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Abstract

The QUEST measurement noise model for unit vector observations has been widely used

in spacecraft attitude estimation for more than twenty years. It was derived under the

approximation that the noise lies in the tangent plane of the respective unit vector and is

axially symmetrically distributed about the vector. For large field-of-view sensors, however,

this approximation may be poor, especially when the measurement falls near the edge of the

field of view. In this paper a new measurement noise model is derived based on a realistic

noise distribution in the focal plane of a large field-of-view sensor, which shows significant

differences from the QUEST model for unit vector observations far away from the sensor

boresight. An extended Kalman filter for attitude estimation is then designed with the new

measurement noise model. Simulation results show that with the new measurement model

the extended Kalman filter achieves better estimation performance using large field-of-view

sensor observations.

Introduction

Attitude determination is the identification of a proper orthogonal rotation (attitude)

matrix that maps sensed vectors from a reference frame into the sensor frame. If all the

measured and reference vectors are error free, then the rotation matrix is the same for all sets

of observations. However, if measurement errors exist, then a least-squares type approach

must be used to determine the attitude. Several attitude sensors exist, including: three-axis
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magnetometers, sun sensors, Earth-horizon sensors, global positioning system (GPS) sensors

and star trackers. Reference [1] provides detailed descriptions of each of these sensors. The

specific choice for the complement of onboard attitude sensor hardware is mostly driven by

the individual requirements of the spacecraft mission. For example, for low accuracy require-

ments, such as a few degrees, a three-axis magnetometer can be used solely to determine

three-axis attitude coupled with gyroscopes or a dynamic model [2]. The Solar, Anomalous,

and Magnetospheric Particle Explorer (SAMPEX) is an example of a highly successful mis-

sion that employs only a three-axis magnetometer and a coarse (0.25 degree) sun sensor

coupled with a dynamic model [3].

For missions with tight attitude knowledge requirements, the primary means to determine

attitude is the star tracker. The technology behind star trackers has changed much over the

years. Evolving from gimballed to fixed-head, the latest star trackers now use charge-coupled

devices (CCD) for imaging, which offer high accuracy [4]. By using star image centroiding,

accuracies of approximately 1/10 the size of a pixel can be achieved. For small field-of-view

(FOV) star trackers, this leads to off-boresight attitude knowledge on the order of 10 to

20 arcsec. Star trackers fall into the category of line-of-sight (LOS) sensors because they

measure the direction of a celestial body. In particular, the angle of that body is measured

from the sensor boresight in two mutually orthogonal planes [5]. With the advent of low-cost

CCD arrays and powerful processors, the use of star trackers is more common today.

For LOS sensors the observation equations are given by the well-known collinearity equa-

tions [6], which relate image plane coordinates to object plane coordinates through an atti-

tude rotation. For stellar applications the light sources can be treated as infinite distance

points, so that the only unknown, once a star is identified, is the attitude matrix. All at-

titude sensors, including star trackers, contain noise in their measurements however. This

noise includes both systematic errors and random errors. Systematic errors are reduced

through calibration procedures, which can even be done on-orbit [7]. Random errors are

usually treated as zero-mean Gaussian white-noise processes with known covariance. A real-

istic covariance matrix takes into account an increase in the errors away from the boresight
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due to radial distortions and contains correlated terms. A frequently-used covariance model

for the noise added to the collinearity truth equations is given by Eq. (10) of Ref. [8]. This

model is referred to here as the “focal-plane model.”

The collinearity equations are usually cast in vector form because the attitude matrix

appears linearily in this form. This unit vector form, also called the “LOS measurement

model,” is the most widely used observation equation in attitude determination [9]. Re-

cent research has also shown that using the unit vector form produces better results in a

filter design over the standard collinearity equations form for the observation equations [10].

This is due to lower nonlinearity of the LOS measurement model and boundedness of the

LOS measurements. Unfortunately, the measurement noise is also transformed when the

collinearity equations are converted into the unit vector form. A simple covariance model

that is valid for small FOVs has been developed by Shuster and Oh [9], called the “QUEST

measurement model,” which is a singular matrix that arises for the unit-normalization of

the observations. The beauty of this model is in its simplicity, which is evident in its use

in the extended Kalman filter (EKF). In particular, Shuster [8] has shown that the singular

covariance matrix can effectively be replaced with a nonsingular isotropic matrix, thereby

providing practical use in the EKF.

In this paper the QUEST measurement model is replaced with a general model that

is valid for large FOVs. New sensors are evolving that incorporate wider FOVs, which

may lead to degraded performance when using the QUEST measurement model. One such

sensor is the vision-based navigation (VISNAV) system [11], which comprises an optical

sensor of a new kind combined with specific light sources (beacons) in order to achieve a

selective or “intelligent” vision. The sensor is made up of a Position Sensing Diode (PSD)

placed in the focal plane of a wide angle lens, which yields a 100 degree FOV. When the

rectangular silicon area of the PSD is illuminated by energy from a beacon focused by the

lens, it generates electrical currents in four directions that can be processed with appropriate

electronic equipment to estimate the energy centroid of the image. The new measurement

model is derived using a first-order Taylor series expansion approach of the observation noise
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model. This makes the assumption that the noise is “small” compared to the signal. It will

be shown that this model can produce more accurate results than the QUEST measurement

model for the VISNAV sensor. Unfortunately, as is the case with the QUEST measurement

model, the new covariance is also singular, which causes a problem in the computation of the

Kalman gain. To overcome this problem, two solutions are presented. The first is based on a

matrix decomposition of the new covariance and the second is based on a rank-one update.

The organization of this paper proceeds as follows. First, the collinearity equations are

summarized, followed by the introduction of the focal-plane covariance model. Then, the

QUEST measurement model is reviewed. Next, a new covariance model is derived that is

valid for large FOV sensors. Its implementation in an EKF design is then shown by using

a measurement transformation approach as well as a rank-one update approach. Finally,

simulation results are shown that compare EKF results with the QUEST model versus the

new model using synthetic VISNAV sensor observations.

Overview

In this section the collinearity equations are summarized for close range photogrammetry

applications using the VISNAV sensor. A covariance model for the focal-plane equations is

also summarized and the QUEST measurement model is shown.

Collinearity Equations

Photogrammetry is the technique of measuring objects (2D or 3D) from photographic im-

ages or LOS measurements. Photogrammetry can generally be divided into two categories:

far range photogrammetry with camera distance settings to infinity (commonly used in star

trackers), and close range photogrammetry with camera distance settings to finite values. In

general close range photogrammetry can be used to determine both the position and atti-

tude of an object, while far range photogrammetry can only be used to determine attitude.

The VISNAV system comprises an optical sensor of a new kind combined with specific light
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Figure 1. Vision Based Navigation System

sources (beacons), which can be used for close range photogrammetry-type applications.

The relationship between the position/attitude and the observations used in photogram-

metry involves a set of collinearity equations, which are reviewed in this section. Figure

1 shows a schematic of the typical quantities involved in basic photogrammetry from LOS

measurements, derived from light beacons in this case. If we choose the z-axis of the sen-

sor coordinate system to be directed outward along the boresight, then given object space

and image space coordinate frames (see Fig. 1), the ideal object to image space projective

transformation (noiseless) can be written as follows [6]:

αi = −f
A11(Xi − x) + A12(Yi − y) + A13(Zi − z)

A31(Xi − x) + A32(Yi − y) + A33(Zi − z)
, i = 1, 2, . . . , N (1a)

βi = −f
A21(Xi − x) + A22(Yi − y) + A23(Zi − z)

A31(Xi − x) + A32(Yi − y) + A33(Zi − z)
, i = 1, 2, . . . , N (1b)

where N is the total number of observations, (αi, βi) are the image space observations for

the ith LOS, (Xi, Yi, Zi) are the known object space locations of the ith beacon, (x, y, z) are

the unknown object space location of the sensor, f is the known focal length, and Ajk are

the unknown coefficients of the attitude matrix, A. In general the observations can be given

by αi/f and βi/f , so we can assume f = 1 without loss in generality, which is done for
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the remainder of this paper. The goal of the inverse problem is given observations (αi, βi)

and object space locations (Xi, Yi, Zi), for i = 1, 2, . . . , N , determine the attitude (A) and

position (x, y, z). Note that if the beacons are “infinitely away” then Eq. (1) reduces down

to the standard stellar collinearity equations.

Denoting αi and βi by the 2×1 vector γi ≡ [αi βi]
T , then the measurement model follows

γ̃i = γi + wi (2)

where wi is a zero-mean Gaussian noise process. A frequently used covariance for wi with

f = 1 is given by [8]

RFOCAL
i =

σ2

1 + d (α2
i + β2

i )















(1 + d α2
i )

2 (d αiβi)
2

(d αiβi)
2 (1 + d β2

i )
2















(3)

where d is on the order of one and σ is assumed to be known. Note that as αi or βi increases

then the individual components of RFOCAL
i increase, which realistically shows that the errors

increase as the observation moves away from the boresight. Also, as stated in Ref. [8], the

covariance model is a function of the true variables αi and βi, which are never available in

practice. However, using the measurements themselves or estimated quantities in the EKF

leads to only second-order error effects.

Unit Vector Form

The observation can be reconstructed in unit vector form as

bi = Ari, i = 1, 2, . . . , N (4)
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where

bi ≡
1

√

1 + α2
i + β2

i















−αi

−βi

1















(5a)

ri ≡
1

√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2















Xi − x

Yi − y

Zi − z















(5b)

When measurement noise is present, Shuster and Oh [9] have shown that nearly all the

probability of the errors is concentrated on a very small area about the direction of bi, so

the sphere containing that point can be approximated by a tangent plane, characterized by

b̃i = Ari + υi, υT
i bi = 0 (6)

where b̃i denotes the ith measurement and the sensor error υi is approximately Gaussian,

which satisfies

E {υi} = 0 (7a)

RQUEST
i ≡ E

{

υiυ
T
i

}

= σ2
(

I3×3 − bib
T
i

)

(7b)

where E { } denotes expectation and I3×3 denotes a 3 × 3 identity matrix. Equation (7b)

is known as the QUEST measurement model. Note that Eq. (7b) is a also function of the

unknown true values in bi. However, the advantage of using the QUEST measurement model

is that the measurement covariance in the EKF formulation can effectively be replaced by a

nonsingular matrix, given by σ2I3×3, which does not contain the unknown true values (see

Ref. [8] for more details).
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New Model

To derive a covariance for the actual unit vector measurement, the true values for αi and

βi must be replaced with the measured ones in Eq. (5). Performing this replacement does

not explicitly yield the form given by Eq. (6) because the actual model cannot separate

Ari from the noise. Hence, the actual noise model contains nonlinear terms coupled with

non-Gaussian components. In order to derive a covariance, the new measurement model is

based on a first-order Taylor series expansion of the unit vector model in Eq. (6). Note that

this approach does not make the small FOV assumption, but rather it makes the assumption

that the measurement noise is “small” compared to the signal, which is valid for every star

tracker and for the VISNAV sensor as well. The Jacobian of Eq. (5a) is given by

Ji ≡
∂bi

∂γi
=

1
√

1 + α2
i + β2

i















−1 0

0 −1

0 0















− 1

1 + α2
i + β2

i

bi

[

αi βi

]

(8)

The new covariance is now given by

RNEW
i = Ji R

FOCAL
i JT

i (9)

Clearly, RNEW
i is a singular matrix, just as Eq. (7b). It will be shown that the eigenvector

associated with the zero eigenvalue of RNEW
i is bi, which is exactly the same eigenvector

associated with the zero eigenvalue of RQUEST
i . Since RQUEST

i has two repeated eigenvalues,

σ2, then the associated eigenvectors, which are always in the plane perpendicular to bi, are

not unique. Therefore, without loss in generality it can be assumed that RQUEST
i has the

same eigenvectors as RNEW
i . Thus, the only differences between these two covariances are

their nonzero eigenvalues. The covariance RQUEST
i can also be written using Ji as

RQUEST
i = Ji R

FOCAL
i JT

i (10)
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where

R
FOCAL
i ≡ σ2(1 + α2

i + β2
i )















1 + α2
i αiβi

αiβi 1 + β2
i















(11)

The covariances are identical, i.e. RNEW
i = RQUEST

i , when RFOCAL
i = R

FOCAL
i , which agrees

with the corrected result shown in Ref. [12]. This shows that in order to recover RQUEST
i ,

the errors also should not be constant over the FOV. Note the differences between Eq. (3)

and Eq. (11) though. Performing a series expansion for the small FOV condition |αi| � 1

and |βi| � 1 indicates that the differences between the two covariance matrices are on the

order of α2
i +β2

i for the diagonal elements and αiβi for the off-diagonal elements. Since both

covariances contain elements with comparable orders, Eqs. (3) and (11) only agree well with

each other when they both agree equally well with σ2I2×2.

We now prove that RQUEST
i ≥ RNEW

i using 0 ≤ d ≤ 1 in RFOCAL
i . The eigenvalues of

R
FOCAL
i are σ2(1 + α2

i + β2
i ) and σ2(1 + α2

i + β2
i )

2. So, R
FOCAL
i ≥ σ2(1 + α2

i + β2
i )I2×2;

the equality is given when αi = βi = 0. Assuming αi ≥ βi without loss in generality, the

following equation is valid:

RFOCAL
i ≤ σ2

1 + d (α2
i + β2

i )







0 0

0 (1 + d α2
i )

2 − (1 + d β2
i )

2






+ RFOCAL

i

=
σ2(1 + d α2

i )
2

1 + d (α2
i + β2

i )







1 ξ

ξ 1







(12)

where ξ ≡ d2α2
i β

2
i /(1 + d α2

i )
2. The eigenvalues of the 2 × 2 matrix involving ξ in Eq. (12)
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are given by 1 ± ξ. This leads to

RFOCAL
i ≤

[

1 +
d2α2

i β
2
i

(1 + d α2
i )

2

] [

σ2(1 + d α2
i )

2

1 + d (α2
i + β2

i )

]

I2×2

=
σ2

1 + d (α2
i + β2

i )

[

(1 + d α2
i )

2 + d2α2
i β

2
i

]

I2×2

(13)

Therefore, RFOCAL
i ≤ σ2(1 + d α2

i + d β2
i )I2×2, since (1 + d α2

i + d β2
i )

2 ≥ (1 + d α2
i )

2 + d2α2
i β

2
i .

Hence,

R
FOCAL
i ≥ σ2(1 + α2

i + β2
i )I2×2 ≥ σ2(1 + d α2

i + d β2
i )I2×2 ≥ RFOCAL

i (14)

which proves that R
FOCAL
i ≥ RFOCAL

i . Now, using the definition of a positive semi-definite

matrix, we have

(JT
i x)T (RFOCAL

i − RFOCAL
i )(JT

i x) ≥ 0 (15)

for any x. This leads directly to Ji(R
FOCAL
i −RFOCAL

i )JT
i ≥ 0. Using the definitions of RNEW

i

and RQUEST
i from Eqs. (9) and (10), respectively, gives RQUEST

i ≥ RNEW
i .

In the QUEST measurement model, all the LOS vector observations have the same noise

level, characterized by σ2. This requires the associated measurement noise on the focal

plane to increase at a specific rate from the center to the edge of the FOV and be distributed

according to a specific pattern, given by Eq. (11). When the assumed noise distribution on

the focal plane does not match the true measurement noise characteristics, which is the case

in this study, performance degradation is observed.

Extended Kalman Filter Implementation

In this section the new covariance is implemented in the EKF. Two approaches to

overcome the singularity issue in the EKF are presented. The first is based on an eigen-

value/eigenvector decomposition of RNEW
i and the second is based on a rank-one update

of the covariance matrix. Only attitude estimation is considered here. The VISNAV sen-

sor is capable of determining position as well, but this is an easy extension of the attitude

estimation problem by simply augmenting the state vector. The EKF equations follow the
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multiplicative quaternion approach of Ref. [13], which includes the three-component attitude

error vector and gyro-bias errors. Unfortunately, straightforward implementation of the EKF

with the new model is not possible. The Kalman gain for a single observation, written in

terms of using the true values for now, is given by [14]

K = P−HT
i

[

HiP
−HT

i + RNEW
i

]−1
(16)

where P− is the propagated 6 × 6 covariance matrix and Hi is given by [13]

Hi =

[

[A ri×] 03×3

]

(17)

where [A ri×] is the standard cross product matrix (see Ref. [13]) and 03×3 is a 3× 3 matrix

of zeros. We now investigate the properties of the matrix Zi ≡ HiP
−HT

i + RNEW
i , which

is known as the innovation matrix. In the EKF formulation the estimated values will be

used to form the matrices HiP
−HT

i and RNEW
i . Hence, for the analysis of the matrix Zi

we can set bi = A ri without loss in generality for now. From the definition of the cross

product matrix it is easy to see that HT
i bi = 0. Performing the multiplication JT

i bi also

gives JT
i bi = 0. Hence, Zibi is always zero, which means Zi is always singular. Furthermore,

since the rank of RFOCAL
i is two, which means the rank of RNEW

i is also two, then bi is the

eigenvector associated with the zero eigenvalue of RNEW
i . The singularity problem always

exists no matter how many measurements are used in the EKF. Therefore, the standard

EKF cannot be executed.

The specific form for the EKF follows Murrell’s version [15], which processes one unit

vector observation at a time through a sequential approach. This approach reduces taking

an inverse of a 3N ×3N matrix for the Kalman gain to taking an inverse of a 3×3 matrix N

times, which significantly reduces the computational load. A flow chart of Murrell’s version

for the update is shown in Fig. 2, where β̂− and β̂+ are the propagated and updated gyro-

bias estimates, respectively, P + is the updated 6 × 6 covariance matrix, ∆ˆ̃x− and ∆ˆ̃x+ are

the propagated and updated state corrections for the attitude and gyro bias, respectively,
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Figure 2. Computationally Efficient Attitude Estimation Algorithm of Murrell

A(q̂−) is the attitude matrix parameterized using the propagated quaternion estimate, q̂−,

and Ri is the measurement covariance. The first step involves propagating the quaternion,

gyro bias and error-covariance to the current observation time. Then, the attitude matrix is

computed. The propagated state vector is now initialized to zero. Next, the error-covariance

and state quantities are updated using a single vector observation. This procedure is con-

tinued, replacing the propagated error-covariance and state vector with the updated values,

until all vector observations are processed. Finally, the updated values are used to propagate

the error-covariance and state quantities to the next observation time.
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Decomposition Approach

The eigenvalue/eigenvector decomposition of RNEW
i can be written in the form given by

RNEW
i = Ti Ei T

T
i

≡
[

t1 t2 t3

]

i















λ1 0 0

0 λ2 0

0 0 0















i

[

t1 t2 t3

]T

i

(18)

where t1, t2 and t3 are the eigenvectors, and λ1 and λ2 are the nonzero eigenvalues. A linear

transformation of the measurement residual in Fig. 2 is now performed, giving a new residual

di:

di ≡







ei

gi






= T T

i εi (19)

where ei is a 2 × 1 vector made up of the first two components of di and gi is the third

component of di. Since t3 = A(q̂−)ri, then the transformed sensitivity matrix has the form

T T
i Hi =







Ti 02×3

0T 0T






(20)

where Ti is a 2 × 3 matrix, 0 is a 3 × 1 vector of zeros, and 02×3 is a 2 × 3 matrix of zeros.

Hence, only the vector ei is needed to perform the updates. These equations are now given

by

K = P−HT
i [HiP

−HT
i + Λi]

−1 (21a)

P+ = [I6×6 − KHi]P
− (21b)

∆ˆ̃x+ = ∆ˆ̃x− + K (ei −Hi∆ˆ̃x−) (21c)
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where Hi ≡
[

Ti 02×3

]

and Λi is a diagonal matrix made up of the nonzero eigenvalues of

RNEW
i :

Λi ≡







λ1 0

0 λ2







i

(22)

Note that the matrix inverse in the Kalman gain reduces from a 3 × 3 matrix to a 2 × 2

matrix. Also, since Λi is a diagonal matrix, then a sequential process can be used to process

each component of ei one at a time [14]. This reduces taking a 2 × 2 matrix inverse down

to taking an inverse of a scalar twice, which further reduces the computational load. The

quaternion and gyro-bias updates are given by

∆ˆ̃x+ ≡
[

δα̂+T ∆β̂+T

]T

(23a)

q̂+ = q̂− +
1

2
Ξ(q̂−)δα̂+, re-normalize quaternion (23b)

β̂+ = β̂− + ∆β̂+ (23c)

where δα̂ is the angle correction, ∆β̂ is the bias correction and Ξ(q̂−) is a 4×3 matrix given

by

Ξ(q̂−) ≡















q̂−4 I3×3 + [ρ̂−×]

−ρ̂−T















(24)

with q̂− ≡ [ρ̂−T q̂−4 ]T . The propagation equations remain unchanged, which are not shown

here for brevity (see Ref. [13] for more details). In order to further enhance the numerical

properties of the algorithm, a U -D factorization [14] of the covariance update and propaga-

tion is employed. The main advantage of this approach is that the factorization is accom-

plished without taking square roots, unlike a square-root filter, and the formulation does

not add much computational effort over the standard EKF. The new model uses the specific

covariance shown in Eq. (3), but it is important to state that any covariance matrix can be

used in this formulation. The eigenvalue/eigenvector decomposition can easily be performed
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using numerical techniques.

Rank-One Update Approach

An alternative approach to overcome the problem in the EKF due to the singularity of the

new measurement covariance matrix is shown. The main idea of this approach is to add

an extra term, cibib
T
i (ci > 0), to the singular measurement covariance matrix to ensure

that the modified measurement covariance matrix is nonsingular. After this modification

the standard EKF equations are used, as shown in Fig. 2. The EKF with the modified

measurement covariance matrix will yield the identical measurement update result with the

one employing size-reduced residuals and measurement covariances. This approach is a

straightforward extension of Shuster’s approach in Ref. [8] to overcome the problem with

the singular QUEST measurement covariance matrix (and singular innovation matrix). In

Ref. [8] the original QUEST measurement covariance matrix in the standard EKF, RQUEST
i =

σ2
(

I3×3 − bib
T
i

)

, is replaced by RQUEST
i = σ2I3×3, with the modification to the QUEST

measurement covariance given by

RQUEST
i = RQUEST

i + σ2bib
T
i (25)

Again note that RQUEST
i bi = 0, but RQUEST

i is always invertible.

For the new measurement model, we propose to modify the singular measurement co-

variance matrix, RNEW
i , in a similar manner:

RNEW
i = RNEW

i + cibib
T
i (26)

with ci > 0. For any RNEW
i derived from RFOCAL

i , it is also true that RNEW
i bi = 0, which is

a direct result of JT
i bi = 0. The inverse of RNEW

i is then given by

(

RNEW
i

)−1
=

(

RNEW
i

)†
+

1

ci
bib

T
i (27)
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where
(

RNEW
i

)†
may be interpreted as the pseudo-inverse of RNEW

i or simply a convenient

notation. Pre-multiplying both sides of Eq. (27) by HT
i leads to

HT
i

(

RNEW
i

)−1
= HT

i

(

RNEW
i

)†
+ HT

i · 1

ci
bib

T
i = HT

i

(

RNEW
i

)†
(28)

Note that because HT
i bi = 0, the identity holds regardless of the value of ci > 0. The limit

of HT
i

(

RNEW
i

)−1
as ci approaches zero is HT

i

(

RNEW
i

)†
as well. Similarly, for all ci we have

HT
i

(

RNEW
i

)−1
Hi = HT

i

(

RNEW
i

)†
Hi (29)

The inverse of RNEW
i always exists because the eigenvalues obey [16]

λj(RNEW
i ) = λj(R

NEW
i ) + mj ci, j = 1, 2, 3 (30)

with m1 + m2 + m3 = 1. In fact the eigenvalues and eigenvectors of RNEW
i are identical to

the ones of RNEW
i , except that the zero eigenvalue of RNEW

i is replaced with ci. Since ci is

assumed to never be zero, then the inverse of RNEW
i always exists.

The measurement update of the covariance matrix and the computation of the Kalman

gain matrix with the original and modified measurement covariance matrices may be re-

written as

(

P+
)−1

=
(

P−
)−1

+ HT
i

(

RNEW
i

)†
Hi (31)

K = P+HT
i

(

RNEW
i

)†
(32)

and

(

P+
)−1

=
(

P−
)−1

+ HT
i

(

RNEW
i

)−1
Hi (33)

K = P+HT
i

(

RNEW
i

)−1
(34)
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From the two sets of equations and Eqs. (28) and (29), we can see that any RNEW
i will lead

to the same P + and K and thus to the same measurement update result as RNEW
i does.

Therefore, the use of RNEW
i overcomes the singularity problem, but does not alter the result

of the EKF. Finally, we note the following:

1. As far as the EKF or first-order approximation is concerned, there is no limitation

on the parameter ci > 0 in order to guarantee the invertibility of the measurement

covariance matrix and the innovation matrix. Physically, ci is small because the error

along the true boresight of the effective unit vector measurement converted from the

focal-plane measurement is much smaller than the errors along the other two directions

(the first-order approximation of ci is zero). For numerical purposes, however, ci may

be chosen to be

ci =
1

2
trace(RNEW

i ) (35)

where trace denotes the trace of a matrix. That is, ci is the average of the nonzero

eigenvalues of RNEW
i . Note that using Eq. (35) on RQUEST

i instead of RNEW
i gives

ci = σ2, which yields Eq. (25).

2. The parameter ci will change the property of the measurement covariance matrix, but

not that of HT
i

(

RNEW
i

)−1
Hi. If HT

i

(

RNEW
i

)−1
Hi is ill-conditioned, the approach does

not help.

3. Since HT
i

(

RNEW
i

)−1
Hi remains unchanged with the modified measurement covariance

matrix, there is no information loss or gain in the EKF.

4. The approach overcomes the singularity problem based on the very special structure

of Hi and RNEW
i : HT

i bi = 0 and RNEW
i bi = 0. However, if the system does not have

such a special structure, the innovation matrix in the EKF will not be singular and

the problem no longer exists.
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Figure 3. Availability of Beacons and Average Angle from Boresight

Simulation Results

In this section the simulation results using synthetic VISNAV measurements are pre-

sented. The VISNAV sensor is only used here to determine attitude for the simulation

results. As previously stated, position can also be determined by augmenting the EKF state

vector. Eight beacons are used to create the synthetic measurements. The beacon locations

in meters are given by

X1 = 5, Y1 = 5, Z1 = 0 (36a)

X2 = 5, Y2 = −5, Z2 = 0 (36b)

X3 = −5, Y3 = 5, Z3 = 0 (36c)

X4 = −5, Y4 = −5, Z4 = 0 (36d)

X5 = 0.2, Y5 = 0.2, Z5 = 0 (36e)

X6 = 0.2, Y6 = −0.2, Z6 = 0 (36f)

X7 = −0.2, Y7 = 0.2, Z7 = 0 (36g)

X8 = −0.2, Y8 = −0.2, Z8 = 0 (36h)
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The first four beacons are spread out further than the last four beacons. A 30 second simula-

tion is used with a sampling rate of 100 Hz for both the VISNAV and gyro measurements. A

docking-type motion with a rotation is used in the simulation. The linear motions for both

the x and y axes are zero for the entire simulation run. The vehicle performs a linear motion

maneuver along the z axis starting 30 meters away at the initial time and ending at 0 at the

final time. The initial attitude is given by the identity matrix and the angular velocity is

given by ω = [0.1 sin(t) 0.1 cos(t) (3 × 360/30) × (π/180)]T rad/sec. The VISNAV sensor

FOV is assumed to be 100 degrees. Therefore, any LOS measurement that is greater than 50

degrees from the boresight is not available. Since the last four beacons are “close in,” they

are available throughout the entire simulation. The availability of the first four beacons is

shown in Fig. 3(a), where 1 indicates that the beacon is available and 0 indicates that it is not

available. The first four beacons are all available until about 20 seconds into the simulation

run. Synthetic measurements are generated using the covariance in Eq. (3) with d = 1 and

σ = (100/5000)× (π/180) radians. These measurements are then converted into unit-vector

form to be used in the EKF. The gyro noise parameters are given by σu =
√

10 × 10−10

rad/sec3/2 and σv =
√

10 × 10−7 rad/sec1/2. See Ref. [17] for a detailed explanation of the

gyro model. The initial biases for each axis of the gyro are given by 0.1 deg/hr.

Two EKFs are executed. Both EKFs use the same exact synthetic LOS and gyro mea-

surements, and both use Murrell’s version shown in Fig. 2. The first EKF uses the QUEST

model approach for the measurement covariance with Ri = σ2I3×3. The second EKF uses the

new measurement covariance with Ri = RNEW
i . For the new model, the simulation results

using the decomposition approach with the U -D factorization are identical to the rank-one

update approach results. A plot of the average angle from the boresight for all the available

beacons is shown in Fig. 3(b). The discontinuities are due to a loss of a beacon at that

specific time.

Plots of the roll, pitch and yaw errors for a typical simulation run, with their respective 3σ

bounds computed from the error covariance, are shown in Figs. 4(a)-4(c), respectively. The

top plot of each figure corresponds to using the QUEST model in the EKF and the bottom
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Figure 4. Extended Kalman Filter Results

plot corresponds to using the new model approach. At first glance it seems as though both

approaches yield nearly identical results, but closer inspection shows that this is not true.

To investigate the performance aspects of both filters, the percent difference between the 3σ

attitude bounds is computed. The results are shown in Fig. 4(d). Using the QUEST model

approach gives respective 3σ bounds that are always larger than the new model approach.

Figure 5 shows the norm of the percent differences taken from Fig. 4(d) versus the average
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Figure 5. Norm Percent Difference Versus Average Angle

angle from boresight for the first 15 seconds of the simulation run. At the beginning of

the simulation run, when the average boresight angle is small, both models produce nearly

identical results. The errors then begin to increase when the average boresight angle becomes

larger, but the errors still remain large even as the average boresight angle decreases. This

may be due to the “memory” nature of the EKF in its error covariance. From Figs. 4(a)-

4(c), we see that the transients in the EKF error covariance have significantly reduced after

about 8 seconds. Even though the average boresight angle begins to decrease after this time,

the gain in the EKF does not vary much which leads to large differences between the two

models, as seen by the 30 percent difference in the two model responses. Having accurate

3σ bounds is a paramount issue, because they are often used to develop error budgets for

the overall attitude knowledge. The new model provides more realistic and lower bounds for

large FOV sensors than the QUEST model. This is especially useful for missions with very

tight attitude requirements.

An augmented filter that estimates attitude as well as position has also been developed.

The state vector is augmented by six states, which model the three accelerations as zero-
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Figure 6. Extended Kalman Filter Results for Large Roll Initial Condition Error

mean Gaussian white-noise processes. The position improvements using the new covariance

are nearly the same as the attitude improvements, and thus are not shown here for brevity.

Overall, the simulation results clearly show that the new covariance model can provide better

results over the QUEST model for large FOV sensors.

A comparison between the covariance decomposition approach and the rank-one update

approach has also been done. The decomposition approach is found to be sensitive to nu-

merical ill-conditioning effects. In fact large deviations from the rank-one approach results,

shown in Fig. 4, are present when the U -D factorization is not used, i.e. running the standard

EKF equations. The convergence properties of each approach has also been studied. A roll

error of 180 degrees is introduced at the initial condition with the variance for that part

of the initial covariance of the EKF set to [(220/3) × (π/180)]2 rad2 for both approaches.

For this error both approaches do not converge well. But, for this test the decomposition

approach uses the U -D factorization, while the rank-one update approach uses the standard

EKF equations. A U -D factorization for the rank-one update approach has also been de-

signed. The results of the U -D factorization EKF version for both the decomposition and

rank-one update approaches are shown in Fig. 6. Clearly, the rank-one update approach pro-
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duces better convergence behaviors than the decomposition approach. Several other initial

condition errors have also been tested, as well as a number of Monte Carlo-type simulations.

When using the U -D factorization EKF version for both approaches, the rank-one update

approach always shows better convergence behaviors than the decomposition approach. Fur-

ther improvements may be obtained by using an Unscented filter [18].

Conclusions

In this paper a new measurement covariance model was derived that can be used for large

field-of-view sensors. The new model was derived using a first-order Taylor series expansion

of the line-of-sight measurement model. Due to the singular nature of the new covariance,

straightforward implementation of the extended Kalman filter was not possible. This was

overcome by using one of two approaches. The first approach involves decomposing the

covariance matrix into its eigenvalues and eigenvectors, and then performing a transformation

of state so that a reduced nonsingular matrix is used in the extended Kalman filter. The

second approach adds a simple term, i.e. a rank-one update, to the covariance matrix that

does not alter the overall Kalman gain. Simulation results indicate that the new model

can yield better estimation results over using the small field-of-view QUEST measurement

model in the filter design. Also, a comparison of the two approaches showed that the rank-one

update approach can provide better convergence properties than the decomposition approach

for large initial condition errors. Also, the rank-one update approach allows a designer to

easily implement the extended Kalman filter, even if the QUEST measurement model is

used for the measurement covariance. For these reasons, the rank-one update approach is

preferred over the decomposition approach.

Acknowledgement

The authors wish to thank Dr. John L. Junkins from Texas A&M University for numerous

discussions on the VISNAV sensor. The second author was supported by NASA Goddard

23 of 26



Space Flight Center Grant NAG5-12179, under the supervision of Mr. Richard R. Harman.

This author greatly appreciate the support.

References

[1] WERTZ, J. R., Mission Geometry; Orbit and Constellation Design and Management ,

chap. 3, Microcosm Press, El Segundo, CA and Kluwer Academic Publishers, Dordrecht,

Netherlands, 2001, pp. 152–167.

[2] PSIAKI, M. L., MARTEL, F., and PAL, P. K., “Three-Axis Attitude Determination via

Kalman Filtering of Magnetometer Data,” Journal of Guidance, Control, and Dynamics,

Vol. 13, No. 3, May-June 1990, pp. 506–514.

[3] CHALLA, M., NATANSON, G., and WHEELER, C., “Simultaneous Determination of

Spacecraft Attitude and Rates Using Only a Magnetometer,” AIAA/AAS Astrodynamics

Conference, San Diego, CA, July 1996, AIAA-1996-3630.

[4] JU, G. and JUNKINS, J. L., “Overview of Star Tracker Technology and its Trends in

Research and Development,” Advances in the Astronautical Sciences, The John L. Junkins

Astrodynamics Symposium, Vol. 115, 2003, pp. 461–478, AAS-03-285.

[5] SHUSTER, M. D., “Maximum Likelihood Estimation of Spacecraft Attitude,” The Jour-

nal of the Astronautical Sciences, Vol. 37, No. 1, Jan.-March 1989, pp. 79–88.

[6] LIGHT, D. L., “Satellite Photogrammetry,” Manual of Photogrammetry , edited by C. C.

Slama, chap. 17, American Society of Photogrammetry, Falls Church, VA, 4th ed., 1980.

[7] GRIFFITH, D. T., SINGLA, P., and JUNKINS, J. L., “Autonomous On-orbit Calibra-

tion Approaches for Star Tracker Cameras,” AAS/AIAA Space Flight Mechanics Meeting ,

San Antonio, TX, Jan. 2002, AAS-02-102.

[8] SHUSTER, M. D., “Kalman Filtering of Spacecraft Attitude and the QUEST Model,”

The Journal of the Astronautical Sciences, Vol. 38, No. 3, July-Sept. 1990, pp. 377–393.

24 of 26



[9] SHUSTER, M. D. and OH, S. D., “Three-Axis Attitude Determination from Vector

Observations,” Journal of Guidance and Control , Vol. 4, No. 1, Jan.-Feb. 1981, pp. 70–

77.

[10] CHENG, Y. and CRASSIDIS, J. L., “Particle Filtering for Sequential Spacecraft Atti-

tude Estimation,” AIAA Guidance, Navigation, and Control Conference, Providence, RI,

Aug. 2004, AIAA-04-5337.

[11] JUNKINS, J. L., HUGHES, D. C., WAZNI, K. P., and PARIYAPONG, V., “Vision-

Based Navigation for Rendezvous, Docking and Proximity Operations,” 22nd Annual

AAS Guidance and Control Conference, Breckenridge, CO, Feb. 1999, AAS-99-021.

[12] SHUSTER, M. D., “Erratum: Kalman Filtering of Spacecraft Attitude and the QUEST

Model,” The Journal of the Astronautical Sciences, Vol. 51, No. 3, July-Sept. 2003,

pp. 359.

[13] LEFFERTS, E. J., MARKLEY, F. L., and SHUSTER, M. D., “Kalman Filtering for

Spacecraft Attitude Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 5,

No. 5, Sept.-Oct. 1982, pp. 417–429.

[14] CRASSIDIS, J. L. and JUNKINS, J. L., Optimal Estimation of Dynamic Systems,

chap. 5, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[15] MURRELL, J. W., “Precision Attitude Determination for Multimission Spacecraft,”

Proceedings of the AIAA Guidance, Navigation, and Control Conference, Palo Alto, CA,

Aug. 1978, pp. 70–87.

[16] WILKINSON, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, Eng-

land, 1965, pp. 94–97.

[17] FARRENKOPF, R. L., “Analytic Steady-State Accuracy Solutions for Two Common

Spacecraft Attitude Estimators,” Journal of Guidance and Control , Vol. 1, No. 4, July-

Aug. 1978, pp. 282–284.

25 of 26



[18] CRASSIDIS, J. L. and MARKLEY, F. L., “Unscented Filtering for Spacecraft Attitude

Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, July-Aug.

2003, pp. 536–542.

26 of 26


