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Abstract

A general framework for the first and second complex-step derivative approxi-
mation to compute numerical derivatives is presented. For first derivatives the
complex-step approach does not suffer roundoff errors as in standard numerical
finite-difference approaches. Therefore, since an arbitrarily small step size can be
chosen, the complex-step approach can achieve near analytical accuracy. However,
for second derivatives straight implementation of the complex-step approach does
suffer from roundoff errors. Therefore, an arbitrarily small step size cannot be cho-
sen. In this paper the standard complex-step approach is expanded by using general
complex step sizes to provide a wider range of accuracy for both the first and sec-
ond derivative approximations. Even higher accuracy formulations are obtained by
repetitively applying Richardson extrapolations. The new extensions can allow the
use of one step size to provide optimal accuracy for both derivative approximations.
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1 Introduction

Using complex numbers for computational purposes is often intentionally
avoided because of the nonintuitive nature of this domain. However, this per-
ception should not handicap our ability to seek better solutions to the problems
associated with traditional (real-valued) finite-difference approaches. Many
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physical world phenomena actually have their roots in the complex domain
(1). The complex-step derivative approximation can be used to determine
first derivatives in a relatively easy way, while providing near analytic accu-
racy. Early work on obtaining derivatives via a complex-step approximation
in order to improve overall accuracy is shown by Lyness and Moler (2), as well
as Lyness (1). Various recent papers reintroduce the complex-step approach
to the research community (3; 4; 5; 6; 7). The advantages of the complex-step
approximation approach over a standard finite difference include: 1) the Ja-
cobian approximation is not subject to roundoff errors, 2) it can be used on
discontinuous functions, and 3) it is easy to implement in a black-box manner,
thereby making it applicable to general nonlinear functions.

Point of Diminishing Return

Log Error

Log Step Size

Fig. 1. Finite-Difference Error Versus Step Size

The complex-step approximation in the aforementioned papers is derived only
for first derivatives. A second derivative approximation using the complex-step
approach is straightforward to derive; however, this approach is subject to
roundoff errors for small step sizes since difference errors arise, as shown by the
classic plot in Figure 1. As the step size increases the accuracy decreases due
to truncation errors associated with not adequately approximating the true
slope at the point of interest. Decreasing the step size increases the accuracy,
but only to an “optimum” point. Any further decrease results in a degradation
of the accuracy due to roundoff errors. Hence, a tradeoff between truncation
errors and roundoff exists.

The traditional first order complex-step derivative approximation is derived
using a Taylor series expansion with an imaginary step size. In this paper, this
will be replaced with a general complex step size. A general complex number is
coupled with transcendental functions via Fuler’s relation; thus, in the context
wherever appropriate, the Taylor series will be depicted in terms of an angle.
A pair of Taylor series that are 180 deg apart is then used to derive both first
and second order derivative approximations. As with the traditional complex-
step first derivative, the new first derivative approximations do not suffer from
roundoff errors, but provide better truncation error characteristics. The new
second order derivative approximations offer better roundoff characteristics



compared to the straightforward extension of the traditional complex-step
approximation derivation. They also possess the benefit of better truncation
characteristics from the complex-step phenomenon. The new approximations
can be evaluated with step sizes at different magnitude. A weighted average is
performed on them to achieve even better accuracy from further improvement
of truncation errors. This technique is known as the Richardson extrapolation.

The organization of this paper proceeds as follows. First, the complex-step ap-
proximation for the first derivative of a scalar function is summarized, followed
by the derivation of the second-derivative approximation. Then, the Jacobian
and Hessian approximations for multi-variable functions are derived. Next, the
generalized complex-step derivative approximations are derived. Finally, a nu-
merical example is then shown that compares the accuracy of the new approx-
imations to standard finite-difference approaches. A more thorough analysis
could be found from Ref. (8).

2 Complex-Step Approximation to the Derivative

In this section the complex-step approximation is shown. First, the derivative
approximation of a scalar variable is summarized, followed by an extension to
the second derivative. Then, approximations for multi-variable functions are
presented for the Jacobian and Hessian matrices.

2.1 Scalar Case

Numerical finite-difference approximations for any order derivative can be
obtained by Cauchy’s integral formula (9)
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This function can be approximated by
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where h is the step size and 7 is the imaginary unit, /—1. For example, when
n=1m=2
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We can see that this formula involves a subtraction that would introduce
roundoff errors when the step size becomes too small.

2.1.1 First Derivative

The derivation of the complex-step derivative approximation is accomplished
by approximating a nonlinear function with a complex variable using a Taylor’s
series expansion (7):

Flo i) = Fa) +ihf (2) = o (@) 5 O ) + ) @)

Taking only the imaginary parts of both sides, dividing by h and rearranging

gives
, %{f(:c 4 ih)} 2 O(h?) ~ 0

f(x):T+_.(3) T... (5)

Terms with order h? or higher can be ignored since the interval h can be
chosen up to machine precision. Thus, to within first order the complex-step
derivative approximation is given by

$d flx+ih) 2
f (I) = {T} s Etrunc(h'> = %f(3) (LU) (6)

where Eiunc(h) denotes the truncation error. Note that this solution is not a
function of differences, which ultimately provides better roundoff characteris-
tics than a standard finite difference.

2.1.2 Second Derivative

In order to derive a second derivative approximation, the real components of
Eq. (4) are taken, which gives

h2 " h4
%{gf (x)}:f($)—%{f(x+ih)}+§f(4)(x)+... (7)
Analogous to the approach shown before, we solve for f*(x) and truncate up

to the second-order approximation to obtain
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As with Cauchy’s formula, this formula involves a subtraction that may intro-
duce machine roundoff errors when the step size is too small.



2.2  Vector Case

The scalar case is now expanded to include vector functions. This case involves

a vector f(x) of order m function equations and order n variables with x =
T

[xlv Lo, -, xn] .

2.2.1 First Derivative

The Jacobian of a vector function is a simple extension of the scalar case. This
Jacobian and its complex-step approximation are defined by
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(9b)

where e, is the p' column of an n'-order identity matrix and f, is the ¢'
equation of f(x).

2.2.2 Second Derivative

The procedure to obtain the Hessian matrix is more involved than the Jacobian
case. The Hessian matrix for the ¢'® equation of f(x) and its complex-step



appriximation are defined by
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where F (i, ) is obtained by using Eq. (8). The easiest way to describe this

procedure is by showing pseudocode, given by

Frz = Onxnxm
for £ =1tom
outl = f(x)
for k=1ton
small = 0,,,;
small(k) = 1
out2 = f(x + i * h x small)

Frw(k, K, &) = 2 [outl(ﬁ) — ﬂ?{out2(§)}}

B2

end

A=1

k=mn-—1

while x > 0
for g =1to

img_vec = 0,,4;
img vec(¢...0+ A\, 1) =1
out2 = f(x + i * h x img_vec)

Foo(d, 0+ X, 6) =
Fro(d+ X, 0,8) = Fou(0, 0+ N\, §)

end

kKk=k—1

% [outl(ﬁ) — §R{out2(£

O+ oA

a=¢ B=¢



A=A+1
end
end

where ${-} denotes the real value operator. The first part of this code com-
putes the diagonal elements and the second part computes the off-diagonal
elements. The Hessian matrix is a symmetric matrix, so only the upper or
lower triangular elements need to be computed.

3 Generalized Complex-Step Derivative Approximation

It can easily be seen from Eq. (4) that deriving second-derivative approxima-
tions without some sort of difference is difficult, if not intractable. With any
complex number [ that has |I| = 1, it’s impossible for /1 1 and I?1 I. But,
it may be possible to obtain better approximations than Eq. (8).

Fig. 2. Various Complex Numbers

Figure 2 shows the unity magnitude complex number raised to various rational
number powers with common denominator of 6, i.e. multiple of 15°. It is
convenient to represent the complex number in another way. With help from
trigonometry identities, these can be derived using i#/¢ = € with phase angle
0 = %90O = 2%% rad. The Taylor series expansion pair with complex step sizes
can then be written as

flz+ ewh) = f(x)+ i e”w%f(")(x) (11a)
n=1 :
7 T = ni T hn n
f(x+e(9+ )h) = f(x) +n§1€ O+ )Hf( )(x) (11Db)
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Fig. 3. Summation and Subtraction for 6 from 0° to 45° (Solid Lines = Real, Dotted

Lines = Imaginary)

Note that e*(0+m)

= —¢". Instead of representing the complex step with pow-

ered 7 or in exponential form, we can also represent it by using trigonometry
with Euler’s relation, e = cos@ + isin#, which bridges the field of algebra
with geometry. From Egs. (11) the summation and subtraction pairs are given

by

flx+eh) + f(z+ e ™h) = 2f (x) + 2 i lcos 2nd

flx+e?n) — flz 4 P h) =2 i [cos[(Qn — 1)6]

n=1
. R o)
+ i sin 2nf wf (x)
(12a)
. h2 1 (2n—1)
+isin[(2n — 1)6] mf (x)

(12b)



(c) i%6 or 6 = 90°
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Fig. 4. Summation and Subtraction for  from 60° to 105° (Solid Lines = Real,
Dotted Lines = Imaginary)

Finally solving for f”(z) and f'(z) yields

f(z+e?h) —2f(x) + f(x + O™ h)

fiw) = [cos 260 + i sin 20]h?
—2 Z_j? [cos[(2n — 2)6] +isin[(2n — 2)9]1 % £ (x)
oo @+ eh) — fla+e@mh)
) = 2[cos + isinb]h
- Z_:z [COS[(Q?’L —2)0] + isin[(2n — 2)9]] hf@"_l)(x)

(13a)

(13b)

Instead of raising i to a number, Egs. (13) clearly has the advantage of sepa-
rating the real and imaginary components. If the separation is not necessary,
they can be expressed in a simpler form

f(x+eh) —2f(x) + f(z — “h) Ly

o0
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0 0 o0
f,(x):f(x+e h; Zﬂf(x e’ h) Z
e“h
This generalization also works for pure real-valued finite differences by sim-
ply using 8 = 0. The extension of all the aforementioned approximations to
multi-variables for the Jacobian and Hessian matrices is straightforward, which

follow along similar lines as the previous section.

The first and second order complex-step derivative approximations (CSDAs)
have so far been generalized for any angle of the complex step. However, a
suitable angle @ is needed to unlock the full potential of the CSDA. Figures
3, 4 and 5 show the real and imaginary of the summation (for finding second
derivative) and subtraction (for finding first derivative) pairs of the Taylor se-
ries expansion with complex step sizes that are 180° apart, i.e. from Egs. (12).
The z-axis represents the derivative of the function. Notice that k£ # n, in
fact, k = 2n for the summation (second derivative) cases and k = 2n — 1
for the subtraction (first derivative) cases. These figures are generated with

2¢+
kG £ 4"77" . These figures give some intuitive perception into the CSDAs.

10



There are several interesting cases where certain elements (real or imaginary
component) of the series annihilate, shown as “flat lines” in the plots. With ref-
erence to Eqgs. (12) and (14), these correspond to when sine or cosine evaluates
to zero. This phenomenon is desirable and to be taken advantage to increase
the convergence rate of the Taylor series approximation towards the original
nonlinear function. In fact, this is the main goal of evaluating functions with
a complex step size. With a carefully chosen “angle,” we can eliminate terms
that we do no wish to evaluate.

In most applications, the more terms in the Taylor series that do no need to be
evaluated, the higher order the approximation, which leads to better accuracy.
Thus, more “flat lines” lead to higher accuracy. Most cases have few or no flat
lines where annihilation occurs. A flat line or annihilation occurs when the
transcendental function sine or cosine evaluates to zero. This obviously has to
occur at 90° or 270° for cosine and 0° or 180° for sine. From Euler’s relation,
cosine is coupled to the real component and sine to the imaginary component.
Therefore, the CSDA angle needs to be related to these four angles to produce
the greatest numbers of flat lines. Thus, it is not surprising to see that 45°
produces the greatest number of flat lines for the summation cases and 60°
produces the most flat lines for the subtraction cases. In addition, it is desired
to have more flat lines at the lower & number, since k links to the order of
derivative, and canceling of these terms enhances the derivative approximation
accuracy with higher-order truncation error.

3.1 Richardson Eztrapolation

Richardson’s extrapolation is now summarized (10). Assuming D as the deriva-
tive approximation, let the first column of a to-be-determined matrix be

Do, = D(h/¢"") fora=1,...,n (15)

and other elements as

"Dy 1 — Do-15-1

Da,ﬁ = qkﬁ,l -1

for 6=2,...,n (16)
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Then we can find higher precision approximation by filling up a lower triangle
matrix

Diq
k
_ ¢"1D21—-D1
Dy Dyy = AT
k k
_ q¢"1D31—D2 _ q"2D32—Ds>
D3,1 D3,2 - qkl—l D3,3 - qk2_1
k k Ky
_ ¢1Dp1—Dp_1,1 _ q¢"Dnp2—Dn_12 ¢ 1Dy 1 —Dp1 1
Dn,l Dn,2 - Zkl_ln Dn,3 - Zkz_ln e Dn,n - leln,l_ln =

where the last element, D, , is the most accurate approximation with error

O(h*»).

3.2 Useful Cases

This section studies the two cases with the most flat lines (i.e. highest accuracy
or convergence rate) at = 45° and # = 60°. There is a tradeoff between
first-derivative accuracy and second-derivative accuracy. For example 45° may
work best for second-order accuracy but offers no CSDA benefit for the first
derivative. On the other hand, 60° offers better first-order derivative accuracy
at the expense of accuracy in the second-order derivative.

3.2.1 0 =45°
From Eq. (14a) with § = 45° and taking only the imaginary components gives

, S{f(x +ih) + f(x+P/h)}

h4
f (LU) = B2 ; Etrunc(h'> = %

fOx)  (17)

Note that when n = 2, the imaginary component sin2nf = 0, thus the first
non-zero value occurs when n = 3 corresponds to O(h?'), which is the main
goal of the complex-step derivative approximation. This approximation is still
subject to difference errors, but the truncation error associated with this ap-
proximation is h* f)(2)/360 whereas the error associated with Eq. (8) is
h? fW(x)/12. It will also be shown through simulation that Eq. (17) is less
sensitive to roundoff errors than Eq. (8).

Unfortunately, to obtain the first and second derivatives using Egs. (6) and

(17) requires function evaluations of f(z+ih), f(z+i'/?h) and f(x+i%/%h). To
obtain a first-derivative expression that involves f(x+i'/2h) and f(z +14°2h),

12



we substitute § = 45° into Eq. (14b) and again take the imaginary components:

o) = f(z+i2h) — f(x +i5/%h)
B V2(i+1)h

Actually either the imaginary or real parts of Eq. (18) can be taken to deter-
mine f (x); however, it’s better to use the imaginary parts since no differences
exist (they are actually additions of imaginary numbers) since f(x 4 i'/2h) —
f(z+°%h) = f(z +14Y2h) — f(x — i*/2h). This yields

(18)

o S{f@+i2h) — e+ Ph) ) R
f(x) = o~ » Buue(h) = =5 fP(2) (19)

The approximation in Eq. (19) has errors equal to Eq. (6). Hence, both forms
yield identical answers; however, Eq. (19) uses the same function evaluations
as Eq. (17).

Now, a Richardson extrapolation is applied for further refinement. From Eq. (16)
with ¢ = 2 and k; = 4,

A S{F (28 1 p(wtis/2 )} %{f(x+i1/2h)+f(x+i5/2h)}
f(x) = ’ h2/4 _ 72

21— 1
C‘{64 f <$+i1/2%> + f <x+i5/2%>}

- {f (z+42h) +f(:c+i5/2h)]}/ (15%)

h8
1,814, 400

I
4

Etrunc(h) - f(lo) (ZIZ’) (20)
This approach can be continued ad nauseam using the next value of k. How-
ever, the next highest-order derivative-difference past O(h®) that has imag-
inary parts is O(h'?). This error is given by m fOY (x). Hence, it
seems unlikely that the accuracy will improve much by using more terms. The
same approach can be applied to the first derivative as well. Applying the

Richardson extrapolation with ¢ = 2, k; = 2, to Eq. (19) yields

fu»=%{8p<x+fﬂg>—f<x+fﬂgﬂ
= [f (z+"2h) = f (z+i°h)] }/(3 V2h) |

h4
Etrunc (h') = TAA

= 2 f9@) )

13



Performing the Richardson extrapolation again would cancel fifth-order deriva-
tive errors, which leads to the following approximation:

! o L 5727
f(z) :\y{4096 [f (x—i—z/ Z) —f <x+z5/ Z)}
— 640 [f <x+z’1/zg> — f <z+z'5/2g>]

+16[f (z +1'/h) — f(a;+z5/2h)}}/(720 V2h)

h6
EtrunC(h) = Mfm (x) (22>

As with Eq. (19), the approximations in Eq. (21) and Eq. (22) are not subject
to roundoff error, so an arbitrarily small value of h can be chosen up to the
roundoff error.

3.2.2 6 =60°

From Eq. (14) with § = 60° and taking only the imaginary components gives

, S{f(x +i*3h) = f(z+ih)} .
f (.CL’) = \/§h 5 Etrunc(h) = ﬁf( )(SL’) (23&)
o S{f@+ @5 + f@+R) )

_ P
\/gh s Etrunc(h) = ﬂf 4 (ZL’) (23b)

Performing a Richardson extrapolation once on each of these equations yields

f <x+i2/3g> —f <x+i8/3g>]

— [f(@+Ph) = fx+ih)] }/ (15v3h) |

f(z) = %{32

hG

__ (M
@) (24a)

Etrunc(h) =
filz) = 2%‘{ {f(x +i?Ph) + f(z + z'8/3h)]
— 16 [f(wﬂz/?’g) +f(x +z'8/3g)]}/ (3v3n*)

hG

_" e
1030/ (@) (24b)

Etrunc (h) =

14



These solutions have the same order of accuracy as Eq. (22), but involves
less function evaluations. Using i?/% instead of i!/? for the second-derivative
approximation yields worse results than Eq. (20) since the approximation has
errors on the order of h% f®(z) instead of h® £(1°)(z). Hence, a tradeoff between
the first-derivative and second-derivative accuracy will always exist if using the
same function evaluations for both is desired. Higher-order versions of Eq. (24)
are given by

!

f(x) = %{3072 [f(:c + 1’2/3%) — flx+ z8/3%)]

— 256 [f(:c - 1’2/3%) — f(z+ z8/3g)}

F5[f(e+ @) - fla+®h) }/(645 V3h)

th

= 309168007 "ia) (250)

Etrunc (h')

"

£ (2) =2 %{15 (£ + 23 + f(x +i¥h)]
+16 | f(z + i2/3g) + flz+ z’8/3g)}

— 4096 | f(x + 2'2/3%) + flz+ z‘8/3%)} }/(237 YEV S

h8
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3.8  Simple Examples

Consider the following highly nonlinear function:

61‘

\/sins(x) + cos3(x)

fx) = (26)

evaluated at x = —0.5. Error results for the first and second derivative ap-
proximations are shown in Figure 6(a). Case 1 shows results using Eqgs. (22)
and (20) for the first and second order derivatives, respectively. Case 2 shows
results using Eqs. (21) and (17) for the first and second order derivatives, re-
spectively. Case 3 shows results using Eqs. (6) and (8) for the first and second
order derivatives, respectively. We again note that using Eq. (19) produces the
same results as using Eq. (6). Using Egs. (22) and (20) for the approximations
allows one to use only one step size for all function evaluations. For this ex-
ample, setting h = 0.024750 gives a first derivative error on the order of 10716
and a second derivative error on the order of 1075, Figure 6(b) shows results
using Eqgs. (21) and (20), Case A, versus results using Eqs. (24a) and (24b),
Case B, for the first and second derivatives, respectively. For this example
using Eqgs. (24a) and (24b) provides the best overall accuracy with the least
amount of function evaluations for both derivatives.

Another example is given by using Halley’s method for root finding. The
iteration function is given by

I T CAYACS
I S - o) £ ) 2
The following function is tested:
o) = 4= 29

\/sin4(x) + cost(x)

which has a root at x = 0. Equation (27) is used to determine the root with a
starting value of xy = 5. Equations (21) and (20) are used for the complex-step
approximations. For comparison purposes the derivatives are also determined
using a symmetric 4-point approximation for the first derivative and a 5-point
approximation for the second derivative:

vy fle—=2h)=8f(x—h)+8f(x+h)— f(x+2h)
f(x) = o ,

h4
Etrunc(h) = %.f(S) (ZIZ’) (29&)
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Fig. 7. Error Plots for Root Finding Problem by using the Halley’s Method

, —f(x —2h) + 16 f(z — h) — 30 f(z) + 16 f(z + h) — f(z +2h)
/(@) = . ,

hG
Etrunc<h> = %f(@ ('T) (29b)

MATLAB® is used to perform the numerical computations. Various values of
h are tested in decreasing magnitude (by one order each time), starting at
h = 1 and going down to h = 1 x 107%° and results shown in Fig. 7. Referring
to Fig. 7(c), values of h = 0.1 to h = 1 x 1077 both methods converge, but
the complex-step approach convergence is faster or (at worst) equal to the
standard finite-difference approach. For values less than 1 x 1077, e.g. when
h =1 x 1078, the finite-difference approach becomes severally degraded. For
h values from 1 x 1078 down to 1 x 10715, the complex-step approach al-
ways converges in less than 15 iterations. When h = 1 x 1076 the finite-
difference approach produces a zero-valued correction for all iterations, while
the complex-step approach converges in about 40 iterations (not shown in
figure).
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3.4 Multi- Variable Numerical Example

A multi-variable example is now shown to assess the performance of the
complex-step approximations. The infinity norm!l is used to access the ac-
curacy of the numerical finite-difference and complex-step approximation so-
lutions. The relationship between the magnitude of the various solutions and
step size is also discussed. The function to be tested is given by two equations
with four variables:

2 2 2.3
f1 TiT2T3Ty + Lo 3T4

f2 = (30)

2, 2 3,2
fa TIToX5T4 + T1T5T7

These functions will be evaluated nominally at x =[5, 3, 6, 4]T.

Numerical Solutions

The step size for the Jacobian and Hessian calculations (both for complex-
step approximation and numerical finite-difference) is 1 x 10~%. The absolute
Jacobian error between the true and complex-step solutions, and true and
numerical finite-difference solutions, respectively, are

[0.0000 0.0000 0.3600 0.0000] .
|A°F,| = x 10~ (31a)
0.0000 0.8000 0.0000 0.0000

0.2414 0.3348 0.0485 0.1074]
A"F,| = %10~ (31b)
0.1051 0.4460 0.0327 0.0298

The infinity norms of Eq. (31) are 8.0008x 10~? and 7.3217x 1078, respectively,
which means that the complex-step solution is more accurate than the finite-
difference one. The absolute Hessian error between the true solutions and the
complex-step and numerical finite-difference solutions, respectively, are

[0.0000 0.0011 0.0040 0.0016]
10,0011 0.0010 0.0011 0.0009
[A°F},| = (32a)
0.0040 0.0011 0.0019 0.0021

10.0016 0.0009 0.0021 0.0004]

I The largest row sum of a matrix A, |A|s = max{>_ |AT|}.
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[0.0002 0.0010 0.0041 0.0017)
- 0.0010 0.0009 0.0011 0.0011
A"F,,| = (32b)
0.0041 0.0011 0.0021 0.0019

10.0017 0.0011 0.0019 0.0003]

and

[0.0018 0.0007 0.0030 0.0064)
L |0.0007 0.0016 0.0010 0.0018
[A°F},| = (33a)

0.0030 0.0010 0.0018 0.0004

10.0064 0.0018 0.0004 0.0029]

[0.0018 0.0007 0.0031 0.0065]
L [0.0007 0.0015 0.0008 0.0021
[A"F7,| = (33b)

0.0031 0.0008 0.0018 0.0006

10.0065 0.0021 0.0006 0.0025]

The infinity norms of Eq. (32) are 9.0738 x 1073 and 9.1858 x 1073, respec-
tively, and the infinity norms of Eq. (33) are 1.1865 x 1072 and 1.2103 x 1073,
respectively. As with the Jacobian, the complex-step Hessian approximation
solutions are more accurate than the finite-difference solutions.

Performance Evaluation

The performance of the complex-step approach in comparison to the numerical
finite-difference approach is examined further here using the same function.
Tables 1 and 2 shows the infinity norm of the error between the true and the
approximated solutions. The difference between the finite-difference solution
and the complex-step solution is also included in the last three rows, where
positive values indicate the complex-step solution is more accurate. In most
cases, the complex-step approach performs either comparable or better than
the finite-difference approach. The complex-step approach provides accurate
solutions for A values from 0.1 down to 1x 1072, However, the range of accurate
solutions for the finite-difference approach is significantly smaller than that
of complex-step approach. Clearly, the complex-step approach is much more
robust than the numerical finite-difference approach.

Figure 8 shows plots of the infinity norm of the Jacobian and Hessian errors
obtained using a numerical finite-difference and the complex-step approxima-
tion. The function is evaluated at different magnitudes by multiplying the
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Finite-Difference, Dotted Lines = Complex-Step)
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Fig. 9. Infinity Norm of the Jacobian Error Matrix for Different Magnitudes and
Step Sizes

nominal values with a scale factor from 1 down to 1 x 1071%. The direction of
the arrow shows the solutions for decreasing x. The solutions for the complex-
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Fig. 10. Infinity Norm of the Hessian Error Matrix for Different Magnitudes and
Step Sizes

step and finite-difference approximation using the same x value are plotted
with the same color within a plot.

For the case of the finite-difference Jacobian, shown in Figure 8(a), at some
certain point of decreasing step size, as mentioned before, the roundoff error
becomes dominant which decreases the accuracy. The complex-step solution
does not exhibit this phenomenon and the accuracy continues to increase with
decreasing step size up to machine precision. As a higher-order complex-step
approximation is used, Eq. (24a) instead of Eq. (6), the truncation errors
for the complex-step Jacobian at larger step sizes are also greatly reduced to
the extent that the truncation errors are almost unnoticeable, even at large
x values. The complex-step approximation for the Hessian case also benefits
from the higher-order approximation, as shown in Figures 8(b) and 8(c). The
complex-step Hessian approximation used to generate these results is given by
Eq. (24b). One observation is that there is always only one (global) optimum
of specific step size with respect to the error.

Figures 9 and 10 represent the same information in more intuitive looking
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Table 1

Infinity Norm of the Difference from Truth for Larger Step Sizes, h

h 1 x 10° 1x 1071 1 x 1072
|A"F | 8.0004 x 107 8.0554 x 1077 | 8.2664 x 107?
|ACF,| 8.0026 x 10~ 8.0004 x 1072 | 8.0013 x 10~*
|A"FL | 8.0000 9.1000 x 1072 | 9.1000 x 1073
|ACFL | 9.1000 x 103 9.1000 x 10~% | 9.1000 x 103
|A"F2, 7.9990 1.1100 x 1072 1.1900 x 10~2
|ACF2 | 1.1900 x 1072 1.1900 x 1072 | 1.1900 x 102
|A"F,| — |A°F,| | —2.2737 x 10712 | 55024 x 10711 | 2.6512 x 10710
|APFL | —|ACFL, 7.9909 —5.0477 x 10711 | 3.5698 x 10710
|A"MF2 | — |A°F2,| 7.9871 —8.0000 x 107% | —6.5184 x 1078
h 1x1073 1x1074

|A"F | 9.6984 x 1079 | 7.3218 x 1078

|ACF,| 8.0026 x 1079 | 8.0008 x 10~

|A"FL | 9.1000 x 10~ | 9.2000 x 1073

|AEL 9.1000 x 1072 | 9.1000 x 1073

|A"E2 | 1.1900 x 10=2 | 1.2100 x 102

|ACF2 | 1.1900 x 10=2 | 1.1900 x 102

|A"F,| — |A°F,| | 1.6958 x 107Y | 6.5217 x 1078

|JAPEL | —|A°FL | | 1.5272 x 1076 | 1.1200 x 10~

|AMF2. | — |AF2,| | —5.3940 x 1078 | 2.3823 x 1074

three-dimensional plots. The “depth” of the error in log scale is represented as
a color scale with dark red being the highest and dark blue being the lowest. A
groove is clearly seen in most of the plots (except the complex-step Jacobian),
which corresponds to the optimum step size. The “empty surface” in Figure 9
corresponds to when the difference between the complex-step solution and the
truth is below machine precision. This is shown as “missing line” in Figure
8(a). Clearly, the complex-step approximation solutions are comparable or

more accurate than the finite-difference solutions.
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Table 2

Infinity Norm of the Difference from Truth for Smaller Step Sizes, h

h 1x107° 1x1076 1x 1077
|A"E, | 1.0133 x 1076 | 6.4648 x 1076 | 5.8634 x 10~°
|ACF,| 8.0026 x 1079 | 8.0004 x 1072 | 8.0026 x 10~*
|A"F]L | 1.0160 x 1071 7.6989 9.5627 x 102
|ACFL | 9.1000 x 1073 | 9.1000 x 10~2 | 9.1000 x 1073
|A"F2, 7.3500 x 1072 4.2094 3.1084 x 102
|ACF2 | 1.1900 x 1072 | 1.1900 x 1072 | 1.1700 x 1072

|A"F,| — |A°F,| | 1.0053 x 1075 | 6.4568 x 107 | 5.8626 x 10~°
|A"FL | — |A°FL | | 9.2500 x 1072 7.6898 9.5626 x 102
|APF2.| — |A°F2,| | 6.1600 x 10~2 4.1976 3.1082 x 102
h 1x1078 1x107° 1x10710
|A"F | 5.0732 x 10~* | 3.5000 x 1073 | 3.1200 x —2
|ACF,| 8.0013 x 107 | 7.9995 x 1072 | 7.9999 x —9
|A"FL | 52882 x 10* | 2.2007 x 105 | 1.5916 x 8
|ACFL 9.1000 x 1073 | 1.4800 x 1072 | 1.2730 x —1
|A"E2 | 4.9658 x 10* | 7.6182 x 105 | 2.4253 x 8
|ACF2 | 1.3500 x 1072 | 8.8000 x 1073 | 9.9700 x —2
|A"F,| — |A°F,| | 5.0731 x 10=* | 3.5000 x 1073 | 3.1200 x —2
|APEL | —|A°FL | | 5.2882 x 10* | 2.2007 x 105 | 1.5916 x 8
|AMF2 | — |AF2,| | 4.9658 x 10* | 7.6182 x 10° | 2.4253 x 8

4 Conclusion

This paper demonstrated the ability of numerically obtaining derivative in-
formation via complex-step approximations. For the Jacobian case, unlike
standard derivative approaches, more control in the accuracy of the standard
complex-step approximation is provided since it does not succumb to roundoff
errors for small step sizes. For the Hessian case, however, an arbitrarily small
step size cannot be chosen due to roundoff errors. Also, using the standard
complex-step approach to approximate second derivatives was found to be
less accurate than the numerical finite-difference obtained one. The general-
ized complex-step derivative approximations were derived for first and second
derivatives and their truncation errors were decreased by evaluating the func-
tion with complex step at various angles. These new approximations offer a
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wider range of accuracy for larger step sizes in both the Jacobian and Hessian
approximations by using the same function evaluations and step sizes for both.
These new expressions allow a designer to choose one step size in order to pro-
vide very accurate approximations, which minimizes the required number of
function evaluations. Another main advantage is that a “black box” can be
employed to obtain the Jacobian or Hessian matrices for any vector function.
Further increase in accuracy can be achieved with Richardson extrapolations.
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