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Abstract—This paper is mainly motivated by three reasons: 
(1) future missions which will necessitate  the employment 
of low cost and low grade Micro-Electro-Mechanical 
Systems (MEMS) sensors (e.g., MEMS gyros or compact 
star trackers) while still demanding a high precision attitude 
estimation, (2) development of a real-time noise statistics 
estimation capability in order to extend/enhance the 
performance of a traditional Kalman estimator whose 
performance is mainly dictated by the knowledge accuracy 
of its process noise and measurement noise covariance 
matrices, and (3) performance enhancement of a traditional 
6 state Extended Kalman Filter (EKF) whose performance is 
drastically affected and compromised due to its inability to 
account for scale factor (SF) errors and misalignment errors.  
Three specific design areas to be investigated in this paper 
include: (1) the design and implementation of an attitude 
determination system (ADS) using a Multiple Model 
Adaptive Estimation (MMAE) scheme wherein the mixing 
of various EKF models reflecting various state dimensions 
is employed to accommodate for SF errors and 
misalignment errors at high rate operating conditions, (2) 
real-time gyro noise statistics (rate random walk, angular 
random walk, and SF errors) estimation via an additional 
MMAE scheme implemented in parallel to provide process 
noise update to the ADS individual EKF, and (3) the 
applicability of MMAE scheme to multi-sensor data fusion 
for an effective measurement update.  The feasibility of the 
proposed concept and its performance improvement as 
compared to a traditional approach are evaluated via 
simulation.1 2  
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1.0 INTRODUCTION 
The attitude determination systems (ADS) of the majority of 
earth observation missions (e.g., EO-1 or GOES N-Q) 
traditionally employ a six state ADS Kalman filter (e.g., see 
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Lefferts, et al [1]) which calibrates the gyro bias error and 
star tracker attitude error by fusing both star tracker and 
gyro data in a “bootstrap” fashion to determine the 
spacecraft attitude.  An ADS filter with a higher dimension 
state vector is simply not needed for these types of missions 
because of its low orbit rate, less stringent attitude 
knowledge requirements, and high quality ADS sensors 
(i.e., gyros and star trackers selected for these missions are 
high grade components). As a result, onboard ADS Kalman 
filters, with a larger dimension state vector applied to the 
spacecraft attitude determination system, have been rarely 
observed.  Large state dimension ADS filters are normally 
applied to ground-based software systems for telemetry data 
processing to fully examine the on-orbit sensor 
performance. 
 
Stringent attitude knowledge requirements together with 
spacecraft agility performance specifications demanded by 
present and future missions have altered such a design 
tradition and presented a greater design challenge to ADS 
designers. These include (i) how to separate scale factor 
errors stability from bias drift stability under high rate 
operating conditions; (ii) how to achieve precision 
estimation and accurate tracking of these two parameters 
when they are strongly correlated at high rate condition; (iii) 
should a multiple filtering architecture be implemented in a 
scheduling scheme to address mode variations by having 
each individual filter turned on based on real-time dynamic 
mode dependency or should a mix of all filters be employed 
simultaneously; (iv) what are the design options that ADS 
designers can use to produce adequate ADS systems 
meeting stringent performance requirements at milli-arcsec 
or even micro-arcsec levels while state-of-the art sensing 
devices such as advanced star trackers only offer a noise 
equivalent angle (NEA) of 3 arcsec, etc.  This paper is 
intended to address the aforementioned design challenges.  
Three specific design objectives to be investigated in this 
paper include: (1) the design and implementation of 
multiple EKF models mixing to address the spill-over effect 
of scale factor error stability to gyro bias stability subject to 
multiple high rate operating conditions, (2) real-time gyro 
noise estimation for EKF process noise update, and (3) 
applicability of this hybrid ADS multi-mode situation using 
a multiple model adaptive attitude estimation (MMAAE) 
scheme to multiple sensors fusion.  
 
The proposed MMAAE architecture offers two key 
adaptation design features: (1) variable process noise 
computation via MMAE scheme implemented in the outer 
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loop and (2) variable weighted summation of the attitude 
correction to effectively produce optimal correction in the 
Bayesian fusion sense.  Missions with large operational 
rates will benefit from the first feature while the second 
feature will primarily offer a great solution to any mission 
that deploys multiple star trackers or precision guidance 
sensors to meet the extreme precision attitude estimation 
requirements.  
 
The proposed MMAAE for future ADS applications is also 
suitable for a parallel implementation in the event of 
multiple star tracker updates, thus improving the ADS 
performance far more than the traditional sequential ADS 
implementation architecture. In addition, the proposed 
MMAE ADS scheme may potentially be capable of 
addressing future demands to fulfill missions that require 
low-cost low grade gyro products such as fiber optic gyros 
or Micro-Electro-Mechanical Systems (MEMS) chip based 
gyros. The ability to calibrate gyro scale factor errors and 
address its stability subject to thermal or rate variations, 
especially for the asymmetric components, is clearly critical 
to the possible deployment of these MEMS gyros for future 
space missions. 
  

2.0 PROBLEM STATEMENT AND 
RESEARCH MOTIVATION 

A traditional 6-state attitude determination filter contains 
three attitude error and three gyro bias error states, which is 
robust during low rate operation but cannot correct for gyro 
scale factor and misalignment error effects during high rate 
operation. Under such operating conditions, gyro scale 
factor and misalignment errors strongly degrade the 6-state 
filter performance.  We use a multi rate profile consisting of 
various rate magnitudes nominally required during imaging 
mode to illustrate the existence of a multi-mode operating 
condition for which a single filter based ADS 
implementation scheme can not provide adequate attitude 
knowledge performance.  We present the story of this high 
rate operation impact to the traditional 6 state EKF 
performance, with and without scale factor (SF) error 
effects, to show that a higher EKF state dimension vector is 
definitely needed to restore or maintain a precision attitude 
estimation capability. 
 
Figures 1 and 2 present the simulation results of a 6 state 
EKF performance at high rate with the SF errors being 
turned off or unaccounted for in the gyro model.  This case 
shows that naïve simulation and analysis predict 
“deceptively” good performance for a 6 state EKF under 
high rate operating conditions.  Figures 3 and 4 present the 
performance of the 6 state EKF under the same rate profile 
when we add SF errors to our own gyro model.  The impact 
of SF errors due to high rate operating condition clearly 
shows in the gyro bias error estimate due to the mixing of 
SF errors spilled into the bias error, and thus degrading the 
attitude error estimation accuracy. 
 
The performance impact (loss of precision attitude 
estimation accuracy shown in Figures 3 and 4) at high rate 

operating condition to the 6 state EKF due to the SF error 
effect, and of course the misalignment errors clearly justifies 
for the need of a higher dimension EKF to estimate the 
gyro’s other error sources and compensate for them at the 
gyro measurement correction.  This leads to the 
development of a 15 state EKF which is described in the 
subsequent section. 
 

3.0 DEVELOPMENT OF A 15 STATE 
EXTENDED KALMAN FILTER (EKF) 

3.1 QUATERNION PARAMETERIZATION 
AND GYRO MODEL 

For spacecraft attitude estimation, the quaternion has been 
the most widely used attitude parameterization [1].  The 
quaternion is given by a four-dimensional vector, defined as 
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with ( )13 1 2 3 sin / 2Tq q q ϑ≡ =⎡ ⎤⎣ ⎦q d  and 

( )4 cos / 2q ϑ= , where d  is the unit Euler axis and ϑ  is the 
rotation angle.  Because a four-dimensional vector is used to 
describe three dimensions, the quaternion components 
cannot be independent of each other.  The quaternion 
satisfies a single constraint given by 1T =q q .  The attitude 
matrix is related to the quaternion by  
 
( ) ( ) ( )TA = Ξ Ψq q q  (2) 

 
with 
 

( ) 4 3 3 13

13
T

q I ×⎡ ⎤+ ×⎡ ⎤⎣ ⎦Ξ ≡ ⎢ ⎥
−⎢ ⎥⎣ ⎦

q
q

q
 (3a) 

 

( ) 4 3 3 13

13
T

q I ×⎡ ⎤− ×⎡ ⎤⎣ ⎦Ψ ≡ ⎢ ⎥
−⎢ ⎥⎣ ⎦

q
q

q
 (3b) 

 
where 3 3I ×  is a 3 3×  identity matrix and 13 ×⎡ ⎤⎣ ⎦q  is the 
cross product matrix, defined by 
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For small angles the vector part of the quaternion is 
approximately equal to half angles [2]. 

The quaternion kinematics equation is given by 
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2

= Ξq q ω�  (5) 
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Figure 1: Attitude Estimation Accuracy, 1sig=[2.8   2.9  3.0] arcsecs – (At high rate condition with low fidelity gyro 
model, attitude estimation performance accuracy looks deceptively good!) 
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Figure 2: Gyro Bias Estimate (No SF Modeling in Gyro Model) 
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Figure 3: Attitude Estimation Accuracy, 1sig=[8.4   8.9  10.0] arcsecs – (With the Scale Factor (SF) & Mis-Alignment 
(MA) errors Accounted in Gyro Model, resulting in a loss of ~ [5.2  6.0 7.0] arcsec accuracy in three axes) 
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Figure 4: Gyro Bias Estimate Subject to SF Error Modeling (With SF Error turned on, it now affects the gyro bias 
estimate accuracy in the roll and pitch axes!) 

where ω  is the three-component angular rate vector.  A 
major advantage of using the quaternion is that the 
kinematics equation is linear in the quaternion and is also 

free of singularities.  Another advantage of the quaternion is 
that successive rotations can be accomplished using 
quaternion multiplication.  Here the convention of [2] is 
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adopted, where the quaternions are multiplied in the same 
order as the attitude matrix multiplication, in contrast to the 
usual convention established by Hamilton.  A successive 
rotation is written using ( ) ( ) ( )' 'A A A= ⊗q q q q .  The 
composition of the quaternions is bilinear, with 
 

( ) ( )' ' ' '⎡ ⎤ ⎡ ⎤⊗ = Ψ = Ξ⎣ ⎦ ⎣ ⎦q q q q q q q q  (6) 
 
Also, the inverse quaternion is given by 

1
13 4

TT q− ⎡ ⎤≡ −⎣ ⎦q q , with ( ) ( )1 TA A− =q q .  Note that 

[ ]1 0 0 0 1 T−⊗ =q q , which is the identity quaternion. 
 

A common sensor that measures the angular rate is a 
rate integrating gyro. For this sensor, a widely used three-
axis continuous-time model is given by 
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where ω�  is the measured rate, b  is the drift, S  is a matrix 
of scale factors s  and misalignments Uk  and Lk  , and vη  
(i.e., angular random walk, ARW), uη  (i.e., rate random 
walk, RRW) and sη , Uη  and Lη  are independent zero-
mean Gaussian white-noise processes with 
 

( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ){ } ( )

2
3 3

2
3 3

2
3 3

2
3 3

2
3 3

T
v v v

T
u u u

T
s s s

T
U U U

T
L L L

E t t I

E t t I

E t t I

E t t I

E t t I

τ σ δ τ

τ σ δ τ

τ σ δ τ

τ σ δ τ

τ σ δ τ

×

×

×

×

×

= −

= −

= −

= −

= −

η η

η η

η η

η η

η η

 (8) 

 
where E{ } denotes expectation and ( )tδ τ−  is the Dirac-
delta function.  A discrete-time version of Eq. (7) is given in 
[3]. 
3.2 KALMAN FILTERING FOR ATTITUDE 

ESTIMATION 
 
This section provides a review of the equations involved for 
spacecraft attitude estimation using the Kalman filter.  The 
measurements are assumed to be given for a star tracker 

determined Kalman filter.  To within first-order the 
quaternion measurements can be modeled by 
 

( )1
2

= + Ξq q q v�  (9) 

 
where q�  is the measurement quaternion and v  is a zero-
mean Gaussian process with covariance R .  Note that v  is 
not a stationary process and R  is determined from the 
attitude error-covariance of the attitude determination 
process [4].  Also, to within first-order the quaternion 
normalization constraint is maintained with this 
measurement model.  A summary of the extended Kalman 
filter (EKF) for attitude estimation, including gyro drifts and 
scale factors, is shown in Table 1.  All symbols and 
characters with a hat over them signify estimates.  The 
variables kP+  and kP−  denote the updated and propagated 
error-covariance at time kt , respectively; kK  is the Kalman 
gain;  the first three components of ˆ∆x , denoted by ˆδα , are 
the small-attitude error estimates, and the vector ŝ  denotes 
the diagonal elements of the estimate scale factor matrix, Ŝ .  
Note that the propagated values for the gyro drift and scale 
factors are given by their previous time values.   
 

We now derive the ( )F t  and ( )G t  matrices.  Here it is 

assumed that ( ) ( )1
3 3 3 3I S I S−
× ×+ ≈ − , which is valid for 

small S .  A multiplicative error quaternion is used to derive 
the attitude errors: 
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where δα  is the vector of small attitude (roll, pitch and 
yaw) attitude errors.  The error-kinematics follow [1] 
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Then δω  is given by 
 

( )( )
( )3 3

ˆ ˆˆ ˆ

ˆ
v

S S S S

I S S×

= −∆ − ∆ + ∆ + ∆ + −

− − − ∆

δω ω b b b b

η

�
 (13) 

 
where ˆS S S∆ ≡ −  and ˆ∆ ≡ −b b b .  Ignoring second-order 
terms leads to 
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TABLE 1:  EKF FOR ATTITUDE ESTIMATION 
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where diag denotes a diagonal matrix, ∆s  is a vector of the 
diagonal elements of S∆ , and U∆k  and L∆k  correspond 

to the upper and lower off-diagonal elements of S∆ .  
Hence, the matrices ( )F t , ( )G t  and ( )Q t  are given by 
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A discrete-time propagation of the quaternion and error-
covariance is possible (see [5] for details).  The discrete-
time covariance propagation is given by 
 

T
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where kΦ  and kQ  are discrete-time state transition and 
process-noise covariance matrices, respectively.  For small 
sampling intervals the discrete process noise matrix is well 
approximated by (also see [8]) 
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where t∆  is the sampling interval and ( )ˆ kΩ ω  is a diagonal 
matrix made up of the elements of the estimate rate. 
 

4.0 MULTIPLE-MODEL ADAPTIVE 
ESTIMATION 

4.1 MMAE FORMULATION 
In this section a review of MMAE is shown. More details 
can be found in [6].  Multiple-model adaptive estimation is a 
recursive estimator that uses a bank of filters that depend on 
some unknown parameters.  In our case these parameters are 
the process noise covariance, denoted by the vector p , 
which is assumed to be constant (at least throughout the 
interval of adaptation).  Note that we do not necessarily 
need to make the stationary assumption for the state and/or 
output processes though, i.e. time varying state and output 
matrices can be used.  A set of distributed elements is 
generated from some known probability density function 

(pdf) of p , denoted by ( )p p , to give ( ){ }; 1, , M=p A A … .  

The goal of the estimation process is to determine the 

conditional pdf of the A th element of ( )p A  given the current-
time measurement ky� .  Application of Bayes rule yields 
 

( )( )
( )( ) ( )( )
( )( ) ( )( )

1

|
|

|

k
k M

j j
k

j

p p
p

p p
=

=

∑

Y p p
p Y

Y p p

A A
A

�
�

�
 (18) 

 
where kY�  denotes the sequence { }0 1, , , ky y y� � �… .  The a 
posteriori probabilities can be computed through 
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( )( )
( )( )

( )
( )( ) ( )( )
( )( ) ( )( )

1

1

1

1
1

, |
|

|

ˆ| |

ˆ| |

k k
k

k k

k k k

M
j j

k k k
j

p
p

p

p p

p p

−

−

−
−

−
−

=

=

=

∑

y p Y
p Y

y Y

y x p Y

y x p Y

A
A

A A

��
�

��

��

��

 (19) 

 

where ( )ˆ k
−x A  denotes the propagated state estimate of the A th 

Kalman filter.  Note that the denominator of Eq. (19) is just 

a normalizing factor to ensure that ( )( )| kp p YA �  is a pdf.  

The recursion formula can now be cast into a set of defined 

weights ( )
kϖ A  

 
( ) ( ) ( )

( )
( )

( )

1

1

ˆ|kk k k

k
k M

k
j

pϖ ϖ

ϖ
ϖ

ϖ

−
−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

←

∑

y xA A A

A
A

A

�

 (20) 

 

where ( ) ( )( )1| kk pϖ −≡ p YA A � .  The weights are initialized to 

( )
0 1/ Mϖ =A  for 1, 2, , M=A … .  Note that ( )ˆ|k kp −⎛ ⎞

⎜ ⎟
⎝ ⎠

y x A�  

denotes the likelihood function. 
 

The conditional mean estimate is the weighted sum of 
the parallel filter estimates 
 

( ) ( )

1

ˆ ˆ
M

j j
k kk

j
ϖ− −

=

=∑x x  (21) 

 
Also, the error covariance of the state estimate can be 
computed using 
 

( ) ( )( ) ( )( )
1

ˆ ˆ ˆ ˆ
M Tj j j

k k k k kk
j

P ϖ− − − − −

=

= − −∑ x x x x  (22) 

 
The specific estimate for p  at time kt , denoted by ˆ kp , and 
error covariance, denoted by kZ , are given by 
 

( ) ( )

1

ˆ
M

j j
k k

j
ϖ

=

=∑p p  (23a) 

 ( ) ( )( ) ( )( )
1

ˆ ˆ
M Tj j j

k k kk
j

Z ϖ
=

= − −∑ p p p p

 (23b) 
 
Equation (23b) can be used to define 3σ bounds on the 
estimate ˆ kp . 
 
4.2 ATTITUDE LIKELIHOOD FUNCTION 

This section derives the likelihood function for the 
MMAE algorithm using quaternion measurements.  From 
Table 1, the measurement residual is defined to be (ignoring 
the propagated notation for q̂ ) 
 

( )ˆ2 T≡ Ξe q q�  (24) 
 
which is derived from the vector part of 1ˆ −⊗q q�  (the factor 
of 2 is used so that e  represents half-angle residuals).  

Using Eq. (9) and ( )1ˆ
2

T= + Ξq q q δα  in Eq. (24) gives 

 

( ) ( )( ) ( )1 12
2 2

T T T⎡ ⎤ ⎡ ⎤= Ξ + Ξ Ξ + Ξ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
e q q δα q q v  (25) 

 
Using the identity ( )( ) [ ] ( )T T TΞ Ξ = − × Ξ −q δα δα q δαq  
in Eq. (25) leads to 
 

[ ]1
2

= − × −e v δα v δα  (26) 

 
where ( ) ( ) 3 3

T I ×Ξ Ξ =q q , ( )TΞ =q q 0  and 1T =q q  have 
been used.  Therefore, since δα  and v  are uncorrelated, the 
covariance of the residual at time kt , using the propagated 
values, is given by 
 

{ }T T
k k k kE H P H R− − −= +e e  (27) 

 
where H  is defined in Table 1.  Therefore the likelihood 
function is given by 
 

 ( )

( )

( ) ( ) ( )1

1/ 2
1 1ˆ| exp

2
det 2

T
k kk k k k

T
kk

p H P H R

H P H Rπ

−− − − −

−

⎡ ⎤⎛ ⎞ ⎛ ⎞= − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎧ ⎫ ⎣ ⎦⎡ ⎤⎛ ⎞+⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

y x e eA A A A

A
�  (28) 
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which is used to update the weights in the MMAE 
algorithm. 
 
4.3 AVERAGE QUATERNION 

The goal of the MMAE algorithm is to not only update 
the process noise covariance parameters, but also to provide 
states estimates.  These estimates are given using Eq. (21); 
however two major problems exist with the quaternion 
estimates.  First there are no guarantees that the averaged 
quaternion is a normalized vector.  Second, it is well known 
that q  and −q  represent the same rotation, so that the 
quaternions provide a 2:1 mapping of the rotation group.  
Thus changing the sign of any quaternion should not change 
the average, but it is clear that Eq. (21) does not have this 
property.  The observation that we really want to average 
attitudes rather than quaternions provides a way to avoid 
both of these flaws.  The average quaternion should 
minimize a weighted sum of the squared Frobenius norm of 
attitude matrix differences: 
 

( ) ( ) ( )
3

2

1

ˆ ˆarg min
M

j j
k k k

j F

A Aϖ −−

∈ =

⎛ ⎞− ⎜ ⎟
⎝ ⎠∑

q
q q q�

S
 (29) 

 

where ( )ˆ j
k
−q  is the estimated quaternion from the jth EKF.  

Reference [7] provides a solution to this minimization 
problem.  The average quaternion is given as the 
eigenvector associated with the largest eigenvalue of the 
following matrix: 
 

( ) ( ) ( )

1

ˆ ˆ
M

j j T j
k k k

j
T ϖ − −

=

= −∑ q q  (30) 

 

Note that the sign of any ( )ˆ j
k
−q  does not change the value of 

the matrix T . 
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Figure 4: True Body Rates 
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4.4 SIMULATION RESULTS OF GYRO 
NOISE ESTIMATION VIA MMAE SCHEME 

This section presents simulation results of the MMAE 
algorithm to estimate process noise covariance parameters.  
The true angular rates of the simulated vehicle are shown in 
Fig. 4.  Star tracker measurements are simulated using an 
isotropic covariance matrix, i.e. 2

3 3nR Iσ ×= , with 
0.001nσ =  deg.  Gyro measurements are simulated with 

( ) 1/ 20.1 /180 / 60 rad / secvσ π= × , 
10 3/ 210 10 rad / secuσ
−= × , 0sσ =  and 3 3500S I ×=  

PPM.  The sampling interval for the star trackers and gyro 
are 1 sec and 0.01 sec, respectively.   

 
A sensitivity study is performed to assess how the 

attitude estimation performance is affected by varying gyro 
noise parameters.  Scale factors obviously can greatly affect 

the overall performance, which is why they are estimated in 
real time.  It is well known that the attitude estimation 
performance is more affected by vσ  than uσ .  The EKF in 
Table 1 is executed using uσ  multiplied by some factor β  
and the norm of the standard deviations of attitude estimates 
is taken and compared to the results when 1β = .  The 
attitude errors for varying β  are shown in the top plot of 
Fig. 5.  Clearly, the EKF is more sensitive to values of β  
below 1 than higher than 1.  But, using a β  greater than one 
produces an error-covariance that may be conservative, 
which is undesirable when considering attitude error 
budgets for the overall estimation process.  Significant 
errors are present when modest variations in vσ  are given.  
For example when 0.3β =  the attitude errors are as large as 
the standard deviation of the noise in the star tracker, which 
corresponds to a 100% error from the original response, as 
shown with the bottom plot of Fig. 5.  A sensitivity analysis 
on uσ  has also been performed for the same range of β .  
These results show that the highest percent error for 
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variations in uσ  is given by only 0.1%, which confirms 
well-known notions. 

 
Figures 6 and 7 illustrate the effectiveness of the 

MMAE in estimating the gyro’s rate random walk (RRW) 
and angular random walk (ARW).  It is obvious that with 

the ability to identify the statistics of these noise processes 
on line, the process noise Q matrix can be adaptively 
updated in real-time (instead of ad-hoc off-line tuning 
approach employed in [8]).  Therefore, its attitude 
estimation performance can be further enhanced in a much 
more efficient manner. 
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Figure 6: Gyro RRW & ARW Noise Estimation Via MMAE Scheme 
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Figure 7: Gyro SF Noise (PPM) Estimation Via MMAE Scheme 
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4.5 ATTITUDE ESTIMATION 

PERFORMANCE VIA A SINGLE 15 STATE 
EKF FILTER 

 
Figures 8 to 12 present a better attitude estimation 
performance when a 15 state EKF is used under high rate 
operating condition.  It is obvious that the SF and 
misalignment (MA) error effects have no longer 

“contaminated” the bias error (see Figures 8 and 9), thus 
resulting in a performance improvement as compared to the 
baseline 6 state EKF presented earlier.  Nevertheless, the 
overall performance of the 15 state EKF (depicted in 
Figures 8 to 12) still does not exhibit an acceptable 
performance yet.  As a result, it leads to the investigation of 
the multiple EKF models mixing via a linear combination 
and MMAE approaches which will be discussed within the 
next two subsections. 
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Figure 8: Attitude Estimation Performance of a 15 State EKF 

(1sig=[5.9    4.9    6.2] arcsecs, an improved attitude performance over the 6 state EKF presented in Figure 3 but still 
reflecting poor performance during high rate periods, especially in the yaw axis) 
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Figure 9: Gyro Bias Estimation Performance of a 15 State EKF 
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Figure 10: Scale Factor Estimation Performance of a 15 State EKF 
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Figure 11: Upper Misalignment (MA) Error Estimation of a 15 State EKF 

(poor performance in estimating the 3rd upper misalignment error for the first two minutes) 
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Figure 12: Lower MA Error Estimation of a 15 State EKF 
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4.6 ATTITUDE ESTIMATION 
PERFORMANCE VIA A LINEAR 

MULTIPLE FILTER ARCHITECTURE 
 

The linear multiple model (LMM) filter is examined to pave 
the way for the Multiple Model Adaptive Estimation 
(MMAE) approach.  It also serves as the baseline 
architecture to address the multiple sensor fusion of multiple 
star trackers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Linear Multiple Model Filter for Multiple Star Tracker Fusion 
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Figure 14: Attitude Estimation Via Linear Multiple Model Mixing (Fixed Coefficients) 

(1sig=[ 4.9    4.3    4.9] arcsecs, Enhanced Performance in all Axes Over Any Single EKF) 
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Figure 15: Gyro Bias Estimation Via Linear Multiple Model Mixing (Fixed Coefficients) 
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Figure 16: Gyro SF Estimation Via Linear Multiple Model Mixing (Fixed Coefficients) 
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Figure 17: Gyro MA Estimation Via Linear Multiple Model Mixing (Fixed Coefficients) 

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-2

0

2

4
x 10

4 Gyro Misalignment Estimation Errors 4 to 6, Mix of 6S, 9S, and 15S filters

X
 (P

P
M

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-2

0

2

4
x 10

5

Y
 (P

P
M

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-2

0

2

4
x 10

5

Z 
(P

P
M

)

Time (Min)

 
Figure 18: Gyro MA Estimation Via Linear Multiple Model Mixing (Fixed Coefficients) 

 
 

Note that the coefficient αi is selected to reflect the attitude 
quality provided by each star tracker (or sensor in general) 
that is mainly dictated by its mounting configuration and 
viewing geometry as well as orbit configuration/star 
observability variation.  It is worth pointing out here that 
conventional ADS design procedure for multiple star tracker 

has not been able to address this issue.  Again, for loose 
ADS attitude pointing knowledge type of missions, the 
conventional approach may allow ADS designers to comply 
with the mission requirements; however, for tighter attitude 
knowledge budget and higher precision type of missions, 
the proposed linear weighted correction using multiple 
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attitude information from multiple sensors as presented in 
Figure 13 will definitely make a difference.  Figures 14 to 
18 present the overall performance improvement of the 
LMM when the following weighted coefficients αi values 
are used for three EKFs (i.e., 6 state, 9 state and 15 state 
filters): α1 = 0.2; α2 = 0.4, and α3 = 0.4. 
 
4.7 MULTIPLE MODEL ADAPTIVE 
ESTIMATION (MMAE) FILTERING FOR 
MULTIPLE SENSOR FUSION 
ARCHITECTURE 
The linear multiple model filter design framework is now 
extended into an MMAE scheme wherein the pre-selected 
αi coefficients now can be computed on-line using some 
adaptive computation scheme subject to a performance 

criterion. The MMAE baseline algorithm described in 
Section 4.0 is adopted here to enhance the performance of a 
typical multi-slewing multi-rate operating condition during 
imaging mode presented early on.  The MMAE architecture 
applied to the multiple model ADS filter is depicted in 
Figure 19 wherein three ADS filter structures are employed 
to address the multi-rate/multi-mode situation.  The fifteen-
state ADS filter is the largest model that is implemented to 
fully address the attitude error and the gyro high order 
calibration of bias and fully populated misalignment matrix.  
The nine-state ADS filter model will address the attitude 
error and the gyro bias and symmetrical scale factor errors.  
Finally, the six-state ADS filter model consisting of attitude 
and gyro bias error is implemented to provide precision 
attitude determination in the low rate operating condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 19: MMAE Architecture Suitable for Multiple Sensors Fusion 
 
The multi-state mixing of three ADS filters is accomplished 
using the Bayesian blending method expressed as follows: 
 

δˆ x MMAE
Baysian (n +1) =

δˆ x i(n +1)
i=1

m

∑ ⋅ pi(n +1)

pi(n +1)
i=1

m

∑
 (31) 

 
where m is the number of filter model in general.  For the 
scope of this paper, m is set to 3.  The conditional 
probabilities pi are computed as: 
 

pi(n +1) =
fz(n +1)|a,Z (n)(zi | ai ,Zn )pi(n)

fz(n+1)|a,Z (n)(zi | ai ,Zn )p j(n)
j=1

m

∑
 (32) 

where  
 

 
1[ 0.5 ( ) [ ] ( )

( 1)| , ( ) ( | , )
T T

i ir n HPH R r n
z n a Z n i i n if z a Z eβ

−− +
+ = (33) 

 
MMAE Mixing of 6 State and 9 State EKF 
Models 
Figures 20 to 23 present the performance of the MMAE 
mixing using a single star tracker data for update to 
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illustrate the benefits of the multiple models state mixing.  
With the state mixing of two EKF models via MMAE 
scheme, the performance and accuracy of the ADS solution 
are further improved beyond the traditional single EKF 
approach. Figures 20 to 23 illustrate the performance 

improvement offered by the MMAE approach.  Both gyro 
bias and scale factor error estimates are now behaving 
extremely well and stay within the 3 sigma bound as 
compared to results generated by all previous cases, ranging 
from baseline single EKF to linear multiple model mixing. 
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Figure 20: Attitude Performance Via MMAE Mixing 

(1sig=[ 4.4    4.3    4.0] arcsecs, An Enhanced Performance over 15 state EKF & LMM Even with just a mixing of 6 
state and 9 state EKFs via MMAE Mixing)
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Figure 21: Gyro Bias Estimation Via MMAE Mixing 
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Figure 22: Gyro SF Estimation Via MMAE Mixing 
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Figure 23:  MMAE Dynamic Mixing Coefficients 

 
 
Figure 23 illustrates the excellent on-line adaptation of 
MMAE mixing ability against system variation.  
 

5.0 CONCLUSION 
An adaptive filtering architecture via MMAE scheme is 
proposed to ameliorate the effect of gyro SF and MA errors 
at high rate operating condition and effectively maintain a 
precision attitude estimation performance while a traditional 

EKF scheme suffers for a same operating condition. The 
MMAE scheme is exploited to offer two primary design 
features: (1) on-board gyro noise estimation to update the 
EKF process noise Q matrix in real-time and (2) multiple 
EKF models mixing to provide the right fusion combination 
between various filter models’ state vectors for a consistent 
attitude update at various rate magnitudes.  The 
effectiveness of the proposed scheme is demonstrated via 
simulation.  Due to time constraint and limited budget, the 
multi-sensors (e.g., two star trackers, IRU, and other update 
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sensors like radar altimeter) fusion using the proposed 
MMAE has not been fully evaluated yet; however, the 
architecture itself, the mixing scheme (of a single tracker 
and an IRU), and the ability to adaptively compute the right 
dynamic mixing coefficient values for each filter presented 
in this paper strongly motivate us to continue our effort [9]. 
Further studies will continue examining its potential and 
evaluating its applicability of multi sensors mixing at higher 
fidelity of sensors models and more realistic high rate 
operating scenarios. 
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