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Abstract

The Extended Kalman Filter (EKF) is the most widely used algorithm for estimation in GPS/INS
navigation. The EKF is a sequential state estimator for use with nonlinear systems. The navigational EKF
can be programmed in geocentric (ECEF) and navigational (latitude, longitude, and altitude) coordinates.
This is a presentation of the affect the choice of coordinate frame has on the covariance-propagation of the
EKF. For the EKF, a model’s error dynamics are approximated using a first-order Taylor series representation
of the equations of motion. For this study, the choice of reference frame greatly affects the complexity of this
approximation. Key filter differences are presented, and the results of filter performance tests are shown.

1 Introduction

Estimation of inertial measurement unit (IMU) er-
rors is one of the primary goals of navigational fil-
tering. Upon loss of GPS signals, an inertial navi-
gation system (INS) with well-estimated measure-
ment parameters can sometimes provide accurate
position information until GPS updates are possi-
ble again. The choice of reference frame in naviga-
tion is arbitrary, but may be swayed by prior knowl-
edge of navigational accuracy and computational
performance. The two frames considered in this
work are the ECEF and North-East-Down (NED)
coordinate systems. The ECEF frame represents
a cartesian position with respect to the center of
Earth, and the NED frame is composed of the ge-
ographic latitude, longitude, and height. Reasons
for choosing either span computational efficiency to
ease of interpretation.

In the case of navigational estimation, GPS
signals are used to determine the errors associ-
ated with inertial measurement units (IMUs). IMU
measurements are subject to bias, scaling and mis-
alignment error [1]. These errors cause inaccuracy
in velocity and position calculations due to the fact
that IMU data are integrated over time. Even with
a good initial condition, integrated sensor errors
can result in large position and velocity errors over
a short amount of time. As an INS provides ve-

locity and position data through the integration of
IMU measurements, GPS position measurements
can be used to estimate IMU errors [2],[3],[4].

The scope of this work is a test of the ex-
tended Kalman filter (EKF) for navigation pro-
grammed in different reference frames. The EKF is
a version of the Kalman filter used estimate the dy-
namics of nonlinear systems [2]. The EKF attempts
to approximate the dynamics of a nonlinear system
using the first order term of a Taylor-series expan-
sion of the equations of motion. Another principal
assumption of the EKF derivation is that the Gaus-
sian nature of input noise can be preserved through
a linearization of the system dynamics. For these
reasons, the EKF is inherently suboptimal, and its
degree of estimation accuracy can be difficult to
quantify [5], [6]. The choice of reference frame af-
fects the filter observability by changing the kine-
matic equations of motion and directly influencing
the covariance (estimation error) propagation seg-
ment of the algorithm.

The EKF versions will be compared in terms
of navigation accuracy through observation of the
estimate errors and covariance. Also, the results of
a study of a nonlinearity test performed on the nav-
igational EKFs are presented. A similar study has
been performed with actual navigational hardware
by Wei [7]. Wei’s analysis covers computational
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performance and estimation accuracy, and is lim-
ited to the performance characteristics of hardware.
These characteristics most likely include sampling
intervals and the use of a different programming
language.

A brief overview of reference frames and fil-
tering is provided in the next section. The ex-
tended filter equations for navigation in the NED
and ECEF frames are then provided and followed
by simulation results and conclusions.

2 Reference Frames

Navigational estimation requires the use of several
frames. They are illustrated in Figure 1. First,
the Earth-Centered-Inertial (ECI) frame is concen-
tric with Earth, and is fixed in space, meaning its
orientation is constant with respect to the celestial
sphere [3]. Representations in ECI coordinates will
have the superscript I (e.g., rI). The next reference
frame is the Earth-Centered-Earth-Fixed (ECEF)
frame, denoted with the vectors {ê1, ê2, ê3} in Fig-
ure 1. This frame is an Earth-centered frame which
rotates with the Earth. Vectors represented in the
ECEF frame will take the superscript E, (e.g., rE).

The North-East-Down (NED) frame is de-
noted by

{
n̂, ê, d̂

}
. Its unit vectors represent their

descriptive directions for a point on the surface of
the Earth model. The n̂ axis points to true North,
ê points East, and d̂ completes the coordinate sys-
tem, in Figure 1. The reason d̂ is described in this
way rather than said to point downward is because
of the elliptical Earth model chosen. In this work,
a local NED frame is defined about which an arbi-
trary vehicle navigates. NED frame representations
will be denoted with the superscript N , (e.g., rN ).
The reference frames detailed above are illustrated
in Figure 1.

Finally, the body frame will be denoted by{
b̂1, b̂2, b̂3

}
. This frame’s origin and directions

are fixed to the navigating vehicle. Unit vector di-
rections are arbitrary. Body frame representations
will be denoted with the superscript B, (e.g., rB).

Details of transformation between these co-
ordinate bases are omitted from this paper for
brevity. A full derivation is presented in [3].
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Figure 2: Schematic of IMU Measurement Model

3 Measurement Models

In this section, the measurement models used in
this work will be presented. First, the GPS pseu-
dorange is defined as the norm of the radius vector
between the user and the satellite [1], [3]. The mea-
surement is the the sum of the pseudorange, clock
bias, bc, and v, a zero-mean Gaussian white noise
process which represents the measurement noise:

ρ̃i = ‖RE
i − rE‖ + bc + v, i = 1, 2, . . . , n (1)

Here, rE is the position of the receiver in ECEF
coordinates, and RE is the position of the GPS
satellite in ECEF coordinates. This is illustrated
in Figure 1. The GPS clock bias is denoted with
bc, and is representative of nearly constant errors
in the satellite’s atomic clock [2].

Derivations of models for the gyros and ac-
celerometers are available in [3] and [8]. The gyro
measurement model is the sum of the true rate,
ωB

B/I and bias, bg.

ω̃B
B/I = ωB

B/I + bg + ηgv (2a)

ḃg = ηgu (2b)

The final terms ηgv, and ηgu are zero-mean
Gaussian processes which simulate measurement
noise and gyro bias drift, respectively. Their spec-
tral densities are given by σ2

gvI3×3 and σ2
guI3×3, re-

spectively. The gyro model is illustrated in Fig. 2.
Similarly, the accelerometer measurement model is
given by:

ãB = aB + ba + ηav (3a)

ḃa = ηau (3b)

Again, ηav, and ηau are zero-mean Gaussian pro-
cesses to simulate measurement noise and ac-
celerometer bias drift, respectively. Their spectral
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Figure 1: Definitions of Various Reference Frames

densities are given by σ2
avI3×3 and σ2

auI3×3, respec-
tively.

Modeling of measurement signals is difficult.
This is because manufacturers give information
about the measurement noise values, but not the
drift rates. Furthermore, measurement signals are
continuous, which are impossible to simulate with
computers. A discrete-time approximation of the
signals is possible with the use of the spectral den-
sities. This is shown in Figure 2, where N

(
0, σ2

)
are zero-mean normal distributions with variance
σ2 [9]. This measurement model is used for both
gyro and accelerometer measurements.

4 Navigational Filtering

The extended Kalman filter for navigation in the
ECEF and NED frames will now be presented. A
derivation of the EKF is available in [2]. The EKF
intialization, update, and propagation are shown
briefly in Table 1. The initialization, gain compu-
tation, and update are the same for both versions.
The equations for the measurement and kinematics
are used for the measurement model and propaga-

tion of the state estimate. These will be shown in
detail. Next, the linearization of these will be pre-
sented. These are the differences between the pa-
rameterization of the filter in the ECEF and NED
frames.

4.1 The ECEF Filter

First, the kinematic equations in the ECEF frame
are given by:

q̇ =
1
2
Ξ(q)ωB

B/E (4a)

ωB
B/E = (ω̃B

B/I − bg − ηv) − AB
E(q)ωE

E/I (4b)

r̈E = −[ωE
E/I×][ωE

E/I×]rE − 2[ωE
E/I×]ṙE

+AE
B(q)aB + gE

(4c)

aB = (ãB − ba − ηav) (4d)

gE =
−μ

‖rE‖3
rE + aE

J2
(rE) (4e)

ḃg = ηgu (4f)
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Table 1: Continuous-Discrete Extended Kalman Filter

Model ẋk+1 = f(x(t),u, (t), t) + G(t)w(t),w(t) ∼ N(0, Q(t))

ỹk = h(x)k + vk,vk ∼ N(0, Rk)

Initialize x̂(t0) = x̂0

P0 = E{x̃0x̃T
0 }

Gain Kk = P−
k HT

k (x̂−
k )[Hk(x̂−

k )P−
k Hk(x̂−

k )T + Rk]−1

Hk(x̂−
k ) ≡ ∂h

∂x

∣∣∣∣
x̂−

k

Update x̂+
k = x̂−

k + Kk[ỹk − h(x̂−
k )]

P+
k = [I − KkHk(x̂−

k )]P−
k

Propagation ˙̂x(t) = f(x̂(t),u(t), t)

Ṗ = F (x̂(t), t)P (t) + P (t)F T (x̂(t), t) + G(t)Q(t)GT (t)

F (x̂(t), t) ≡ ∂f
∂x

∣∣∣∣
x̂(t)

ḃa = ηau (4g)

ḃc = 0 (4h)

The first vector state q is an an attitude quater-
nion which represents the body’s orientation with
respect to the ECEF frame. This is a four-
dimensional representation with nonsingular kine-
matics [2]. Next, the angular velocity between the
two frames is represented by ωB

B/E . Acceleration is
described by r̈E. The ECEF gravity model is pro-
vided in gE , where aE

J2
is the contribution from the

Earth ellipsoidal nature, and is described in [10].

Here bg and ba are the gyro and accelerome-
ter biases described in Eqns. (2) and (3). The GPS
clock bias is represented as bc. Next, the state es-
timate is given by:

˙̂q =
1
2
Ξ(q̂)ω̂B

B/E (5a)

ω̂B
B/E = (ω̃B

B/I − b̂g) − AB
E(q̂)ωE

E/I (5b)

¨̂rE = −[ωE
E/I×][ωE

E/I×]r̂E − 2[ωE
E/I×] ˙̂rE

+AE
B(q̂)âB + ĝE

(5c)

âB = (ãB − b̂a) (5d)

ĝE =
−μ

‖r̂E‖3
r̂E + aE

J2
(r̂E) (5e)

˙̂bg = 0 (5f)

˙̂ba = 0 (5g)

ḃc = 0 (5h)

Here, it is most important to note that the atti-
tude matrix is present in the position equations,
which allows the estimation of attitude with posi-
tion measurements. The GPS measurement model
is provided by Eqn. (1). That is, h (x) = ρ̃. For
the measurement, the following linearization about
the state is obtained:

Hk =
[

01×3 − RE
i −r̂E

k

‖RE
i −r̂E

k ‖ 01×9 1
]

(6)

The state vector, state-error vector, process noise
vector and process noise spectral density matrix are
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given by:

x ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

q
rE

ṙE

bg

ba

bc

⎤
⎥⎥⎥⎥⎥⎥⎦

,Δx ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

δα
ΔrE

ΔṙE

Δbg

Δba

Δbc

⎤
⎥⎥⎥⎥⎥⎥⎦

,w =

⎡
⎢⎢⎣

ηgv

ηgu

ηav

ηau

⎤
⎥⎥⎦

(7a)

Q =

⎡
⎢⎢⎢⎢⎣

σ2
gvI3×3 03×3 03×3 03×3 03×1

03×3 σ2
guI3×3 03×3 03×3 03×1

03×3 03×3 σ2
avI3×3 03×3 03×1

03×3 03×3 03×3 σ2
auI3×3 03×1

01×3 01×3 01×3 01×3 0

⎤
⎥⎥⎥⎥⎦

(7b)

The approximations expressed in the lin-
earized kinematics from [3] with the gyro and ac-
celerometer bias equations from Eqns. (2) and (3)
are used in the linear propagation of the errors rep-
resented as:

Δẋ = FΔx + Gw (8)

where F and G are given by:

F ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

F11 03×3 03×3 F14 03×3 03×1

03×3 03×3 I3×3 03×3 03×3 03×1

F31 F32 F33 03×3 F35 03×1

03×3 03×3 03×3 03×3 03×3 03×1

03×3 03×3 03×3 03×3 03×3 03×1

01×3 01×3 01×3 01×3 01×3 0

⎤
⎥⎥⎥⎥⎥⎥⎦
(9a)

G ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

−I3×3 03×3 03×3 03×3 03×1

03×3 03×3 03×3 03×3 03×1

03×3 03×3 −AE
B(q̂) 03×3 03×1

03×3 I3×3 03×3 03×3 03×1

03×3 03×3 03×3 I3×3 03×1

01×3 01×3 01×3 01×3 1

⎤
⎥⎥⎥⎥⎥⎥⎦
(9b)

where F is populated with:

F11 = −[(ω̂B
B/E + AB

E(q̂)ωE
E/I)×] (10a)

F14 = −I3×3 (10b)

F31 = −AE
B(q̂)[âB×] (10c)

F32 = U(r̂E) − [ωE
E/I×][ωE

E/I×] (10d)

F33 = −2[ωE
E/I×] (10e)

F35 = −AE
B(q̂) (10f)

4.2 The NED Filter

To parameterize the EKF for navigational estima-
tion in the NED frame, we will begin with the truth
equations:

q̇ =
1
2
Ξ (q) ωB

B/N (11a)

λ̇ =
vN

Rλ + h
(11b)

Φ̇ =
vE

(RΦ + h) cos λ
(11c)

ḣ = −vD (11d)

v̇N = −
[

vE

(RΦ + h) cos λ
+ 2ωe

]
vE sinλ

+
vNvD

(Rλ + h)
+ aN

(11e)

v̇E =
[

vE

(RΦ + h) cos λ
+ 2ωe

]
vN sin λ

+
vEvD

RΦ + h
+ 2ωevD cos λ + aE

(11f)

v̇D = − v2
E

RΦ + h
− v2

N

Rλ + h
− 2ωevE cos λ

+g + aD

(11g)

with the following inputs:

ωB
B/N = (ω̃B

B/I − bg − ηgv) − AB
N (q)ωN

N/I (12a)

aB = ãB − ba − ηgv (12b)

Here, the x- and z- coordinates for a point on the
Earth ellipsoid are given by [11]:

Rλ =
a

(
1 − e2

)
(
1 − e2 sin2 λ

)3/2
(13a)

RΦ =
a(

1 − e2 sin2 λ
)1/2

(13b)

The first state derivative is the kinematics of the
quaternion representing the attitude between the
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NED and body frames. The angular rate given
here is ωB

B/N , which describes rotation between the
NED and body frames in body coordinates. Next
come the position in the form of geographic lati-
tude, longitude, and height: p =

[
λ Φ h

]T .
The accelerations are those along the axes of the
NED frame.

In the NED frame, the gravity model is given
by:

g = A
(
1 + B sin2 λ − C sin2 2λ

)
− (

D − E sin2 λ
)
h + Fh2

(14)

where the coefficients are given in Table 2.

The estimated states are given by:

˙̂q =
1
2
Ξ (q̂) ω̂B

B/N (15a)

˙̂
λ =

v̂N

Rλ + ĥ
(15b)

˙̂Φ =
v̂E(

RΦ + ĥ
)

cos λ̂
(15c)

˙̂
h = −v̂D (15d)

˙̂vN = −
⎡
⎣ v̂E(

RΦ + ĥ
)

cos λ̂
+ 2ωe

⎤
⎦ v̂E sin λ̂

+
v̂N v̂D(
Rλ + ĥ

) + âN

(15e)

˙̂vE =

⎡
⎣ v̂E(

RΦ + ĥ
)

cos λ̂
+ 2ωe

⎤
⎦ v̂N sin λ̂

+
v̂E v̂D

RΦ + ĥ
+ 2ωev̂D cos λ̂ + âE

(15f)

˙̂vD = − v̂2
E

RΦ + ĥ
− v̂2

N

Rλ + ĥ
− 2ωev̂E cos λ̂

+ĝ + âD

(15g)

âN =

⎡
⎣ âN

âE

âD

⎤
⎦ = AN

B (q̂)âB (15h)

âB = ãB − b̂a (15i)
˙̂bg = 0 (15j)
˙̂ba = 0 (15k)
˙̂
bc = 0 (15l)

The measurement update is provided by
Eq. (1), making it linearization with respect to the
state:

Hk =
[

01×3 − RE
i −r̂E

k

‖RE
i −r̂E

k ‖
∂rE

∂p 01×9 1
]

(16)

Next, the state vector, error vector, process
noise vector and process noise spectral density ma-
trix are given by:

x ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

q
p
vN

bg

ba

bc

⎤
⎥⎥⎥⎥⎥⎥⎦

,Δx ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

δα
Δp

ΔvN

Δbg

Δba

Δbc

⎤
⎥⎥⎥⎥⎥⎥⎦

,w =

⎡
⎢⎢⎣

ηgv

ηgu

ηav

ηau

⎤
⎥⎥⎦

(17a)
and:

Q =

⎡
⎢⎢⎢⎢⎣

σ2
gvI3×3 03×3 03×3 03×3 03×1

03×3 σ2
guI3×3 03×3 03×3 03×1

03×3 03×3 σ2
avI3×3 03×3 03×1

03×3 03×3 03×3 σ2
auI3×3 03×1

01×3 01×3 01×3 01×3 0

⎤
⎥⎥⎥⎥⎦

(17b)

For the NED equations F and G are given
by:

F ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

F11 F12 F13 F14 03×3 03×1

03×3 F22 F23 03×3 03×3 03×1

F31 F32 F33 03×3 F35 03×1

03×3 03×3 03×3 03×3 03×3 03×1

03×3 03×3 03×3 03×3 03×3 03×1

01×3 01×3 01×3 01×3 01×3 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(18a)
and

G ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

−I3×3 03×3 03×3 03×3 03×1

03×3 03×3 03×3 03×3 03×1

03×3 03×3 −AN
B (q̂) 03×3 03×1

03×3 I3×3 03×3 03×3 03×1

03×3 03×3 03×3 I3×3 03×1

01×3 01×3 01×3 01×3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(18b)
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where F is populated with:

F11 = −
[
(ω̃B

B/I − b̂g)×
]

(19a)

F12 = −AB
N (q̂)

∂ωN
N/I

∂p

∣∣∣∣
p̂,v̂N

(19b)

F13 = −AB
N (q̂)

∂ωN
N/I

∂vN

∣∣∣∣
p̂

(19c)

F14 = −I3×3 (19d)

F22 =
∂ṗ
∂p

∣∣∣∣
p̂,v̂N

(19e)

F23 =
∂ṗ

∂vN

∣∣∣∣
p̂

(19f)

F31 = −AN
B (q̂)[âB×] (19g)

F32 =
∂v̇N

∂p

∣∣∣∣
p̂,v̂N

(19h)

F33 =
∂v̇N

∂vN

∣∣∣∣
p̂,v̂N

(19i)

F35 = −AN
B (q̂) (19j)

The following derivatives are shown now to
lessen the apparent complexity of the following par-
tials:

∂RΦ

∂λ
=

ae2 sin λ cos λ

(1 − e2 sin2 λ)3/2
(20a)

∂Rλ

∂λ
=

3a(1 − e2)e2 sin λ cos λ

(1 − e2 sin2 λ)5/2
(20b)

where the partials are defined as:

∂ṗ
∂p

=

⎡
⎢⎣

− vN
(Rλ+h)2

∂Rλ
∂λ 0 − vN

(Rλ+h)2

− vE sec λ
(RΦ+h)2

∂RΦ
∂λ + vE sec λ tan λ

RΦ+h 0 − vE sec λ
(RΦ+h)2

0 0 0

⎤
⎥⎦

(21)

∂ṗ
∂vN

=

⎡
⎣

1
Rλ+h 0 0

0 sec λ
RΦ+h 0

0 0 −1

⎤
⎦ (22)

∂v̇N

∂p
=

⎡
⎣ Y11 0 Y12

Y21 0 Y23

Y31 0 Y33

⎤
⎦ (23)

NED Gravity Model Coefficients
Coefficient Value

A 9.780327
B 5.3024 × 10−3

C 5.8 × 10−6

D 3.0877 × 10−6

E 4.4 × 10−9

F 7.2 × 10−14

Table 2: NED Gravity Model Coefficients

which is populated with:

Y11 = −v2
E sec2 λ

RΦ + h
+

v2
E tan λ

(RΦ + h)2
∂RΦ

∂λ

−2ωevE cos λ − vNvD

(Rλ + h)2
∂Rλ

∂λ

(24a)

Y13 =
v2
E tan λ

(RΦ + h)2
− vNvD

(Rλ + h)2
(24b)

Y21 =
vEvN sec2 λ

RΦ + h
− vEvN tan λ

(RΦ + h)2
∂RΦ

∂λ

+2ωevN cos λ − vEvD

(RΦ + h)2
∂RΦ

∂λ

−2ωevD sin λ

(24c)

Y23 = −vE

[
vN tan λ + vD

(RΦ + h)2

]
(24d)

Y31 =
v2
E

(RΦ + h)2
∂RΦ

∂λ
+

v2
N

(Rλ + h)2
∂Rλ

∂λ

+2ωevE sin λ +
∂g

∂λ
(24e)

Y33 =
v2
E

(RΦ + h)2
+

v2
N

(Rλ + h)2
+

∂g

∂h
(24f)

This requires the partials of the gravity
model given in Eqn. (14) with respect to latitude
and height:

∂g

∂λ
= A(2B sin λ cos λ − 4C sin 2λ cos 2λ)

+(2E sin λ cos λ)h
(25a)
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∂g

∂h
= −D + E sin2 λ + 2F (25b)

The final Jacobian is the derivative of the time rate
of change of velocity with respect to velocity, which
is given by:

∂v̇N

∂vN
=

⎡
⎣ Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 0

⎤
⎦ (26)

and is populated with:

Z11 =
vD

Rλ + h
(27a)

Z12 = −2vE tan λ

RΦ + h
+ 2ωe sin λ (27b)

Z13 =
vN

Rλ + h
(27c)

Z21 =
vE tan λ

RΦ + h
+ 2ωe sin λ (27d)

Z22 =
vD + vN tan λ

RΦ + h
(27e)

Z23 =
vE

RΦ + h
+ 2ωe cos λ (27f)

Z31 = − 2vN

Rλ + h
(27g)

Z32 = − 2vE

RΦ + h
− 2ωe cos λ (27h)

5 Results

5.1 Filter Error Results

To simulate GPS/INS navigation, one must prop-
agate GPS satellite positions, and the position of
the navigating vehicle near a rotating Earth model.
From this, position measurements from GPS satel-
lites and rate measurements from an IMU can be
simulated.

GPS satellite positions were determined
through the propagation of Newton’s equation.
Initial conditions were computed from ephemeris
obtained from the YUMA Almanac provided by
the U.S. Coast Guard Navigation Center website:
http://www.navcenter.org/gps/almanacs.htm.
GPS position measurements were simulated using
Eqn. (1)

Nonlinear least squares was used to estimate
the initial position and clock bias for the initial con-
dition of the EKF. It typically computes position
and clock bias to within 5 m. The true clock bias
was set to 100 000 m. Both filters were provided
with the same initial position, which is the approx-
imate location of Buffalo, New York:

p =

⎡
⎣ 42◦

−78◦

10 m

⎤
⎦ (28)

where the negative sign for the longitude denotes a
position west of the Prime Meridian.

The trajectory provided was chosen for
a high degree of observability [12]. The
attitude rates were simulated as: ωB

B/I =[
1200 1200 1200

]T , and the acclerations were:

aN =

⎡
⎣ 10 cos(0.1t)

−20.5 sin(0.05t)
31 sin(0.1t)

⎤
⎦ (29)

The accelerations were generated with re-
spect to time, and the respective rotational acceler-
ations mapped in both the ECEF and NED frames
were added to them to generate measurements. For
the ECEF frame, this is:

ãB = AB
E(q)[[ωE

E/I×][ωE
E/I×]rE + 2[ωE

E/I×]ṙE

−gE + AE
NaN ] + ba

(30)

and for the NED frame it is:

ãB = AB
N (q)

[
aN +

⎡
⎣ aN

aE

aD

⎤
⎦]

+ ba (31)

where the noise is incorporated into the bias model
ba of Eqn. (3), and the NED accelerations due
to position and velocity on the Earth ellipsoid.
These were integrated with a fourth-order Runge-
Kutta algorithm [13]. The initial velocities for
both filters were set to ṙE = [ 0 0 0 ]T and
vN = [ 0 0 0 ]T .

Gyros and accelerometers for both filters
were simulated using the same model, with the fol-
lowing truth parameters:

bg = 5◦/hour (32a)
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ηgv = N(0, σ2
gv) (32b)

ηgu = N(0, σ2
gu) (32c)

ba = 0.05 m/s2 (32d)

ηau = N(0, σ2
au) (32e)

ηav = N(0, σ2
av) (32f)

here, the spectral densities of the zero-mean Gaus-
sian processes are given as:

σgv = 1 × 10−7rad/sec3/2 (33a)

σgu = 1 × 10−7rad/sec1/2 (33b)

σav = 1 × 10−5m/sec5/2 (33c)

σau = 1 × 10−5m/sec3/2 (33d)

The values of Eqn. (33) are used to populate the
process noise covariance matrix Q given in Eqn. (7).
The process noise of the clock bias, bc, is zero.
This is because bc has been observed to change very
slowly [1]. The non-zero elements represent the dy-
namics of the biases in the instruments they model.
Initial values for gyro and accelerometer biases were
set to bg = [ 0 0 0 ]T and ba = [ 0 0 0 ]T , re-
spectively.

Realistic simulations of GPS/INS data fusion
would simulate GPS data sampled at 1 to 4 Hz and
INS data sampled at 25 to 100 Hz. Doing so results
only in adding realism to the simulation, and does
not allow the investigator more insight into the per-
formance of estimation routines in this study. Since
this is true, both GPS and INS data were sampled
at 10 Hz for computational efficiency. The language
used to program this work is MATLAB.

Values for the initial covariance were chosen
based upon realistic accuracy of initial measure-
ments. The initial attitude covariance was chosen
to be 50◦. The initial position covariance was set
to 25 meters. The velocity elements of the initial
covariance were chosen to be 100 meters per sec-
ond. The gyro bias was chosen as 10 degrees per
hour. The accelerometer bias initial covariance was
chosen to be 1 m/s2. Finally, the initial covariance
for the clock bias was chosen as 10 meters.

Figures 3 through 13 show the estimation er-
rors and 3σ bounds for the states of the NED and
ECEF filters. When comparing these plots, the
reader should observe convergence time and the 3σ
bounds. Data were simulated to 3600 s, but were

only plotted to 500 s to enhance detail. Table 5.1
presents a comparison of the mean values of the 3σ
bounds for both filters. For this table, the mean
value of the 3σ bounds were taken for the time
span of t = 250s until t = 3600s.

The magnitudes of the 3σ outliers indicate
the uncertainty in the estimate [2], [14]. At any
point in time, the ±3σ outliers span 6 standard de-
viations between which the estimate error should
be centered. This is because a 3σ span encom-
passes 99.97% of a population centered on the
mean. These are computed from the error covari-
ance matrix P :

P =

⎡
⎢⎢⎢⎣

σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

n

⎤
⎥⎥⎥⎦ =

[
x̃x̃T

]
(34)

Here, the error covariance is represented as a di-
agonal matrix, which is indicative of the absence
of cross-correlation of errors between states. The
value of the ith state’s 3σ outlier is given by 3σk,i =
3(x̃k,ix̃k,i)1/2. Errors and covariance are presented
in the same reference frame using the transforma-
tions detailed in [3]. This was done to equate the
reference in which the comparison is taken. Ini-
tial values for P were chosen based on accuracy of
initial measurements.

5.2 Nonlinearity Test Results

The following section presents the results of a
Kolmogorov-Smirnov (KS) test performed on the
estimation errors. This test, through analysis of
the probability-density function (PDF) of the error
signal, describes how Gaussian an error signal [15]
is, and is used in many estimation applicaitons [16].
In the case of this work, the KS test is useful for
gauging how well the linearization of the kinemat-
ics preserves the true motion. For the case of this
study, the KS test should provide insight into which
of the ECEF or NED parameterizations of the nav-
igation model best preserve Gaussian error signals
through linear approximations of the dynamics.

The KS test is a comparison of the distribu-
tion of a data set to that of a Gaussian Probability
Density Function (PDF), which is described by the
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Mean 3σ Bound Values
State Error ECEF NED More Accurate

Attitude (deg) 3.7053 × 10−2 6.3876×10−2 ECEF
3.7398×10−2 6.4917×10−2 ECEF
3.7292×10−2 6.4966×10−2 ECEF

Position (m) 1.3807 2.4355 ECEF
1.3183 2.5380 ECEF
1.6664 2.6705 ECEF

Velocity (m/s) 1.4499×10−1 2.6025×10−1 ECEF
1.6408×10−1 2.9702×10−1 ECEF
1.8691×10−1 3.1711×10−1 ECEF

Gyro Bias (deg/hr) 4.3341 4.3364 ECEF
4.3480 4.3250 NED
4.3467 4.3193 NED

Accelerometer Bias (m/s2) 2.8187×10−3 2.7831×10−3 NED
2.7908×10−3 2.8045×10−3 ECEF
2.7842×10−3 2.8074×10−3 ECEF

Clock Bias (m) 1.9988×10−1 1.9874×10−1 NED

Table 3: Mean 3σ bound values.

curve [1]:

fg(x) =
1√

2πσ2
exp

−(x − μ)2

2σ2
(35)

where the mean and standard deviation are repre-
sented by μ and σ, respectively. The integral of
this curve is known as the cumulative distribution
function (CDF). Next, the greatest difference be-
tween the Gaussian CDF and the CDF of the error
signal is defined as:

D = max ‖Fdata(y) − FN (y)‖ (36)

The greater the value of D, the larger the difference
between a Gaussian CDF and the one calculated
from the signal being analyzed. In other words,
the value of D indicates the degree of nonlinearity
of a given signal through an extended Filter

The KS-test was performed on filter error sig-
nals during the convergence interval from 50s to
250s. The results of this are shown in Table 5.2.
The ECEF has a lower KS-test D value in more
instances than that of the NED filter, indicating
that the ECEF filter might converge faster than the
NED filter since it reaches a Gaussian error signal
in less time.

The KS test was also run for error data after
convergence, but it was found that both filter error

signals yielded similar KS values. For this reason,
those results are not shown here, but can be found
in the author’s thesis, [17].
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KS Test D Values During the Convergence Interval
State Error ECEF NED More Gaussian
Attitude 0.0932 0.2529 ECEF

0.1047 0.1638 ECEF
0.1260 0.1665 ECEF

Position 0.0828 0.0582 NED
0.0567 0.0538 NED
0.0252 0.0475 ECEF

Velocity 0.0518 0.1121 ECEF
0.1429 0.0673 NED
0.0762 0.0323 NED

Gyro Bias 0.2218 0.3246 ECEF
0.0992 0.2038 ECEF
0.0696 0.2406 ECEF

Accelerometer Bias 0.5749 0.5517 NED
0.4235 0.5780 ECEF
0.3045 0.4783 ECEF

Clock Bias 0.1141 0.1580 ECEF

Table 4: KS Test D Values for the ECEF and NED error signals before the filters converged. The error
signals of the ECEF filter are more Gaussian for 11 of 16 error states.

0 100 200 300 400 500
−0.1

−0.05

0

0.05

0.1

0 100 200 300 400 500
−0.1

−0.05

0

0.05

0.1

0 100 200 300 400 500
−0.1

−0.05

0

0.05

0.1

ECEF Attitude Errors

R
ol

l
(d

eg
)

P
it
ch

(d
eg

)
Y
aw

(d
eg

)

Time (s)

Figure 3: ECEF Attitude Errors and 3σ outliers
with a realistic initial condition.

6 Discussion

Analysis of the filter errors and covariance pre-
sented in the previous section indicate that the
ECEF filter performs with higher accuracy. This
is supported by the fact that the ECEF converges
to smaller 3σ values for the attitude, position, and
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Figure 4: NED Attitude Errors and 3σ outliers
with a realistic initial condition. The NED attitude
errors have been represented in ECEF coordinates.

velocity states. Both filters, however perform with
the same level of accuracy for the bias states.

The ECEF parameterization provided atti-
tude estimates with roughly 4 × 10−2 degree 3σ-
confidence intervals, while the NED provides the
same with 6× 10−2 degree 3σ confidence intervals.

11



0 100 200 300 400 500
−5

0

5

0 100 200 300 400 500
−5

0

5

0 100 200 300 400 500
−5

0

5

ECEF Position Errors
x

(m
)

y
(m

)
z

(m
)

Time (s)

Figure 5: ECEF Position Errors and 3σ outliers
with a realistic initial condition.
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Figure 6: NED position errors and 3σ outliers with
a realistic initial condition. The NED position er-
rors have been represented in ECEF coordinates.

The ECEF solution produced position estimates
with 1.5-meter 3σ confidence, while the NED pa-
rameterization gave the same 2.5-meter accuracy.
Finally, the velocities were estimated to 0.15-m/s
accuracy by the ECEF filter, and to 0.3-m/s accu-
racy by the NED filter. Both of these are accept-
able for many applications of navigational filtering.

The final three bias states were estimated to
the same degree of accuracy by both filters. That
is, to 4.3 degrees per hour for the gyro bias, to
2.8 × 10−3 m/s2 for the accelerometer bias, and to
0.2 m for the GPS clock bias. In this case, both the
NED and ECEF solutions provide the same level of
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Figure 7: ECEF Velocity Errors and 3σ outliers
with a realistic initial condition.
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Figure 8: NED velocity errors and 3σ outliers with
a realistic initial condition. The NED velocity er-
rors have been represented in ECEF coordinates.

accuracy, and are equally suited for the task of IMU
bias estimation.

An explanation for the higher accuracy of the
ECEF filter may lie in Figure 14. Here, the recip-
rocal of the condition number of the observability
matrix is presented for a 10-second time span of
the simulation for both filters. The observability
matrix for a given system must be full rank if the
system is fully observable [18]. The condition num-
ber is the ratio of the largest singular value to the
smallest singular value of this matrix. The larger
the condition number, the more ill-conditioned the
observability matrix.
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Figure 9: ECEF gyro bias errors and 3σ outliers
with a realistic initial condition.
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Figure 10: NED gyro bias errors and 3σ outliers
with a realistic initial condition.

In Figure 14, the reciprocal of this ratio is
presented on a log scale. The small orders of mag-
nitude indicate that the observability matricies of
both filters are nearly singular. This means that
both systems are nearly unobservable, which illus-
trates the power of the EKF in estimating otherwise
unknown system states.

Also apparent in Figure 14 is that the order
of magnitude of the inverse condition number of
the ECEF filter is greater than that of the NED
filter by several orders of magnitude. This means
that the observability matrix for the ECEF filter
is conditioned much better than that of the NED
filter. Since this test indicates how observable a
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Figure 11: ECEF accelerometer bias errors and 3σ
outliers with a realistic initial condition.
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Figure 12: NED accelerometer bias errors and 3σ
outliers with a realistic initial condition.

system is, this large difference in condition num-
ber may suggest why the ECEF filter yields higher
accuracy.

When considering the results of the KS test,
one finds that the ECEF filter performed better.
Since KS values are an indicator of how Gaus-
sian a given signal is, the KS test results suggest
the ECEF filter’s linearization better preserves the
nonlinear kinematics because it reaches a Gaussian
signal faster than the NED filter. After conver-
gence, it was found that both filters yielded similar
KS test values which were low enough to suggest
that both filters produced nearly Gaussian error
signals. This only supports the previous claim that
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3σ outliers with a realistic initial condition.
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both versions of the filter are suitable for naviga-
tion.

The computational differences of the ECEF
and NED routines may provide the programmer
with some motivation to choose one over the other.
One who wishes to navigate in traditional naviga-
tional coordinates might choose the NED param-
eterization since attitude, position, and velocity
will be provided in a local frame. On the other
hand, when computational resources are limited,
the ECEF filter provides a much simpler parame-
terization which was found to be 18% faster in this
work. The NED dynamics are much more complex
than the ECEF equations. This results in a signifi-
cantly larger computational memory burden. From
the perspective of feasibility, therefore, one might
be required to use the ECEF parameterization.

7 Conclusions

A designer may chose one navigational estimation
routine over another for a variety of reasons. In
the case of GPS/INS filtering, the EKF was tested
in the ECEF and NED frames. Both filters were
shown to converge well and yield accurate estimates
of INS errors. The NED frame produces data which
are readily interpreted in navigation: latitude, lon-
gitude, height, and local velocities. The kinematic
equations which give this ease of interpretation,
however, come with the price of a significantly more
complicated computer code and lesser navigational
accuracy than the ECEF parameterization. The
ECEF frame has been shown to yield higher naviga-
tional accuracy, converge faster, and be less compu-
tationally burdensome than the NED filter. Even
in light of these differences, the decision on whether
to use ECEF or NED equations will ultimately de-
pend on the designer and application requirements
since both filters are adequately suited for naviga-
tion.
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