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In this paper a generalized multiple-model adaptive estimator is presented that can be

used to estimate the unknown noise statistics in filter designs. The assumed unknowns in

the adaptive estimator are the process noise covariance elements. Parameter elements gen-

erated from a quasi-random sequence are used to drive multiple-model parallel filters for

state estimation. The current approach focuses on estimating the process noise covariance

by sequentially updating weights associated with the quasi-random elements through the

calculation of the likelihood function of the measurement-minus-estimate residuals, which

also incorporates correlations between various measurement times. For linear Gaussian

measurement processes the likelihood function is easily determined. For nonlinear Gaus-

sian measurement processes, it is assumed that the linearized output sufficiently captures

the statistics of the likelihood function by making the small noise assumption. A proof is

provided that shows the convergence properties of the generalized approach versus the stan-

dard multiple-model adaptive estimator. Simulation results, involving a two-dimensional

target tracking problem using an extended Kalman filter, indicate that the new approach

provides better convergence properties over a traditional multiple-model approach.

I. Introduction

Modern-day control systems rely heavily on filters (estimators) to provide full-state feedback and to
also filter sensor noise. With the advent of micro-electro-mechanical systems (MEMS)-type sensors, state
estimation becomes even more crucial in control systems, because these sensors are generally not as accurate
as standard sensors. However, they offer several advantages over larger sensors, including the ability to
be mass-produced at low prices. MEMS-type sensors and actuators currently provide a multi-billion dollar
market in a wide range of areas, such as automotive, industrial, defense, medical, mass data storage and
optical switching.a

Health monitoring and fault detection techniques have increasingly become commonplace with MEMS
devices. Most modern-day applications use a model-based approach combined with filter residuals, i.e. mea-
surement minus filter-estimate. The deviation of the residuals from zero is the combined result of noise and
faults,1 Since noise is always present in a sensor, statistical analysis is often used to detect faults. Many
approaches exist that can be used for model-based fault detection. In this paper we concentrate on a common
approach that incorporates multiple models in an adaptive structure using filtering algorithms.2

Filtering algorithms, such as the extended Kalman filter (EKF),3 the Unscented filter (UF)4 and Particle
filters (PFs),5, 6 are commonly used to both estimate unmeasurable states and filter noisy measurements. The
EKF and UF assume that the process noise and measurement noise are represented by zero-mean Gaussian
white-noise processes. Even if this is true, both filters only provide approximate solutions when the state
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and/or measurement models are nonlinear, since the a posteriori density function is most often non-Gaussian.
The EKF typically works well only in the region where the first-order Taylor-series linearization adequately
approximates the non-Gaussian probability density function (pdf). The Unscented filter works on the premise
that with a fixed number of parameters it should be easier to approximate a Gaussian distribution than to
approximate an arbitrary nonlinear function. This in essence can provide higher-order moments for the
computation of the a posteriori function without the need to calculate Jacobian matrices as required in the
EKF. Still, the standard form of the EKF has remained the most popular method for nonlinear estimation to
this day, and other designs are investigated only when the performance of this standard form is not sufficient.

Like other approximate approaches to optimal filtering, the ultimate objective of a PF is to construct
the a posteriori pdf of the state vector, or the pdf of the state vector conditioned on all the available
measurements. However, the approximation of a PF is vastly different from that of conventional nonlinear
filters. The central idea of the PF approximation is to represent a continuous distribution of interest by
a finite (but large) number of weighted random samples of the state vector, or particles. Particle filters
do not assume the a posteriori distribution of the state vector to be a Gaussian distribution or any other
distribution of known form. In principle, they can estimate probability distributions of arbitrary form and
solve any nonlinear and/or non-Gaussian system.

Even if the process noise and/or measurement noise are Gaussian, all standard forms of the EKF, UF
and PFs require knowledge of their characteristics, such as the mean and covariance for a Gaussian process.
The covariance and mean of the measurement noise can be inferred from statistical inferences and calibration
procedures of the hardware sensing devices. The calibration procedures can also be used to determine the
nature of the measurement process distribution. The kurtosis characterizes the relative compactness of the
distribution around the mean, relative to a Gaussian distribution. A common kurtosis, called the “Pear-
son kurtosis,” divides the fourth moment by the second moment.7 A greater-than-three Pearson kurtosis
indicates a relatively peaked distribution, while a less-than-three Pearson kurtosis indicates a relatively flat
distribution. However, the process noise is extremely difficult to characterize because it is usually used to
represent modeling errors. Its covariance is usually determined by ad hoc or heuristic approaches, which
leads to the classical “tuning of the filter” problem. Fortunately, there are tools available to aid the filter
designer. For example, several tests can be applied to check the consistency of the filter from the desired
characteristics of the measurement residuals. These include the normalized error square test, the autocorre-
lation test and the normalized mean error test.2 These tests can, at the very least, provide mechanisms to
show that a filter is not performing in an optimal or desired fashion.

In practice the tuning of a filter can be arduous and time consuming. A classic approach to over-
come this difficulty is to use adaptive filters. Adaptive filtering can be divided into four general categories:
Bayesian, maximum likelihood, covariance matching, and correlation approaches.8 Bayesian and maximum
likelihood methods may be well suited to a multi-model approaches, but sometimes require large compu-
tational loads. Covariance matching is the computation of the covariances from the residuals of the state
estimation problem, but have been shown to give biased estimates of the true covariances. A widely used
correlation-based approach for a linear Kalman filter with stationary/Gaussian process and measurement
noise is based on “residual whitening.”9 In particular, the autocorrelation matrix, which can be computed
from the measurement-minus-estimate residuals, is used with the system state matrices to provide a least-
squares estimate of the Kalman filter error covariance times the measurement output matrix. If the number
of unknowns in the process noise covariance is equal to or less than the number of states times the number
of outputs, then the error-covariance/output-matrix estimate can be used to find an estimate of the process
noise covariance by solving for a set of linear equations. These equations are not linearly independent and
one has to choose a linearly independent subset of these equations.9

Adaptive filtering for nonlinear systems has recently gained attention. Parlos et al. shows a neural
net to constructively approximate the state equations.10 The proposed algorithms in their work make
minimal assumptions regarding the underlying nonlinear dynamics and their noise statistics. Nonadaptive
and adaptive state filtering algorithms are presented with both off-line and on-line learning stages. Good
performance is shown for a number of test cases. Lho and Painter show an adaptive filter using fuzzy
membership functions, where the fuzzy processing is driven by an inaccurate online estimate of signal-to-
noise ratio for the signal being tracked.11 Good results are shown for a simple tracking problem. Lee and
Alfriend show an adaptive scheme that can be used to estimate the process noise covariance for both the UF
and the first-order divided difference filter.12 The standard update approach requires proper selection of a
window size to control the level of the variance update. The innovation of their work is a procedure that
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automatically calculates the window size using a derivative-free numerical optimization technique. Good
results are shown for satellite orbit determination applications.

A new approach is derived in Ref. 13 for adaptive filtering based on generalizing the standard multiple-
model adaptive estimation (MMAE) algorithm.14 A MMAE algorithm uses a parallel bank of filters to
provide multiple estimates, where each filter corresponds with a dependence on some unknowns, which
can be the process noise covariance elements if desired. The state estimate is provided through a sum of
each filter’s estimate weighted by the likelihood of the unknown elements conditioned on the measurement
sequence. The likelihood function gives the associated hypothesis that each filter is the correct one. Standard
MMAE algorithms use only the current time measurement-minus-estimate residual to test the hypothesis.
The approach in Ref. 13 is a generalization of Ref. 15, which uses the time correlation of the filter residuals to
assign the likelihood for each of the modeled hypotheses. In particular, the spectral content of the residuals
is used and only scalar measurements are assumed in Ref. 15. The authors also state that if multiple
measurements are available, then a diagonal matrix can be used with elements given by the spectral content
of each measurement residual, but this assumes that the cross-correlation terms are negligible. Also, the
focus of their paper is on the detection of actuator failures with known control-input frequency content.

The new approach, called generalized multiple-model adaptive estimation (GMMAE), is based on calcu-
lating the time-domain autocorrelation function, which is used to form the covariance of a generalized residual
involving any number of backward time steps. This covariance matrix also includes the time correlated terms,
thus providing a more rigorous approach. The unknown elements in our design are the parameters of the pro-
cess noise covariance. Process noise covariance elements can be drawn from any sample distribution as long
as the resulting covariance matrix remains positive semi-definite. A Hammersley quasi-random sequence16

is chosen due to its well distributed pattern. The covariance elements are estimated using a weighted sum
of the quasi-random elements, similar to the approach used for state estimation in PFs. An expression for
the error-covariance of the estimates is also provided, which gives a bound on the process noise parameter
estimates. In this paper a theoretical proof of the convergence properties of the GMMAE is shown, which
offers insight as to its advantages of the standard MMAE approach.

The organization of the remainder of this paper proceeds as follows. First, the standard EKF equations
are summarized, since this filter will be used in the simulations. Then, a review of the standard MMAE
algorithm is given. Next, the new adaptive approach is shown, including the assumptions used for a method
that can incorporate nonlinear measurement models in the adaptive approach. The theoretical background
for the GMMAE approach and proof of convergence is then shown. Finally, simulation results involving a
two-dimensional target tracking problem are shown.

II. Extended Kalman Filter

A summary of the continuous-discrete EKF is given in Table 1, where x(t) is the n× 1 state vector, u(t)
is the known control input, G(t) is the process noise distribution matrix, w(t) is the process noise vector
which is assumed to be a zero-mean Gaussian noise process with spectral density Q(t), ỹk is the discrete-
time measurement, vk is the measurement noise vector which is assumed to be a zero-mean Gaussian noise
process with covariance Rk, x̂−

k and x̂+
k are the propagated and updated state estimates, respectively, and

P−
k and P+

k are the propagated and updated covariances, respectively. Oftentimes, if the sampling interval
is below Nyquist’s limit, a discrete-time propagation of the covariance is used:

P−
k+1 = ΦkP+

k ΦT
k + Qk (1)

where Φk is the discrete-time state transition matrix of F (x̂(t), t) and Qk is the discrete-time process noise
covariance matrix. These matrices can be numerically computed for a constant sampling interval using an
algorithm given by van Loan.17 First, the following 2n× 2n matrix is formed:

A =







−F (x̂(t), t) G(t)Q(t)GT (t)

0 FT (x̂(t), t)






∆t (2)
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Table 1. Continuous-Discrete Extended Kalman Filter

ẋ(t) = f(x(t), u(t), t) + G(t)w(t), w(t) ∼ N(0, Q(t))
Model

ỹk = h(xk) + vk, vk ∼ N(0, Rk)

x̂(t0) = x̂0

Initialize
P0 = E

{

x̃(t0) x̃
T (t0)

}

Kk = P−
k HT

k (x̂−
k )[Hk(x̂−

k )P−
k HT

k (x̂−
k ) + Rk]−1

Gain
Hk(x̂−

k ) ≡
∂h

∂x

∣

∣

∣

∣

x̂
−

k

x̂+
k = x̂−

k + Kk[ỹk − h(x̂−
k )]

Update
P+

k = [I −KkHk(x̂−
k )]P−

k

˙̂x(t) = f(x̂(t), u(t), t)

Propagation Ṗ (t) = F (x̂(t), t)P (t) + P (t)FT (x̂(t), t) + G(t)Q(t)GT (t)

F (x̂(t), t) ≡
∂f

∂x

∣

∣

∣

∣

x̂(t)

where ∆t is the constant sampling interval. Then, the matrix exponential of Eq. (2) is computed:

B = eA ≡







B11 B12

0 B22






=







B11 Φ−1
k Qk

0 ΦT
k






(3)

where B11 is not needed in the computation of Φk and Qk. The state transition matrix is then given by

Φk = BT
22 (4)

Also, the discrete-time process noise covariance is given by

Qk = Φk B12 (5)

Note that Eqs. (4) and (5) is only valid for time-invariant systems and covariance matrices. However, if if
the sampling interval is “small” enough, then computing them using the aforementioned approach gives a
good approximation to the actual matrices. Note that the first-order approximation of Qk is given by

Qk ≈ ∆t G(t)Q(t)GT (t) (6)

In most cases Q(t) is a diagonal matrix, while Qk contains cross-correlation terms due to sampling. These
cross-correlations can be ignored if Eq. (6) is a good approximation for Qk.

III. Multiple-Model Adaptive Estimation

In this section a review of MMAE is shown. More details can be found in Refs. 18 and 19. Multiple-
model adaptive estimation is a recursive estimator that uses a bank of filters that depend on some unknown
parameters, denoted by the vector p, which is assumed to be constant (at least throughout the interval of
adaptation). Note that we do not necessarily need to make the stationary assumption for the state and/or
output processes though, i.e. time varying state and output matrices can be used. A set of distributed
elements is generated from some known pdf of p, denoted by p (p), to give {p(ℓ); ℓ = 1, . . . , M}. The goal of
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the estimation process is to determine the conditional pdf of the ℓth element p(ℓ) given all the measurements.
Application of Bayes’ rule yields

p (p(ℓ)|Ỹk) =
p (Ỹk|p

(ℓ)) p (p(ℓ))
M
∑

j=1

p (Ỹk|p
(j)) p (p(j))

(7)

where Ỹk denotes the sequence {ỹ0, ỹ1, . . . , ỹk}. The a posteriori probabilities can be computed through20

p (p(ℓ)|Ỹk) =
p (ỹk, p(ℓ)|Ỹk−1)

p (ỹk|Ỹk−1)

=
p (ỹk|x̂

−(ℓ)
k ) p (p(ℓ)|Ỹk−1)

M
∑

j=1

[

p (Ỹk|x̂
−(j)
k ) p (p(j)|Ỹk−1)

]

(8)

since p (ỹk, |Ỹk−1, p(ℓ)) is given by p (ỹk|x̂
−(ℓ)
k ) in the Kalman recursion. Note that the denominator of

Eq. (8) is just a normalizing factor to ensure that p (p(ℓ)|Ỹk) is a pdf. The recursion formula can now be

cast into a set of defined weights ̟
(ℓ)
k , so that

̟
(ℓ)
k = ̟

(ℓ)
k−1p (ỹk|x̂

−(ℓ)
k )

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(9)

where ̟
(ℓ)
k ≡ p (p(ℓ)|ỹk). Note that only the current time measurement ỹk is needed to update the weights.

The weights at time t0 are initialized to ̟
(ℓ)
0 = 1/M for ℓ = 1, 2, . . . , M . The convergence properties of

MMAE are shown in Ref. 20, which assumes ergodicity in the proof. The ergodicity assumptions can be
relaxed to asymptotic stationarity and other assumptions are even possible for non-stationary situations.21

The conditional mean estimate is the weighted sum of the parallel filter estimates:

x̂−
k =

M
∑

j=1

̟
(j)
k x̂

−(j)
k (10)

Also, the error covariance of the state estimate can be computed using

P−
k =

M
∑

j=1

̟
(j)
k

[

(

x̂
−(j)
k − x̂−

k

)(

x̂
−(j)
k − x̂−

k

)T

+ P
−(ℓ)
k

]

(11)

The specific estimate for p at time tk, denoted by p̂k, and error covariance, denoted by Pk, are given by

p̂k =

M
∑

j=1

̟
(j)
k p(j) (12a)

Pk =

M
∑

j=1

̟
(j)
k

(

p(j) − p̂k

)(

p(j) − p̂k

)T

(12b)

Equation (12b) can be used to define 3σ bounds on the estimate p̂k. The entire MMAE process is shown in
Figure 1.

IV. Adaptive Law Based on Autocorrelation

In this section the adaptive law, based on an autocorrelation approach, for the process noise covariance
matrix is shown. First, the autocorrelation for time-varying systems is derived, followed by the associated
likelihood functions for the defined measurement residuals.
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Figure 1. MMAE Process

A. Autocorrelation for Time-Varying Systems

In this section the autocorrelation matrix for time-varying systems is derived, which is an extension to the
approach shown in Ref. 9. Here we assume that the model is linear with

xk+1 = Φkxk + Γkuk + Υkwk (13a)

ỹk = Hkxk + vk (13b)

where Υk is the discrete-time process noise distribution matrix. Consider the following discrete-time residual
equation:

ek ≡ ỹk −Hkx̂
−
k

= −Hkx̃
−
k + vk

(14)

where x̃−
k ≡ x̂−

k − xk. The following autocorrelation function matrix can be computed:

Ck, i =















HkP−
k HT

k + Rk i = 0

HkE
{

x̃−
k x̃−T

k−i

}

HT
k−i −HkE

{

x̃−
k vT

k−i

}

i > 0

(15)

where Ck, i ≡ E
{

eke
T
k−i

}

and E{·} denotes expectation. The propagation of x̃−
k is given by

x̃−
k = Φk−1(I −Kk−1Hk−1) x̃

−
k−1 + Φk−1Kk−1vk−1 −Υk−1wk−1 (16)

Carrying Eq. (16) i steps back leads to

x̃−
k =





i
∏

j=1

Φk−j (I −Kk−j Hk−j)



 x̃−
k−i +

i
∑

j=2

[

j−1
∏

ℓ=1

Φk−ℓ (I −Kk−ℓ Hk−ℓ)

]

Φk−j Kk−j vk−j

−

i
∑

j=2

[

j−1
∏

ℓ=1

Φk−ℓ (I −Kk−ℓ Hk−ℓ)

]

Υk−j wk−j + Φk−1 Kk−1 vk−1 −Υk−1 wk−1

(17)

where
i
∏

j=1

Zk−j ≡ Zk−1Zk−2 · · ·Zk−i (18)
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Performing the expectations in the definition of Ck, i leads to13

Ck, i =







































HkP−
k HT

k + Rk i = 0

HkΦk−1(P
−
k−1H

T
k−1 −Kk−1Ck−1, 0) i = 1

Hk

[

∏i−1
j=1 Φk−j (I −Kk−j Hk−j)

]

Φk−i (P−
k−i HT

k−i −Kk−i Ck−i, 0) i > 1

(19)

where
Ck−i, 0 ≡ Hk−i P−

k−i HT
k−i + Rk−i (20)

Note that storage of the state model and covariance matrices to the k− i point is required to compute Ck, i

in general.

B. Likelihood Function

In this section the likelihood function for the measurement residual is shown. First, the following residual is
defined:

ǫk,i ≡













ek

ek−1

...

ek−i













(21)

The likelihood function associated with ǫk,i is given by

Lk,i =
1

[det(2π Ck,i)]1/2
exp

(

−
1

2
ǫ

T
k,iC

−1
k,i ǫk,i

)

(22)

where Ck,i ≡ E{ǫk,iǫ
T
k,i} is given by

Ck,i =

















Ck, 0 Ck, 1 Ck, 2 · · · Ck, i

CT
k, 1 Ck−1, 0 Ck−1, 1 · · · Ck−1, i−1

CT
k, 2 CT

k−1, 1 Ck−2, 0 · · · Ck−2, i−2

...
...

...
. . .

...

CT
k, i CT

k−1, i−1 CT
k−2, i−2 · · · Ck−i, 0

















(23)

When i = 0 the likelihood function reduces down to

Lk,0 =
1

{

det[2π (HkP−
k HT

k + Rk)]
}1/2

exp

[

−
1

2
eT

k (HkP−
k HT

k + Rk)−1ek

]

(24)

This likelihood is widely used in MMAE algorithms,14, 18 but ignores correlations between different mea-
surement times. However, it is simpler to evaluate than the general likelihood function in Eq. (22) since no
storage of data or system matrices is required.

C. GMMAE Adaptive Law

In this section the new adaptive law based on the autocorrelation is shown. In the traditional MMAE ap-
proach only the current-time measurement information is used in the update law given by Eq. (9). Therefore,
the update law is given by

̟
(ℓ)
k = ̟

(ℓ)
k−1L

(ℓ)
k,0

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(25)
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since p (ỹk|x̂
−(ℓ)
k ) = L

(ℓ)
k,0, which is defined by

L
(ℓ)
k,0 =

1
{

det[2π (HkP
−(ℓ)
k HT

k + Rk)]
}1/2

exp

[

−
1

2
e
(ℓ)T
k (HkP

−(ℓ)
k HT

k + Rk)−1e
(ℓ)
k

]

(26)

where e
(ℓ)
k ≡ ỹk −Hkx̂

−(ℓ)
k .

The GMMAE adaptive law is based on carrying Eq. (8) i steps back to give the new update law:

̟
(ℓ)
k = ̟

(ℓ)
k−1L

(ℓ)
k,i

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(27)

with

L
(ℓ)
k,i =

1
[

det
(

2π C
(ℓ)
k,i

)]1/2
exp

[

−
1

2
ǫ
(ℓ)T
i

(

C
(ℓ)
k,i

)−1

ǫ
(ℓ)
i

]

(28)

where ǫ
(ℓ)
i is defined as ǫ

(ℓ)
i ≡ [e

(ℓ)T
k e

(ℓ)T
k−1 · · · e

(ℓ)T
k−i ]T . The matrix C

(ℓ)
k,i is given by Eqs. (19) and (23)

evaluated at the ℓth covariance and the optimal Kalman gain. Unfortunately, the optimal gain is a function
of the actual covariance Qk, which is not known. Specifically, if Kk from Table 1 is substituted into Eq. (19),
then for i ≥ 1 the correlated terms Ck, i will always be zero. One way to overcome this problem is to

estimate the C
(ℓ)
k, i terms using the residuals, which is the approach taken in Ref. 9. But, this requires a

stationary process and a sufficiently large set of measurements over time, which would not work properly
for time-varying system matrices and/or a sequential updating scheme. A different approach is taken here,
which is also expanded for nonlinear systems. This assumes that the measurement noise is small compared

to the signal so that the Gaussian nature of the measurement residuals is maintained. Estimates for C
(ℓ)
k, i

are given by

Ĉ
(ℓ)
k, i =























































Hk(x̂
−(ℓ)
k )P

−(ℓ)
k HT

k (x̂
−(ℓ)
k ) + Rk i = 0

Hk(x̂
−(ℓ)
k )Φk−1(x̂

−(ℓ)
k−1 )

[

P
−(ℓ)
k−1 HT

k−1(x̂
−(ℓ)
k−1 )− K̂k−1C

(ℓ)
k−1, 0

]

i = 1

Hk(x̂
−(ℓ)
k )

{

∏i−1
j=1 Φk−j(x̂

−(ℓ)
k−j )

[

I − K̂k−j Hk−j(x̂
−(ℓ)
k−j )

]}

Φk−i(x̂
−(ℓ)
k−i )

×
[

P
−(ℓ)
k−i HT

k−i(x̂
−(ℓ)
k−1 )− K̂k−i C

(ℓ)
k−i, 0

]

i > 1

(29)

where
C

(ℓ)
k−i, 0 ≡ Hk−i(x̂

−(ℓ)
k−i )P

−(ℓ)
k−i HT

k−i(x̂
−(ℓ)
k−i ) + Rk−i (30)

The covariance matrix P
−(ℓ)
k is computed using

P
−(ℓ)
k+1 = Φk(x̂

−(ℓ)
k )P

+(ℓ)
k ΦT

k (x̂
−(ℓ)
k ) + Q(ℓ) (31a)

P
+(ℓ)
k =

[

I −K
(ℓ)
k Hk(x̂

−(ℓ)
k )

]

P
−(ℓ)
k (31b)

K
(ℓ)
k = P

−(ℓ)
k HT

k

[

Hk(x̂
−(ℓ)
k )P

−(ℓ)
k HT

k (x̂
−(ℓ)
k ) + Rk

]−1

(31c)

where Q(ℓ) is computed using p(ℓ). The estimate of the optimal gain is computed using

K̂k = P̂−
k HT

k (x̂−
k )
[

Hk(x̂−
k )P̂−

k HT
k (x̂−

k ) + Rk

]−1

(32)
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with

P̂−
k+1 = Φk(x̂−

k )P̂+
k ΦT

k (x̂−
k ) + Q̂k (33a)

P̂+
k =

[

I − K̂kHk(x̂−
k )
]

P̂−
k (33b)

where Q̂k is computed using p̂k.
Using the current measurement, ỹk, along with the ℓth element, p(ℓ), 1 ≤ ℓ ≤ M , a bank of filters are

executed. For each filter the state estimates, x̂
−(ℓ)
k , and measurements are used to form the residual, ǫ

(ℓ)
k,i,

going back i steps. The filter error covariance, P
−(ℓ)
k , and state matrices, Φ

−(ℓ)
k and H

−(ℓ)
k , evaluated at the

current estimates are used to update the estimate of the autocorrelation, denoted by Ĉ
(ℓ)
k,i . Note that at each

new measurement time, all elements of Ĉ
(ℓ)
k,i need to be recalculated since a new estimate p̂k is provided,

which is used to compute an estimate of the optimal gain. Unfortunately, this can significantly increase the
computational costs. The diagonal elements do not need to be recomputed though, since they are not a
function of the optimal gain. The residuals and autocorrelations are then used to evaluate the likelihood

functions L
(ℓ)
k,i. These functions are used to update the weights, which gives the estimate p̂k using Eq. (12a).

V. GMMAE Theoretical Concept

The theoretical aspect of Kalman filter for linear systems is very sound, derived from a rigorous analysis.
In practice “tuning” of Kalman filter can be be arduous and very time consuming. The approach presented
here provides a recursive method to estimate the parameter of system. Convergence of adaptive approaches
is an important issue. For fault detection methods using MMAE approaches, it is imperative that the fault
be detected as quickly as possible. The MMAE approach is applicable to the stationary noise process, but
can be extended to non-stationary cases as long as the convergence of the adaptive algorithm is faster than
the change in the covariance matrix to be identified. In this section a proof of convergence of the GMMAE
approach is shown, as well as its relationship to the standard MMAE approach.

The goal of the GMMAE approach is to determine the value of the unknown parameter pk from a
Bayesian prospective, where the best point estimate of p̂k is the determined quantity of the a posteriori

distribution of pk. Thus, the a posteriori distribution of pk plays a central role in the estimation process.
Both the traditional MMAE and GMMAE approaches involve discretization of the parameter space of p

into set of a fixed points, p(ℓ), ℓ = 1, . . . , M . Their difference is mainly in the way the the a posteriori

distribution of p and the weights ̟(ℓ) associated with p are updated:

̟
(ℓ)
k ∝ p (p(ℓ)|Ỹk,i) ∝ p (Ỹk,i|p

(ℓ))p (p(ℓ)) (34)

The joint likelihood p (Ỹk,i|p
(ℓ)) is central to GMMAE estimation process. The idea comes from the fact

that p(ℓ) is just a parameter used to determine the Kalman gain K(ℓ) and thus the residual ǫ
(ℓ)
k,i, while the

true parameter ptrue (i.e. the process noise Q) is present in the actual system and governs the true dynamics.
First, the following pdf is defined:

p (Ỹk,i|p
(ℓ)) ≡ p (ǫ

(ℓ)
k,i|p

true) (35)

Since the true parameter ptrue is unknown, it is approximated by p̂, the current estimate of ptrue. Such a
approximation is common in estimation techniques, such as the EKF, when the needed value is unavailable.

Because p̂ may not be identical to any p(ℓ), the residuals e
(ℓ)
k , which are still zero mean but may be correlated

in time. The autocorrelation can be estimated using Eq. (29). The GMMAE approach takes into account
the autocorrelation in the joint likelihood function. The joint likelihood function is a Gaussian distribution
as in the MMAE case. However, the GMMAE approach uses a set of the last ith residuals to compute the

likelihood in a moving average manner. The concept is that for large k, a higher likelihood p (ǫ
(ℓ)
k |p

true)
yields a higher weight ̟(ℓ), which corresponds to p(ℓ) providing the best estimate of ptrue. Since p̂ may not
be initially an accurate estimate of ptrue, accordingly the autocorrelation has to be recalculated every time
as a new estimate p̂ is provided. Eventually, the autocorrelation will be computed using p̂ that is very close
to ptrue as the GMMAE algorithm converges.
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A. Autocorrelation of the Residuals

One way to estimate the correlation of the residuals (the product of two residual values) is by using the ergodic
average (time average). However, the GMMAE approach is a realtime adaptive approach and the estimate
of the correlation of the residuals has to be determined and provided to the GMMAE likelihood function
to test the new measurement-residual optimality for the given parameter p(ℓ). The GMMAE estimate Ĉk,i

provides an estimate for the correlation of the residuals that maintains the necessary optimal null hypothesis
of the GMMAE likelihood. The assumptions that have been taken into consideration in the evaluation of
the correlation of the residuals are as follows: 1) the filter that produces the residuals that is assumed to be
an optimal filter uses an optimal Kalman gain, in the strict sense, and the GMMAE estimate of the optimal
gain is equivalent to the optimal gain that reflects the real plant measurement; 2) the ergodic average of the
correlation of the residuals is zero at the limit when k goes to infinity; 3) the residuals are random variables
even for the optimal case as they are a result of random noise inputs (specifically measurement and process
noise); 4) the actual correlation of the residuals is also random and fluctuates around zero mean and any
estimate of the correlation of the residuals at a given time may encounter an instantaneous offset from the
zero mean; and, 5) the optimal filter is predicted to compensate for this offset in future time steps.

The residuals of the optimal filter are uncorrelated. However, the residuals of the suboptimal Kalman
filter are correlated. There are different ways to estimate the autocorrelation. One way uses the ergodicity
property of a stationary random process. The ergodic estimate of the autocorrelation is given by

C̄k−1, i =
1

N

N
∑

j=i

eje
T
j−i (36)

where N is a large number of samples. The ergodic estimate of the autocorrelation C̄k−1, i can be used
to estimate the true state error {x̂−

k−1x̂
−T
k−1} which is the approach introduced in Ref. 9. The estimate of

{x̃−
k−1x̃

−T
k−1} cannot typically be determined, but rather {x̃−

k−1x̃
−T
k−1}H

T
k−i is determined instead. The term

{x̃−
k−1x̃

−T
k−1}H

T
k−i is donated by

̂
P

−(ℓ)
k−i HT

k−i and can be estimated from Eg. (19) using the autocorrelation

ergodic estimate C̄k−1, i:

[C̄
(ℓ) T
k, i ......C̄

(ℓ) T
k−i+1, 1]

T = Ak,i[
̂

P
−(ℓ)
k−i HT

k−i −K
(ℓ)
k−i C

(ℓ)
k−i, 0]

(37)

where Ak,i is defined as

Ak,i =









Hk(x̂
−(ℓ)
k )

{

∏i−1
j=1 Φk−j(x̂

−(ℓ)
k )

[

I − K̂k−j Hk−j(x̂
−(ℓ)
k−i )

]}

Φk−i(x̂
−(ℓ)
k−i )

...

Hk−i+1(x̂
−(ℓ)
k−i+1)Φk−i(x̂

−(ℓ)
k−i )









(38)

The estimated optimal gain K̂k−1 would be the optimal gain to minimize the state error in a least-squares

sense. Noticing K̂k−i =
̂

P
−(ℓ)
k−i HT

k−iC
−1
k−i, 0 , the optimal gain is estimated as

[C̄
(ℓ) T
k, i ......C̄

(ℓ) T
k−i+1, 1]

T ∼= Ak,i[K̂k−i −K
(ℓ)
k−i] C

(ℓ)
k−i, 0 (39)

K̂k−i
∼= K

(ℓ)
k−i + A†

k,i[C̄
(ℓ) T
k, i ......C̄

(ℓ) T
k−i+1, 1]

T C
(ℓ)−1
k−i, 0 (40)

where A† is the pseudo-inverse of A. This provides another estimate to the autocorrelation of the residuals
of a suboptimal filter.

The GMMAE approach is a recursive adaptive approach. The result of the previous time evaluated to
determine the current estimate will be used to predict future estimate. The GMMAE estimate of the optimal
gain K̂k−1 in Eq. (29) is determined by the weight ̟k−1, which is a measure of the likelihood of the residual
ek−1 = [ỹk−1 −Hkx̂

−
k ] and the previous residuals. The estimate x̂−

k−1 is the Kalman filter propagation of

x̂+
k−2 updated by K̂k−2. Therefore, the weight ̟k−1 is a measure of the performance of K̂k−2 since K̂k−1

has not contributed to the residual ek−1 yet. The filter that has the highest weight ̟k−1 has the minimum

residual ek−1 and the Kalman gain estimate K̂k−2 → K
(ℓ)
k−2 as P̂k−2 → P

−(ℓ)
k−2 . The measurement ỹk−1
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Figure 2. Correlation of the Residuals of an Optimal Kalman Filter

complies more with the estimate x̂−
k , where K̂k−2 is most likely to be the optimal gain. The estimate of the

optimal gain K̂k−1 given by the GMMAE algorithm in Eq. (29) is actually a propagation of K̂k−2 determined
by ̟k−1 based on the likelihood evolution of the residuals performance of the gain estimate K̂k−2 as shown
in Eq. (32). Any estimate based on the weight ̟k−1 refers to K̂k−2 in reality. For the suboptimal filter, the

ergodic estimate of the correlation of the residuals, C̄
(ℓ)
k−1, 1, is given using Eq. (39) by

C̄
(ℓ)
k−1, 1 = Ak−1,1[K̂k−2 −K

(ℓ)
k−2] C

(ℓ)
k−2, 0 (41)

The GMMAE estimate of the autocorrelation Ĉ
(ℓ)
k, i in Eq. (29), that is used in the GMMAE likelihood, is

based on the gain estimate of K̂k−1:

[Ĉ
(ℓ) T
k, i ......Ĉ

(ℓ) T
k−i+1, 1]

T = Ak,i[P
−(ℓ)
k−i HT

k−i −K
(ℓ)
k−i C

(ℓ)
k−i, 0] (42)

In the GMMAE hypothesis, the likelihood of the residual is evaluated with respect to its optimal expected
values. The assumption of optimality of the parameter p(ℓ) is essential to compute the likelihood. Even
though the zero residual correlation would be the obvious choice for optimality, the estimate of the correlation,

Ĉ
(ℓ)
k, i, is based on the available information of the previous correlation C̄

(ℓ)
k−1, i carried by the GMMAE estimate

of the optimal gain K̂
(ℓ)
k−i. The actual correlation of the residuals of the optimal filter is a random variable and

has zero mean. Basically, the optimal filter correlation of the residuals, Ĉ
(ℓ)
k, i, is expected to compensate for

the previous correlation as shown in Figure 2. If the parameter p(ℓ) is an optimal parameter, the correlation
of the residuals has zero mean while the actual correlation fluctuates around this mean. Considering a linear
time-invariant system, and substituting the Kalman gain estimate K̂k−2 from Eq. (41) into Eq. (42), where
K̂k−1 = K̂k−2 at steady state, leads to

Ĉ
(ℓ)
k, 1 = Ak,1[P

−(ℓ)
k−1 HT

k−1 − (K
(ℓ)
k−2 + A†

k−1,1C̄
(ℓ)
k−1, 1)C

(ℓ)−1
k−2, 0 C

(ℓ)
k−1, 0]

Ĉ
(ℓ)
k, 1 = −Ak,1A

†
k−1,1[C̄

(ℓ)
k−1, 1 C

(ℓ)−1
k−2, 0] C

(ℓ)
k−1, 0

Ĉ
(ℓ)
k, 1 = −C̄

(ℓ)
k−1, 1

(43)

The predicted estimate Ĉ
(ℓ)
k, 1 has the opposite sign of the ergodic estimate.22 To ensure the optimality

of the Kalman filter, the expected future correlation has to compensate any divergence of the previous

correlation of the zero mean. The autocorrelation Ĉ
(ℓ)
k, 1 is incorporated in the GMMAE likelihood to increase

the chance that the parameter p(ℓ) is chosen as the optimal one. For the case that the residuals are produced
by a suboptimal filter, the correlation offset from zero mean is not only a result of the randomness of the
residual but also a result of the mis-modeling of the filter parameter. The correlation for the suboptimal

filter will converge at the limit to the ergodic correlation estimate C̄
(ℓ)
k, 1 and the relation given in Eq. (43)

will serve as a tool in the GMMAE adaptive law to distinguish between the optimal filter and suboptimal
filter residuals by testing for the whiteness of the filter residuals.
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B. GMMAE Convergence

We expect that for the GMMAE approach to converge, p (ptrue|Ỹk,i) → 1 as k → ∞ and p (p(ℓ)|Ỹk,i)→ 0
as k →∞ for p(ℓ) 6= ptrue. This result will be proved with assumption of ergodicity of residuals and the use
of the following lemma of standard matrix theory.21 Let A and B be two n × n positive definite matrices,
then

n + ln

(

|A|

|B|

)

− tr[B−1A] ≤ 0 (44)

where tr denotes the matrix trace. The convergence of a linear time-invariant model is first considered here.
Recall the adaptive law for the GMMAE approach:

̟
(ℓ)
k ←

L
(ℓ)
k,i̟

(ℓ)
k−1

M
∑

j=1

L
(j)
k,i̟

(j)
k−1

(45)

or more specifically

̟
(ℓ)
k =

L
(ℓ)
k,i̟

(ℓ)
k−1

Ltrue
k,i

(46)

where Ltrue
k,i is the likelihood evaluated using ptrue. Substituting for Lk,i from Eq. (28) into Eq. (46) gives

̟
(ℓ)
k =

∣

∣

∣C
(ℓ)
k,i

∣

∣

∣

−1/2

exp

[

− 1
2ǫ

(ℓ)T
k,i

(

C
(ℓ)
k,i

)−1

ǫ
(ℓ)
k,i

]

∣

∣

∣C
(O)
k,i

∣

∣

∣

−1/2

exp

[

− 1
2ǫ

(O)T
k,i

(

C
(O)
k,i

)−1

ǫ
(O)
k,i

]̟
(ℓ)
k−1 (47)

where C
(O)
k,i is the autocorrelation matrix associated with the optimal filter using ptrue. Then, taking the

natural logarithm of both sides gives

ln

(

̟
(ℓ)
k

̟
(ℓ)
k−1

)

=
1

2
ln





∣

∣

∣C
(O)
k,i

∣

∣

∣

∣

∣

∣C
(ℓ)
k,i

∣

∣

∣



−
1

2
tr

[

ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i

(

C
(ℓ)
k,i

)−1
]

+
1

2
tr

[

ǫ
(O)
k,i ǫ

(O)T
k,i

(

C
(O)
k,i

)−1
]

(48)

Next, extending this equation by going backwards in time though the recursive law in Eq. (46) yields

2k−1 ln

(

̟
(ℓ)
k

̟
(ℓ)
1

)

= ln

∣

∣

∣C
(O)
k,i

∣

∣

∣

∣

∣

∣C
(ℓ)
k,i

∣

∣

∣

− tr





1

k

k
∑

j=1

ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i

(

C
(ℓ)
k,i

)−1



+ tr





1

k

k
∑

j=1

ǫ
(O)
k,i ǫ

(O)T
k,i

(

C
(O)
k,i

)−1



 (49)

Rearranging Eq. (49) yields the following form:

2k−1 ln

(

̟
(ℓ)
k

̟
(ℓ)
k−1

)

= ln





∣

∣

∣C
(O)
k,i

∣

∣

∣

∣

∣

∣
C

(ℓ)
k,i

∣

∣

∣



− tr
[

C
(O)
k,i C

(ℓ)
k,i

−1]

+ tr(I)− tr





1

k

k
∑

j=1

(ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i − C

(O)
k,i )

(

C
(ℓ)
k,i

)−1



 (50)

where I is the identity matrix of the size of C
(ℓ)
k,i . The first three terms in Eq. (46) are non-positive values

based on Eq. (44). The ergodicity principle gives 1
k

k
∑

j=1

ǫ
(O)
k,i ǫ

(O)T
k,i → C

(O)
k,i as k →∞. Let us rewrite Eq. (50)

in shorthanded form as

2k−1 ln

(

̟
(ℓ)
k

̟
(ℓ)
1

)

= −α(ℓ) − β(ℓ) (51)
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where

α(ℓ) = − ln





∣

∣

∣C
(O)
k,i

∣

∣

∣

∣

∣

∣C
(ℓ)
k,i

∣

∣

∣



+ tr
[

C
(O)
k,i C

(ℓ)
k,i

−1]

− tr(I)

β(ℓ) = tr





1

k

k
∑

j=1

(ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i − C

(O)
k,i )

(

C
(ℓ)
k,i

)−1





(52)

α(ℓ) are non-negative value if p(ℓ) 6= ptrue. This leads to

̟
(ℓ)
k

̟
(ℓ)
1

= e−
1
2 (α(ℓ)+β(ℓ))k (53)

Note, α(O) and β(O) are strictly zero for the optimal case as 1
k

k
∑

j=1

ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i → C

(ℓ)
k,i → C

(O)
k,i , which leads to

̟
(ℓ)
k

̟
(ℓ)
0

→ 1 as k →∞.

Now, it is worth to look at a special case of the GMMAE approach where the correlation between
residuals is not incorporated into the likelihood. In the uncorrelated case the autocorrelation matrix is a

block diagonal matrix and C
(ℓ)
k, i = 0 for i 6= 0. For this special case, α and β can be reduced to

α
(ℓ)
U = − ln





∣

∣

∣
C

(O)
k,i

∣

∣

∣

∣

∣

∣C
(ℓ)
k,i

∣

∣

∣

U



+ tr
[

C
(O)
k,i C

(ℓ)
k,i

−1

U

]

− tr(I)

=
k
∑

s=k−i



− ln





∣

∣

∣C
(O)
s, 0

∣

∣

∣

∣

∣

∣C
(ℓ)
s, 0

∣

∣

∣



+ tr
[

C
(O)
s, 0 C

(ℓ)
s, 0

−1]

− tr(I)





≡ (i + 1)



− ln





∣

∣

∣C
(O)
k, 0

∣

∣

∣

∣

∣

∣C
(ℓ)
k, 0

∣

∣

∣



+ tr
[

C
(O)
k, 0 C

(ℓ)
k, 0

−1]

− tr(I)



 = (i + 1)α
(ℓ)
0

(54)

β
(ℓ)
U = tr





1

k

k
∑

j=1

j
∑

s=j−i

(e(ℓ)
s e(ℓ)T

s − C
(O)
s, 0 )

(

C
(ℓ)
k, 0

)−1





≡ (i + 1)tr





1

k

k
∑

j=1

(e
(ℓ)
j e

(ℓ)T
j − C

(O)
j, 0 )

(

C
(ℓ)
j, 0

)−1



 = (i + 1)β
(ℓ)
0

(55)

and the convergence rate will be

̟
(ℓ)
k

̟
(ℓ)
1

= e−
1
2 (α

(ℓ)
0 +β

(ℓ)
0 )(i+1)k (56)

Setting i = 0 compares this result with the convergence rate of traditional MMAE:

̟
(ℓ)
k

̟
(ℓ)
1

= e−
1
2 (α

(ℓ)
0 +β

(ℓ)
0 )k (57)

Clearly, the GMMAE converges faster than MMAE even without autocorrelation.
Incorporating the autocorrelation in the GMMAE makes the convergence to the optimal parameter faster.

This shown by comparing the convergence of GMMAE to the uncorrelated GMMAE as follows:

(

̟
(ℓ)
k

̟
(ℓ)
k−1

)

G

/

(

̟
(ℓ)
k

̟
(ℓ)
k−1

)

U

=

(

|Ck,i|
−1/2

exp
[

− 1
2ǫ

(ℓ)T
k,i (Ck,i)

−1
ǫ
(ℓ)
k,i

])

G
(

|Ck,i|
−1/2 exp

[

− 1
2ǫ

(ℓ)T
k,i (Ck,i)

−1
ǫ
(ℓ)
k,i

])

U

(58)
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where the subscripts U and G refer to the uncorrelated GMMAE and the standard form of the GMMAE,
respectively. Taking the natural logarithm of both sides in Eq. (58) gives

2 ln

(

̟
(ℓ)
k

̟
(ℓ)
k−1

)

G

− 2 ln

(

̟
(ℓ)
k

̟
(ℓ)
k−1

)

U

=− ln

∣

∣

∣C
(ℓ)
k,i

∣

∣

∣

G

|Ck,i|U
− tr

[

ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i (Ck,i)

−1
]

G

+ tr
[

ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i (Ck,i)

−1
]

U

(59)

If p(ℓ) is the optimal parameter ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i → (Ck,i)G where the off-diagonal terms are the predicted estimate

C̄k, i, then

2 ln

(

̟
(ℓ)
k

̟
(ℓ)
k−1

)

G

− 2 ln

(

̟
(ℓ)
k

̟
(ℓ)
k−1

)

U

= − ln
|Ck,i|G
|Ck,i|U

− trI + tr
[

(Ck,i)G(Ck,i)
−1
U

]

(60)

The right side of Eq. (60) yields a positive quantity which means the weight ̟
(ℓ)
k is higher in the GMMAE

if p(ℓ) is optimal. This shows that the GMMAE approach converges faster to the optimal estimate than the
uncorrelated GMMAE. The autocorrelation helps the generalized adaptive law to makeup for the decline
in the convergence rate in the previous steps due to the residuals randomness. However, if p(ℓ) is not the
optimal parameter then the weight convergence is given from Eq. (50):

2k−1 ln
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̟
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k

̟
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1

)

= ln
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
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∣
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)−1

G


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(61)

Let [ǭiǭ
T
i ](ℓ) = 1

k

k
∑

j=1

ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i and rewrite Eq. (61) as
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)
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(62)

Let [ǭiǭ
T
i ](ℓ) = [ǭiǭ

T
i ]

(ℓ)
d + [ǭiǭ

T
i ]

(ℓ)
f where [ǭiǭ

T
i ]

(ℓ)
d contains the diagonal elements of matrix [ǭiǭ

T
i ](ℓ) and

[ǭiǭ
T
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(ℓ)
f contains the off-diagonal elements, so that
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(63)

As stated earlier the estimate of the off-diagonal elements E
{

eke
T
k−i

}

= C̄k, i is given in Eq. (36), assuming

k is large enough.9 Then, since the estimate C̄k, i = −Ĉk, i as given in Eq. (43), we have

[ǭiǭ
T
i ]

(ℓ)
f = −Ck,i

(ℓ)
G + Ck,i

(ℓ)
U (64)

Substituting Eq. (64) into Eq. (63) gives
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(65)
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Now, Eq. (65), after algebraic rearrangement, becomes
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which reduces down to
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By adding the following terms −tr
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Eq. (67) and rearranging, we obtain
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Writing Eq. (68) in shorthand form gives

2k−1 ln
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)

= −[αU + βU + δGU + αGU ] (69)

with
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where αGU has non-negative value and δGU is a trace of a product of matrix differences. Since the term

[ǭiǭ
T
i ]

(ℓ)
d is a diagonal matrix, the trace carries the diagonal elements of the second term only. The autocorre-

lation matrix C
(ℓ)
k,iG

is positive definite and nearly a diagonal symmetric matrix where (C−1)i,i ≥ (Ci,i)
−1.23

This shows δGU is a positive quantity. Then, the convergence rate is given as
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Clearly, the GMMAE approach converges faster than the uncorrelated GMMAE and even faster than the
traditional MMAE approach. This proves the convergence properties of the GMMAE approach using the
Kalman filter as an elemental filter where a linear model is used with stationary measurement and/or process
noise.

Similarly, the convergence rate for the linearized or linear time-varying model can be obtained, by recalling
Eq. (48), as
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Rearranging Eq. (72) yields
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which can be written in short hand as
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Then, to obtain
̟

(ℓ)
k

̟
(ℓ)
1

, let
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α
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Then, the overall convergence rate is given as

̟
(ℓ)
k

̟
(ℓ)
1

= e−
1
2 (α(ℓ)+β(ℓ))k (77)

The α term is always non-negative from Eq. (44). The non-negativeness of β still holds for linear time-variant

systems even if the βk terms are from different times. This is because the residual error (ǫ
(ℓ)
k,iǫ

(ℓ)T
k,i − C

(O)
k,i ) is

normalized by
(

C
(ℓ)
k,i

)−1

, which follows the normalized Kalman innovations of the Kalman filter. The same

approach is valid for the nonlinear case where the first-order Taylor series approximates the system functions.
This is limited when Φk(x̂k) and Hk(x̂k) are bounded and provide close approximation to the real system
where Φk(x̂)x̂ ≈ f(xk) and Hk(x̂k)x̂k ≈ h(x). The EKF is derived with this assumption and the approach
is assumed valid as long as the EKF is valid for the problem. Simulations using the EKF indicate that

the non-negativeness property of β term is true however. Figure 3 shows the value of e−
1
2β(ℓ)

for different
p(ℓ). The simulation is performed for the system in next section except p(ℓ) is linearly distributed equally in
the range [0, 100] where the true parameter p(true) = 10. This shows that the GMMAE approach provides
superior performance and that the correlated terms do play a role in the convergence.
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VI. Numerical Simulations

In this section a numerical simulation result is given. A two-dimensional target tracking problem is used
to compare the performance of the MMAE and the GMMAE approaches. The state vector is chosen as the
position and velocity in x and y directions, given by x = [x ẋ y ẏ]T . The target motion model is given by
a linear dynamical system:

xk+1 = Φxk + wk (78)

with

Φ =











1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1











(79)

The sampling period ∆t = 0.01. The 4-by-4 process noise covariance matrix is parameterized by qx and qy,
given by

Qk =













qx

[

∆t3/3 ∆t2/2

∆t2/2 ∆t

]

02×2

02×2 qy

[

∆t3/3 ∆t2/2

∆t2/2 ∆t

]













(80)

The true values of qx and qy are chosen as qx = qy = 10. In the MMAE and GMMAE approaches, the
elements of qx and qy for the individual Kalman filters are generated using a two-dimensional Hammersley
sequence under the assumption that qx and qy are independently uniformly distributed in [0, 100]. The
number of elements in the MMAE or the GMMAE approach is 250. The measurement model is given by

ỹk =

[

√

x2 + y2

arctan(y/x)

]

+ vk (81)

It is assumed that the noise in range and azimuth measurements is uncorrelated, so the measurement noise
covariance matrix is diagonal, given by Rk = diag[rρ rA]. We choose rρ = 0.01 and rA = 0.000001 in the
simulations. Since the measurement model is nonlinear in the state vector, EKFs are used in the MMAE
and GMMAE approaches with the sensitivity matrix Hk evaluated at the current estimate. The EKFs are
provided with good initial estimates of the state vector, so they do not suffer any divergence problems. An
alternative approach to working with the nonlinear measurement model is to first convert the original range
and azimuth measurements to the effective position measurements on x and y and then apply the linear
Kalman measurement update. In the latter approach, the covariance matrix for the effective measurement
does not take as simple a form as the shown Rk and becomes data-dependent. The resulting residual sequence
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Figure 4. Uniform Distribution and Hammersley Quasi-Random Sequence Comparison

is not stationary or ergodic in either case. There are many possibilities for the chosen distribution of the
process noise covariance parameters. A simple approach is to a assume a uniform distribution. We instead
choose a Hammersley quasi-random sequence16 due to its well distributed pattern. A comparison between
the uniform distribution and the Hammersley quasi-random sequence for 500 elements is shown in Figure
4. Clearly, the Hammersley quasi-random sequence provides a better “spread” of elements than the uniform
distribution. In low dimensions, the multidimensional Hammersley sequence quickly “fills up” the space
in a well-distributed pattern. However, for very high dimensions, the initial elements of the Hammersley
sequence can be very poorly distributed. Only when the number of sequence elements is large enough relative
to the spatial dimension is the sequence properly behaved. This isn’t much of a concern for the process noise
covariance adaption problem since the dimension of the elements will be much larger than the dimension of
the unknown process noise parameters. Remedies for this problem are given in Ref. 24 if needed.

The two adaptive estimators are run 50 seconds to process the same measurement data. As discussed in
the previous section, the GMMAE approach goes back i time steps in order to form the residual. We choose

i = 4 for the GMMAE approach. The size of the corresponding residual ǫ
(ℓ)
k,i is 10 by 1. The results are given

in Figures 5(a) and 5(b). It can be seen that both estimators converge within 50 seconds, but the MMAE
approach takes more than twice as much time as the GMMAE approach to converge. Both estimators
converge with a relative small set of elements in the above-mentioned example. A closer examination of the
automatically-generated element set shows that of the 250 elements there is a element that is close to the
true values of qx and qy. If all of the 250 elements are far away from the true values, then the MMAE and
GMMAE approaches with 250 static elements may fail to yield satisfactory performance, since the estimates
of qx and qy are given by the average of the elements. Increasing the element size is always a solution, but
as the dimensionality of the problem increases, the computational complexity involved may quickly become
prohibitive. Meanwhile, it should be noted that most of the elements have almost zero weights at the end
of the simulation and their contributions to the final estimates of qx and qy are negligible. Resampling and
Markov-Chain Monte Carlo or regularization techniques used in particle filtering can be used in order to
prune elements with very small weights and dynamically generate new elements with high weights in the
neighborhood of existing elements, while maintaining a constant number of elements during the estimation
process. However, since a long data sequence is usually required (and sometimes maneuvers are also required)
to estimate the process noise covariance and to discriminate between “good” elements and “bad” elements,
straightforward application of resampling and Markov-Chain Monte Carlo or regularization based on just a
few consecutive data points does not yield a satisfactory result. It is found that “good” elements could be
pruned in the early stage and “promising” elements could end up with small weights. Further investigation
of the problem is under way.
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Figure 5. Simulation of MMAE and GMMAE Estimates

VII. Conclusion

In this paper a generalized approach for multiple-model adaptive estimation was shown, which can be
used for time-varying and nonlinear systems. This approach is based on using the autocorrelation of the
measurement-minus-estimate residual. A formulation was developed for the extended Kalman filter, however
computation of the off-diagonal elements of the autocorrelation matrix is intractable in practice since these
matrix elements are a function of the true parameters. This difficulty was overcome by using the estimated
values in the Kalman gain. It is proven that the generalized approach provide better convergence properties
than the standard approach because the autocorrelation incorporated into generalized approach’s likelihood
raises the sensitivity toward optimality. Simulation results indicated that the new multiple-model adaptive
estimation approach can provide better convergence to the best estimate over the standard approach.
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