (5b) and (7b) are both singular, which leads to a singularity in the
calculation of the Kalman gain. Shuster18 first showed that the singular covariance matrix in Eq. (7b) can
be effectively replaced with a nonsingular diagonal matrix made up of σ2

i terms. This concept is expanded
in Ref. 17 to include the general covariance shown by Eq. (5b). For each measurement, the matrix used to
make up the EKF measurement-error covariance matrix is given by a rank-one update to Ri:

Ri = Ri +
1

2
trace(Ri)bib

T
i (8)

This matrix is always nonsingular.17 If Eq. (7b) is used in Eq. (8) then we have Ri = σ2
i I3×3. Finally,

concatenating all Ri matrices for the available LOS measurements at time-step tk into a block diagonal
matrix leads to the EKF measurement covariance matrix, denoted by Rk.

B. Gyro Model

A common sensor that measures the angular rate is a rate-integrating gyro. For this sensor, a widely used
three-axis continuous-time model is given by20

ω̃ = ω + β + ηv (9a)

β̇ = ηu (9b)

where ω is the three-component true angular-rate vector, ω̃ is the measured rate, β is the drift, and ηv and
ηu are independent zero-mean Gaussian white-noise processes with

E
{

ηv(t)η
T
v (τ)

}

= σ2
vδ(t − τ)I3×3 (10a)

E
{

ηu(t)ηT
u (τ)

}

= σ2
uδ(t − τ)I3×3 (10b)

where δ(t− τ) is the Dirac delta function. For simulation purposes, discrete-time gyro measurements can be
generated using the following equations:21

ω̃k+1 = ωk+1 +
1

2
[βk+1 + βk] +

[

σ2
v

∆t
+

1

12
σ2

u ∆t

]1/2

Nv (11a)

βk+1 = βk + σu ∆t1/2Nu (11b)

where the subscript k denotes the kth time-step, ∆t is the gyro sampling interval, and Nv and Nu are
zero-mean Gaussian white-noise processes with covariance each given by the identity matrix.

III. Attitude Parameterization

Several parameterizations of the attitude are possible.22 In this paper the quaternion parameterization
is used, which is a four-dimensional vector, defined as

q ≡
[

̺

q4

]

(12)

with

̺ ≡ [q1 q2 q3]
T = e sin(ϑ/2) (13a)

q4 = cos(ϑ/2) (13b)
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where e is the unit Euler axis and ϑ is the rotation angle. Since a four-dimensional vector is used to describe
three dimensions, the quaternion components cannot be independent of each other. The quaternion satisfies
a single constraint given by qTq = 1. The attitude matrix is related to the quaternion by

A(q) =
(

q2
4 − ||̺||2

)

I3×3 + 2̺̺T − 2q4[̺×] = ΞT (q)Ψ(q) (14)

where I3×3 is a 3 × 3 identity matrix and

Ξ(q) ≡
[

q4I3×3 + [̺×]

−̺T

]

(15a)

Ψ(q) ≡
[

q4I3×3 − [̺×]

−̺T

]

(15b)

Also, [̺×] is the cross-product matrix defined by

[̺×] ≡







0 −q3 q2

q3 0 −q1

−q2 q1 0






(16)

For small angles the vector part of the quaternion is approximately equal to half angles,22 which will be used
later.

The quaternion kinematics equation is given by

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (17)

where

Ω(ω) ≡







−[ω×] ω

−ωT 0






(18)

A major advantage of using the quaternion is that the kinematics equation is linear in the quaternion and is
also free of singularities. Another advantage of the quaternion is that successive rotations can be accomplished
using quaternion multiplication. Here the convention of Ref. 23 is adopted, where the quaternions are
multiplied in the same order as the attitude matrix multiplication, in contrast to the usual convention
established by Hamilton.24 A successive rotation is written using

A(q′)A(q) = A(q′ ⊗ q) (19)

The composition of the quaternions is bilinear, with

q′ ⊗ q =
[

Ψ(q′) q′

]

q =
[

Ξ(q) q

]

q′ (20)

Also, the inverse quaternion is defined by

q−1 ≡
[

−̺
q4

]

(21)

Note that q⊗ q−1 = [0 0 0 1]T , which is the identity quaternion.

IV. Kalman Filter for Position and Attitude Estimation

The Kalman filter is used as the foundation for position and attitude estimation. The quaternion lineariza-
tion process follows the multiplicative approach summarized in Refs. 23 and 25, which is briefly reviewed
here.

δq = q ⊗ q̂−1 (22)
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with q is true quaternion, q̂ is the estimated quaternion and δq ≡ [ δ̺T δq4 ]T . Taking the time derivative

of Eq. (22) gives23

δq̇ =

[

[ω̂×]δ̺

0

]

+
1

2

[

δω

0

]

⊗ δq (23)

with ω̂ = ω̃ − β̂, where β̂ is estimated gyro bias vector, and δω = ω − ω̂. The nonlinear term appears only
in the second term at the right-hand side of Eq. (23). Its first order approximation is given as

1

2

[

δω

0

]

⊗ δq ≈ 1

2

[

δω

0

]

(24)

Using the small angle approximation δ̺ = δα/2, where α has components of roll, pitch and yaw angle errors
for any rotation sequence, and substituting the gyro and estimate models into δω leads to

δα̇ = −[ω̂×]δα− (∆β + ηv) (25)

where ∆β = β − β̂. The linearization process of the measurement output for the attitude portion can be
found in Ref. 23, which is not repeated here.

The state vector consists of the position vector p ≡ [x y z]T , the velocity vector v ≡ [ẋ ẏ ż]T , the
quaternion q and the gyro bias vector β:

x =
[

pT vT qT βT
]T

(26)

The dynamics model of the linear velocity follows

v̇ = ηa (27)

where ηa is a zero-mean Gaussian noise process with spectral density given by σ2
aI3×3. The error-dynamics

are given by
∆ẋ = F (x̂, t)∆x + Gw (28)

where

∆x =
[

∆pT ∆vT δαT ∆βT
]T

(29a)

w =
[

ηT
a ηT

v ηT
u

]T
(29b)

F (x̂, t) =











03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 −[ω̂×] −I3×3

03×3 03×3 03×3 03×3











(29c)

G =











03×3 03×3 03×3

I3×3 03×3 03×3

03×3 −I3×3 03×3

03×3 03×3 I3×3











(29d)

with ∆p = p − p̂ and ∆v = v − v̂, where p̂ and v̂ are the position and velocity estimates, respectively.
A summary of the Kalman filter for position and attitude estimation is given by Table 1. The process

noise spectral density matrix is given by

Q =







σ2
aI3×3 03×3 03×3

03×3 σ2
vI3×3 03×3

03×3 03×3 σ2
uI3×3






(30)

All quantities with a superscript + denote updated values and all quantities with a superscript − denote
propagated values. It is assumed for simplicity that the gyros and VISNAV sensor are sampled at the same
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Table 1. Extended Kalman Filter for Position and Attitude Estimation

ẋ = f(x, ω̃, t) + Gw, w ∼ N(0, Q)

Model
ỹk =













A(q)r1

A(q)r2

...

A(q)rN













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

+













υ1

υ2

...

υN













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

≡ hk(x̂k) + vk, vk ∼ N(0, Rk)

p̂(t0) = p̂0, v̂(t0) = v̂0, q̂(t0) = q̂0, β̂(t0) = β̂0

Initialize
P (t0) = P0

Gain Kk = P−

k HT
k (x̂−

k )[Hk(x̂−

k )P−

k HT
k (x̂−

k ) + Rk]−1

P+

k = [I − KkHk(x̂−

k )]P−

k

∆x̂+

k = Kk

[

ỹk − hk(x̂−

k )
]

∆x̂+

k ≡
[

∆p̂+T
k ∆v̂+T

k δα̂+T
k ∆β̂+T

k

]T

hk(x̂−

k ) =













A(q̂−)r1

A(q̂−)r2

...

A(q̂−)rN













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

Update

p̂+
k = p̂−

k + ∆p̂+
k

v̂+
k = v̂−

k + ∆v̂+
k

q̂+
k = q̂−

k + 1

2
Ξ(q̂−

k )δα̂+
k , re-normalize quaternion

β̂+
k = β̂−

k + ∆β̂+
k

p̂−

k+1
= p̂+

k + v̂+

k ∆t

v̂−

k+1
= v̂+

k

ω̂+

k = ω̃k − β̂+

k

Propagation
q̂−

k+1
= Ω̄(ω̂+

k )q̂+
k

β̂−

k+1
= β̂+

k

P−

k+1
= ΦkP+

k ΦT
k + Q

rates, although this does not need to be true in general. The matrix P denotes the state error-covariance.
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The sensitivity matrix is given by

Hk(x̂−

k ) =















∂b̂−

1

∂p̂−
03×3 [A(q̂−)r̂−1 ×] 03×3

...
...

...
...

∂b̂−

N

∂p̂−
03×3 [A(q̂−)r̂−N×] 03×3















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

(31)

where r̂−i is given by Eq. (3b) evaluated at p̂− ≡ [x̂− ŷ− ẑ−]
T

and the partial matrix ∂b̂−

i /∂p̂− is given by

∂b̂−

i

∂p̂−
= A(q̂−)

∂r̂−i
∂p̂−

(32)

where

∂r̂−i
∂p̂−

=
1

ŝ−i







−
[

(Yi − ŷ−)2 + (Zi − ẑ−)2
]

(Xi − x̂−)(Yi − ŷ−) (Xi − x̂−)(Zi − ẑ−)

(Xi − x̂−)(Yi − ŷ−) −
[

(Xi − x̂−)2 + (Zi − ẑ−)2
]

(Yi − ŷ−)(Zi − ẑ−)

(Xi − x̂−)(Zi − ẑ−) (Yi − ŷ−)(Zi − ẑ−) −
[

(Xi − x̂−)2 + (Yi − ŷ−)2
]







(33)

with ŝ−i ≡
[

(Xi − x̂−)2 + (Yi − ŷ−)2 + (Zi − ẑ−)2
]3/2

.

The closed-form solution for the quaternion propagation is used, where Ω̄(ω̂+

k ) is given by26

Ω̄(ω̂+

k ) ≡







cos
(

1

2
‖ω̂+

k ‖∆t
)

I3×3 −
[

ψ̂+
k ×

]

ψ̂+
k

−ψ̂+T
k cos

(

1

2
‖ω̂+

k ‖∆t
)






(34)

with

ψ̂+
k ≡ sin

(

1

2
‖ω̂+

k ‖∆t
)

ω̂+

k

‖ω̂+

k ‖
(35)

Also, a discrete-time propagation of the covariance is also used, where the state transition matrix is given
by

Φ =











I3×3 ∆tI3×3 03×3 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 Φ33 Φ34

03×3 03×3 03×3 I3×3











(36)

where

Φ33 = I3×3 − [ω̂×]
sin(||ω̂||∆t)

||ω̂|| + [ω̂×]2
{1 − cos(||ω̂||∆t)}

||ω̂||2 (37a)

Φ34 = [ω̂×]
{1 − cos(||ω̂||∆t)}

||ω̂||2 − I3×3∆t − [ω̂×]2
{||ω̂||∆t − sin(||ω̂||∆t)}

||ω̂||3 (37b)

The discrete-time process noise covariance is given by

Q =























σ2
a∆tI3×3 03×3 03×3

03×3

(

σ2
v∆t +

1

3
σ2

u∆t3
)

I3×3 −
(

1

2
σ2

u∆t2
)

I3×3

03×3 −
(

1

2
σ2

u∆t2
)

I3×3

(

σ2
u∆t

)

I3×3























(38)

It should be noted that corrected version of Eq. (38) is only an approximation, since the coupling effects of
the cross-product matrix in Eq. (29) have not been considered. The approximation is valid if the sampling
rate is below Nyquist’s limit. Also, the process noise for the velocity is assumed to have equal levels, i.e. its
covariance is a scalar (σ2∆t) times identity; however, this does not need to be required in general.
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V. Colored-Noise Kalman Filter for Sensor Vibration Mitigation

In this section a colored-noise Kalman filter is developed that will be used to reduce the error effects
caused by placing the VISNAV beacons on flexible structures. The vibration model for the ith beacon is
assumed to be given by the following form:





















Ẋi

Ẏi

Żi

Ẍi

Ÿi

Z̈i





















=





















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−K
M 0 0 − C

M 0 0

0 −K
M 0 0 − C

M 0

0 0 −K
M 0 0 − C

M









































Xi

Yi

Zi

Ẋi

Ẏi

Żi





















+





















1

M 0 0 0 0 0

0 1

M 0 0 0 0

0 0 1

M 0 0 0

0 0 0 1

M 0 0

0 0 0 0 1

M 0

0 0 0 0 0 1

M









































0

0

0

ηXi

ηYi

ηZi





















(39)

where Xi, Yi and Zi are Cartesian components of the position for the ith beacon, and ηXi
, ηYi

and ηZi
are

process noise terms. Here it is assumed that a simple flexible structure with isotropic matrices for the mass,
damping and stiffness matrices, with scalar components respectively given by M , C and K. The vibration
model can be general in nature if desired, i.e. using fully populated mass, damping and stiffness matrices, or
even derived from experimental data using an algorithm such as the one shown in Ref. 27.

The aggregated state-space equation is written considering all the available beacons. This leads to a
13+6N dimensioned state vector, which includes the target position, velocity, quaternion, gyro bias, as well
as the position and velocities of the flexible structure of all beacons:

x =
[

pT vT qT βT χT
1 χ̇T

1 · · · χT
N χ̇T

N

]T
(40)

where χi ≡ [Xi Yi Zi]
T . The Kalman filter follows along similar lines as the one shown in Table 1 with the

augmented state vector in Eq. (40). The “colored-noise” in the system is in the beacon locations, which are
used in the VISNAV measurement model. The sensitivity matrix now becomes

Hk(x̂−

k ) =

















∂b̂−

1

∂p̂−
03×3 [A(q̂−)r̂−1 ×] 03×3

∂b̂−

1

∂χ̂−

1

03×3 · · · 03×3 03×3

...
...

...
...

...
... · · ·

...
...

∂b̂−

N

∂p̂−
03×3 [A(q̂−)r̂−N×] 03×3 03×3 03×3 · · · ∂b̂−

N

∂χ̂−

N

03×3

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

(41)

The partial matrix ∂b̂−

i /∂χ̂−

i is given by

∂b̂−

i

∂χ̂−

i

= −A(q̂−)
∂r̂−i
∂p̂−

(42)

where ∂b̂−

i /∂p̂− is given by Eq. (32). In this paper we consider 6 beacons. For this case the new matrix
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F (x̂, t) is given by

F (x̂, t) =



































































03×3 I3×3 03×21 03×21

03×12 03×12 03×12 03×12

03×6 −[ω×] −I3×3 03×36

03×12 03×12 03×12 03×12

03×15 I3×3 03×15 03×15

03×12 − K
M I3×3 − C

M I3×3 03×30

03×21 I3×3 03×12 03×12

03×18 − K
M I3×3 − C

M I3×3 03×24

03×27 I3×3 03×9 03×9

03×24 − K
M I3×3 − C

M I3×3 03×18

03×33 I3×3 03×6 03×6

03×30 − K
M I3×3 − C

M I3×3 03×12

03×39 I3×3 03×3 03×3

03×36 − K
M I3×3 − C

M I3×3 03×6

03×15 03×15 03×15 I3×3

03×21 03×21 − K
M I3×3 − C

M I3×3



































































(43)

The process noise vector is given by

w =
[

ηT
a ηT

v ηu ηT
χ1

· · · ηT
χ6

]T
(44)

where ηχi
≡ [ηXi

ηYi
ηZi

]T . It is assumed that the spectral density of each ηχi
is isotropic, given by σ2

χi
I3×3,

for simplicity. The matrices G and Q are also augmented for the beacon location process noise:

G =













































03×3 03×3 03×3 03×3 03×3 03×3 03×3 · · · 03×3 03×3

I3×3 03×3 03×3 03×3 03×3 03×3 03×3 · · · 03×3 03×3

03×3 −I3×3 03×3 03×3 03×3 03×3 03×3 · · · 03×3 03×3

03×3 03×3 I3×3 03×3 03×3 03×3 03×3 · · · 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 · · · 03×3 03×3

03×3 03×3 03×3 03×3 I3×3 03×3 03×3 · · · 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 · · · 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 I3×3 · · · 03×3 03×3

...
...

...
...

...
...

...
. . .

...
...

03×3 03×3 03×3 03×3 03×3 03×3 03×3 · · · 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 · · · 03×3 I3×3













































(45)

and

Q =























σ2
aI3×3 03×3 03×3 03×3 · · · 03×3

03×3 σ2
vI3×3 03×3 03×3 · · · 03×3

03×3 03×3 σ2
uI3×3 03×3 · · · 03×3

03×3 03×3 03×3 σ2
χ1

I3×3 · · · 03×3

...
...

...
...

. . .
...

03×3 03×3 03×3 03×3 · · · σ2
χ6

I3×3























(46)

A closed-form solution for the state transition matrix and discrete-time process noise is intractable for
the colored-noise case. If the sampling rate is within Nyquist’s limit, then the following approximations can
be used:

Φ ≈ I + ∆t F (47a)

Q ≈ ∆t GQ GT (47b)
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If this is not true, then a numerical solution given by van Loan28 can be used. First, the following matrix is
formed:

A =







−F GQ GT

0 FT






∆t (48)

Then, the matrix exponential of Eq. (48) is computed:

B = eA ≡







B11 B12

0 B22






=







B11 Φ−1Q

0 ΦT






(49)

The state transition matrix is then given by
Φ = BT

22 (50)

Also, the discrete-time process noise covariance is given by

Q = ΦB12 (51)

Since gyros usually provide measurements at a very high sampling rate, then Eq. (47) is usually adequate.
Sometimes, one or more of the optical beacons will be out of sensor field-of-view or the viewing angles

between two or more beacons may be so small that a geometric singularity is encountered. For the case of
intermittent data dropout, the estimation process can be continued by propagating the equations of motion
or by integrating the gyro outputs corrupted by the biases. Gyro biases can be updated by the EKF even
when one beacon is available in the VISNAV measurements. The VISNAV/gyro integration method can
take advantage of the strengths of both systems while minimizing the impact of their weaknesses. This
integration gives a robust navigation system. This navigation system provides a continuous best estimate of
the dynamic system and is much more robust with respect to occasional dropouts than forward propagation
using an approximate dynamic model.

The filter is first initialized with a known state and error-covariance matrix. Then, the Kalman gain is
computed using the measurement-error covariance and sensitivity matrix. The state error-covariance follows
the standard EKF update. Then, the error state update is computed. Based on this error state update, the
position and velocity, quaternion, gyro biases, and beacon position and velocities are updated. The updated
quaternion is re-normalized by brute force. Angular velocity is used to propagate the quaternion kinematics.
Gyro bias and velocity propagation are constant through the sampling interval. Finally, the position and
standard error-covariance are propagated in the EKF.

VI. Simulation & Results

This section presents the simulations conducted for this paper. Simulations were carried out to verify
the design of the 49 state EKF. A brief introduction and discussion about the approach will be presented.
Then the simulation results will be presented along with the details of the specific parameters used. The
last section discusses the results obtained for the simulation.

A. Introduction and Approach

First, the colored-noise vibration model is simulated using the model in Eq. (39). Then, the measurements
of Ari are generated for each time instant by propagating the initial identity attitude matrix with a certain
angular velocity rate. Next, the gyros are simulated in discrete-time for each time instant using Eq. (11).
These are the two measurements used for the design of the 49 state colored-noise EKF. The next section
elaborates the major steps involved in simulating the EKF along with the various parameters used for this
specific simulation.

B. Simulation Results

All the major parameters used for this simulation are shown in Table 2. The initial state is given by

x0 =
[

pT
0 vT

0 qT
0 βT

0 χT
10

· · · χT
60

]T
(52)
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where

p0 = [30 30 10]T m (53a)

v0 = [1/10 1/60 1/180]T m/s (53b)

q0 = [0 0 0 1]T (53c)

β0 = [0.1 0.1 0.1]T deg/hr (53d)

The initial conditions for the beacon locations, χ10
, . . . , χ60

, are shown in Table 3. For the colored-noise
filter all initial variables are set to their true values, since with 6 beacons it is possible to obtain good position
and attitude estimates using a least-squares approach, expect for the gyros biases, which are set to zero.
The initial covariance is set to

P0 =



































































(0.01)2I3×3 03×15 03×15 03×15

03×3 (0.0001)2I3×3 03×3 03×39

03×6 (0.1 π
180

)2I3×3 03×3 03×36

03×9 (0.2 π
180×3600

)2I3×3 03×3 03×33

03×12 (0.01)2I3×3 03×3 03×30

03×15 (0.0001)2I3×3 03×3 03×27

03×18 (0.01)2I3×3 03×3 03×24

03×21 (0.0001)2I3×3 03×3 03×21

03×24 (0.01)2I3×3 03×3 03×18

03×27 (0.0001)2I3×3 03×3 03×15

03×30 (0.01)2I3×3 03×3 03×12

03×33 (0.0001)2I3×3 03×3 03×9

03×36 (0.01)2I3×3 03×3 03×6

03×39 (0.0001)2I3×3 03×3 03×3

03×39 03×3 (0.01)2I3×3 03×3

03×21 03×21 03×3 (0.0001)2I3×3



































































(54)

The quaternion is updated and propagated as described in the attitude determination portion of §V. Then
the sensitivity matrix Hk is calculated, shown by Eq. (42). This is an 18 × 48 matrix. Next the Kalman
gain is calculated. The process noise matrix Q is shown in Eq. (46). The quantity σa is changed to tune the
EKF.

C. Discussion

The colored-noise estimation results discussed in the section use a value of K = 1 for the stiffness in the
beacon structure. This gives a natural frequency of 0.3162 rad/sec and a damping ratio of 0.1118. Figure 2(a)
shows the errors (estimated minus true values) in the target vehicle’s position (x, y and z components) with
3σ outliers. The errors lie within their respective 3σ outliers, which indicates that the colored-noise EKF
working properly. Figure 2(b) shows the error in the target vehicle’s velocity. Again, the errors lie within
their respective 3σ outliers. Figure 3(a) shows the roll, pitch and yaw errors of the target vehicle. Figure 3(b)
shows the x, y and z components of the gyro bias with 3σ outliers, which are slowly decreasing. Clearly, more
attitude motion is required to estimate the gyro biases faster. Still good attitude estimates are provided
for the simulation comparisons, which are more relevant for the study in this paper. Figure 4(a) and 4(b)
show the position and velocity errors of beacon one, respectively. Similar type of results are obtained for the
position and velocity errors of the remaining beacons. All these errors fall within the 3σ outliers, confirming
proper estimation.

D. Sensitivity to Process Noise

In this section, the robustness with respect to process noise of the beacons is shown. The assumed value
in the filter is multiplied by some scale factor of the true value. Specifically, the process noise covariance
is multiplied by 1 to 13 times in the filter to check the robustness of the state estimates to errors in the
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Table 2. Simulation Parameters

Parameter Name Symbol Unit Values

x m 30 exp[(−1/300)t]

True Vehicle Position y m 30 − (30/1800)t

z m 10 − (10/1800)t

Vehicle Rotational Velocity ω rad/s







sin(3t)

cos(t)

(360 × 3/tf)π/180







Time Step ∆t s 0.01

Final Time tf min 1.5

Mass of Beacon Structure M Kg 10

Spring Constant of Beacon Structure K N/m 1 and 38

Damping Coefficient of Beacon Structure C Ns/m
√

2/2

Standard Deviation (STD) for Angle Random Walk σv rad/s1/2
√

10 exp(−7)

STD for Rate Random Walk σu rad/s3/2
√

10 exp(−10)

STD for Vehicle Acceleration σa m/s3/2
√

4 exp(−2)

STD for Each Beacon Acceleration σχi
m/s3/2

√
1 exp(−3)

STD for Measurement σm deg 0.02

Table 3. Beacon Location in Meters

Beacon No. X−Location Y −Location Z−Location

1 0.5 0.5 0

2 −0.5 −0.5 0

3 −0.5 0.5 0

4 0.5 −0.5 0

5 0.2 0 0.1

6 0 0.2 −0.1

covariance parameters. Results from the filter using various “mistuned” values for the process noise are
shown in Table 4 for target position and velocity (NA indicates a diverging filter) and are shown in Table
5 for beacon one position and velocity. Various results for the specific case of a factor of 6 are shown in
Figures 5-7. Even though the process noise covariance of the beacons is multiplied by a factor of 6, good
state estimates are provided. Beyond this limit however only target position estimation errors start crossing
their respected 3σ outliers with the other state estimation errors being very well within their respective 3σ
outliers.

E. Comparison between 13 and 49 State EKF

A comparison between the 13 and 49 state EKFs is now shown. Measurements used in both filters contain
vibrational beacon error-effects. In the 13 state EKF beacon vibrations are not estimated whereas in the 49
state EKF, beacon vibrations are estimated. Simulation results are shown with a higher standard deviation
in the vibration noise with σχi

= 100 mm/s3/2 than the previous simulation results. Also, a value of K = 38
for the stiffness in the beacon structure is used for the comparisons. This gives a natural frequency of 1.9494
rad/sec and a damping ratio of 0.0181. Hence, the vibration effects in this simulation comparison are more
pronounced than in the previous results. Plots of the results using the 13 state EKF are shown in Figures
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Figure 3. Roll, Pitch, Yaw Errors of the Vehicle and Gyro Bias with 3σ Outliers

8 and 9. With the exception of the gyro-bias errors, all errors are significantly outside their respective 3σ
outliers. From Figure 8(a) the frequency of the oscillation in the errors corresponds to the frequency of
the vibration in the beacons, which intuitively makes sense since the effect of the beacon vibrations is not
compensated in the 13 state EKF. Plots of the results using the 49 state EKF are shown in Figures 10 and 11.
Clearly, for same set of parameter values, the colored-noise 49 state EKF is significantly better than the 13
state EKF. This simulation comparison indicates that vibration error-effects in a sensor can be successfully
mitigated using a colored-noise model in the EKF.

VII. Conclusions

This paper showed a design of a colored-noise Kalman filter for the purpose of mitigating errors associated
with sensor movements in position/attitude estimation systems. The particular application of this approach
involved a visual-based navigation sensor that provides a line-of-sight vector between beacons and the target.
Simulation results showed that the colored-noise filter is fairly robust to errors in the assumed process noise
covariance. Furthermore, the colored-noise filter showed significant improvements in both accuracy and
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Figure 4. x, y & z Errors in Position and Velocity with 3σ Outliers for Beacon One

Table 4. Target Position and Velocity 3σ Variation with Process Noise Variation in EKF

Scale Target Position 3σ Target Velocity 3σ

x y z x y z

1 0.4161 0.4780 0.1601 0.0932 0.1065 0.0455

2 0.6825 0.7839 0.2626 0.1106 0.1271 0.0514

3 0.9189 1.0553 0.3534 0.1226 0.1412 0.0555

4 1.1337 1.3022 0.4364 0.1318 0.1523 0.0592

5 1.3299 1.5269 0.5120 0.1390 0.1610 0.0626

6 1.5110 1.7347 0.5816 0.1452 0.1682 0.0651

7 1.6753 1.9240 0.6452 0.1499 0.1740 0.0676

8 NA NA NA 0.1793 0.0705 0.1400

9 NA NA NA 0.1840 0.0725 0.1572

10 NA NA NA 0.1618 0.1882 0.0745

11 NA NA NA 0.1638 0.1914 0.0772

12 NA NA NA 0.1674 0.1950 0.0786

13 NA NA NA NA NA NA

obtaining accurate 3σ outliers than a Kalman filter running without sensor movement estimation. The
approach in this paper can easily be modified for other sensor systems, where the main position and/or
attitude sensor is vibrating on a flexible structure.
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