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Abstract—This paper presents a Kalman filter-based adap-
tive disturbance-accommodating stochastic control scheme for
linear uncertain systems to minimize the adverse effects of
both model uncertainties and external disturbances. A rigorous
stochastic stability analysis reveals a lower bound requirement
on system process noise covariance to ensure the stability of
the controlled system when the nominal control action on the
true plant is unstable. Finally, an adaptive law is synthesized
for the selection of stabilizing system process noise covariance.
Simulation results are presented where the proposed control
scheme is implemented on a two degree-of-freedom helicopter.

I. I NTRODUCTION

Uncertainty in dynamic systems may take numer-
ous forms, but among them, the most significant are
noise/disturbance uncertainty and model/parameter uncer-
tainty. External disturbances and system uncertainties can
obscure the development of a viable control law. The main
objective of Disturbance Accommodating Controller (DAC)
is to make necessary corrections to the nominal control
input to accommodate for external disturbances and sys-
tem uncertainties [1]–[4]. The disturbance accommodating
observer approach has shown to be extremely effective for
disturbance attenuation [5]–[7]; however, the performance
of the observer can significantly vary for different types
of exogenous disturbances, which is due to observer gain
sensitivity.

This paper presents a robust control approach based on
a significant extension of the conventional observer-based
disturbance-accommodating control concept, which compen-
sates for both unknown model parameter uncertainties and
external disturbances by estimating a model-error vector
(throughout this paper we will use the phrase “disturbance
term” to refer to this quantity) in real time. The estimated
model-error vector is further used as a signal synthesis
adaptive correction to the nominal control input to achieve
maximum performance. This control approach utilizes a
Kalman filter in the feedback loop for simultaneously es-
timating the system states and the disturbance term from
measurements [8]–[10]. The estimated states are then used
to develop a nominal control law while the estimated dis-
turbance term is used to make necessary corrections to
the nominal control input to minimize the effects of both
unknown system uncertainties and the external disturbance.

It is a well-known fact that the closed-loop performance
and stability of the Kalman filter-based DAC approach de-

pends on the selection of process noise covariance associated
with the unknown disturbance term [11], [12]. Although the
Kalman filter-based DAC approach has been successfully
utilized for practical applications, there has not been any
rigorous stochastic stability analysis to reveal the interde-
pendency between the estimator process noise covariance
and controlled system stability. The two main contributions
of this paper are 1) a stochastic stability analysis, and 2)
an adaptive law for updating the selected process noise
covariance online. The stochastic stability analysis indicates
a lower-bound requirement on the assumed disturbance term
process noise covariance matrix and the measurement noise
covariance matrix to guarantee exponential stability in the
mean sense when the nominal control action on the true
plant would result in an unstable system. Based on the
stochastic Lyapunov analysis, an adaptive law is developed
for updating the selected process noise covariance online so
that the controlled system is stable.

The structure of paper is as follows: A detailed formulation
of the stochastic disturbance accommodating controller for
MIMO systems followed by a stochastic stability analysis is
given next. Afterwards, an adaptive scheme is developed for
the selection of stabilizing disturbance term process noise
covariance. Simulation results are then presented where the
proposed control scheme is implemented on a two degree-
of-freedom helicopter.

II. CONTROLLER FORMULATION

Let (Ω,F ,P) denote a complete probability space. Con-
sider annth-order linear time-invariant stochastic system of
the following form:

Ẋ(t) = AX(t) +Bu(t) + W(t), X(t0) = x0

Y(t) = CX(t) + V(t)
(1)

Here, the stochastic state vector,X(t) , X(t, ω) : [t0, tf ] ×
Ω 7→ Rn, is an n-dimensional random variable for fixed
t. Throughout this paper, random vectors are denoted using
boldface capital letters and for convenience, the dependency
of a stochastic process onω is not explicitly shown. The true
state and control distribution matrices,(A ∈ Rn×n, B ∈
Rn×r), are assumed to be unknown. Also, the system is
assumed to be under-actuated, i.e.,r < n. The stochastic
measurement vector is given asY(t) , Y(t, ω) : [t0, tf ] ×
Ω 7→ Rm and the known output matrix isC ∈ Rm×n. The
measurement noise,V(t) , V(t, ω) : [t0, tf ] × Ω 7→ Rm,



is assumed to be zero mean Gaussian white noise, i.e.,
fV (v) ∼ N

(

0, Rδ(τ)
)

. Finally, the stochastic external dis-
turbanceW(t) , W(t, ω) : [t0, tf ] × Ω 7→ Rn is assumed
to satisfy the matching condition and it is modeled as a
linear time-invariant system driven by a Gaussian white noise
process, i.e.,

Ẇ(t) = L1(X(t), u(t),W(t)) + V(t), W(t0) = 0 (2)

where L1(·) is an unknown linear operator andV(t) ,

V(t, ω) : [t0, tf ] × Ω 7→ Rn, is assumed to be zero mean
Gaussian white noise process, i.e.,fV(v) ∼ N

(

0,Qδ(τ)
)

.
The assumed (known) system model is

Ẋm(t) = AmXm(t) +Bmu(t), Xm(t0) = x0

Ym(t) = CXm(t) + V(t)
(3)

The external disturbance and the model uncertainties can be
lumped into a disturbance term,D(t), through

D(t) = ∆AX(t) + ∆Bu(t) + W(t) (4)

where∆A = (A − Am) and∆B = (B − Bm). Using this
disturbance-term the true model can be written in terms of
the known system matrices as follows:

Ẋ(t) = AmX(t) + Bmu(t) + D(t), Y(t) = CX(t) + V(t) (5)

The control law,u(t), is selected so that the true system will
track the reference model˙̄x(t) = Amx̄(t) + Bmū(t). The
true system tracks the reference model if the following two
conditions are satisfied:

x0 = x̄(t0), Bmu(t) = Bmū(t) − D(t) (6)

where convergence is understood in the mean square sense.
The disturbance term is not known, but an observer can be
implemented in the feedback-loop to estimate the disturbance
term online. For this purpose, the system in (1) is rewritten
as the following extended dynamically equivalent system:

[

Ẋ
Ḋ

]

=

[

Am I(n×n)

L2X L2D

] [

X
D

]

+

[

Bm
L2u

]

u +

[

0
V

]

(7)

where L2X , L2D, and L2u are partitions onL2(·), a re-

alization of unknownL1(·). Let Z(t) =

[

X(t)
D(t)

]

, F =
[

Am I(n×n)

L2X L2D

]

, D =

[

Bm
L2u

]

, andG =

[

0n×n
In×n

]

. Now the

extended system given in (7) can be written as

Ż(t) = FZ(t) +Du(t) +GV(t), Z(t0) = Z0 (8)

where Z0 = [x0 D0]
T . It should be noted that we do

not have precise knowledge about the dynamics of the
disturbance term. For simplicity, the disturbance term is
modeled as

Ḋm(t) = ADmDm(t) + W(t), Dm(t0) = 0 (9)

whereADm is Hurwitz andW(t) , W(t, ω) : [t0, tf ] ×
Ω 7→ Rn is zero mean Gaussian white noise process, i.e.,
fW(w) ∼ N

(

0, Qδ(τ)
)

. Equation (9) is used solely in
the estimator design to estimate the true disturbance term.

Construct the assumed augmented state vector,Zm(t) =
[

Xm(t)
Dm(t)

]

, now the assumed model in (7) can be written

as

Żm(t) = FmZm(t) +Dmu(t) +GW(t) (10)

where Fm =

[

Am I(n×n)

0(n×n) ADm

]

and Dm =

[

Bm
0(n×r)

]

.

Notice that the uncertainty is now only associated with the
dynamics of the disturbance term. The estimator dynamics
can be written as

˙̂Z(t) = FmẐ(t) +Dmu(t) +K(t)[Y(t) − Ŷ(t)] (11)

whereK(t) is the Kalman gain and̂Y = HẐ with H =
[C 0m×n]. The estimator dynamics can be rewritten as

˙̂Z(t) = FmẐ(t)+Dmu(t)+K(t)H [Z(t)− Ẑ(t)]+K(t)V(t)

Notice that the estimator uses the assumed system model
in (10) for the propagation stage and the true measurements
for the update stage, i.e.,̂Z(t) = E[Zm(t)|{Yt . . .Y0}]. The
Kalman gain can be calculated asK(t) = P (t)HTR−1,
whereP (t) = E

[

(Zm(t) − Ẑ(t))(Zm(t) − Ẑ(t))T
]

can be
obtained by solving the continuous-time matrix differential
Riccati equation [13]:

Ṗ = FmP + PFm
T − PHTR−1HP +GQGT (12)

For the reference system, the nominal controller is given as

ū(t) = −KmX̂(t) (13)

whereKm ∈ Rr×n is the feedback gain. Now the total
control law can be written in terms of the estimated system
states and the estimated disturbance term as

u = −(BTmBm)−1BTm

[

BmKm I(n×n)

]

[

X̂
D̂

]

= SẐ(t)

(14)

where S = −(BTmBm)−1BTm

[

BmKm I
]

. Notice that

(BTmBm) is a nonsingular matrix sinceBm is assumed
to have linearly independent columns. A summary of the
proposed control scheme is given Table. I.

TABLE I
SUMMARY OF DAC

Plant Ż(t) = F Z(t) + Du(t) + GV(t)

Y(t) = HZ(t) + V(t)

Observer Ṗ = FmP + PFm
T
− PHT R−1HP + GQGT

K(t) = P (t)HT R−1

˙̂Z(t) = FmẐ(t) + Dmu(t) + K(t)[Y(t) − Ŷ(t)]

DAC u(t) = (BT
mBm)−1BT

m

[

− BmKm − I
]

Ẑ(t)



It is important to note that ifQ = 0, then Dm(t) =
Dm(t0) = 0 and the total control law becomes just the
nominal control. If the nominal control,̄u(t), on the true
plant would result in an unstable system, then selecting a
small Q would also result in an unstable system. On the
other hand, selecting a largeQ value would compel the
estimator to completely rely upon the measurement signal
and therefore the noise associated with the measurement
signal is directly transmitted into the estimates. This could
result in a noisy control signal which could lead to problems
such as chattering and controller saturation. Also note that as
R, the measurement noise covariance, increases, the observer
gain decreases and thus the observer fails to update the
propagated disturbance term based on measurements. For
a highly uncertain system, if the nominal control action
on the true plant would result in an unstable system, then
selecting a smallQ or a largeR would also result in an
unstable closed-loop system as shown in [11]. It is clear
that the performance and stability of the conventional DAC
depends upon judicious selection of the model disturbance
covarianceQ. In the next section, a rigorous stability analysis
is presented which investigates the explicit dependency ofthe
closed-loop system stability onQ andR.

III. STABILITY ANALYSIS

Substituting the control law, (14), into the plant dynam-
ics, (8), the true system can be written as

Ż(t) = FZ(t) +DSẐ(t) +GV(t), Y(t) = HZ(t) + V(t)

From hereon the explicit notation for time varying quantities
is omitted when there is no risk of confusion. The estimator
dynamics can be written as

˙̂Z = FmẐ +DmSẐ +KH [Z − Ẑ] +KV

Let Z̃ = Z − Ẑ be the estimation error, then the error
dynamics can be written as

˙̃Z = [Fm −KH + ∆F ]Z̃ + [∆F + ∆DS]Ẑ +GV −KV

where△F = F −Fm and△D = D−Dm. Combining the
error dynamics and the estimator dynamics we could write,

[

˙̃Z
˙̂Z

]

=

[

(Fm −KH + ∆F ) (∆F + ∆DS)
KH (Fm +DmS)

] [

Z̃
Ẑ

]

+

[

G −K
0 K

] [

V

V

]

or in a more compact form as

Ż(t) = Υ(t)Z(t) + Γ(t)G(t) (15)

whereZ =
[

Z̃
T

Ẑ
T ]T

andG =
[

V
T VT

]T
.

A. Closed-Loop Stability and Transient Response Bound for
Systems with No Uncertainties

In this subsection a detailed analysis of the closed-loop
system’s asymptotic stability in the mean is given when there
are no uncertainties. As it is shown here, a transient bound

on the system mean response can be obtained in terms of
the time varying correlation matrix.

Consider a case where there is no model error, i.e.,F =
Fm, D = Dm, andV(t) = W(t). If there is no model error,
then the estimator is unbiased, i.e.,E[ ¯̃Z] ≡ µ¯̃Z = 0. Now
we can write
[ ˙̃̄

Z
˙̂̄
Z

]

=

[

Fm −KH 0
KH Fm +DmS

]

[

¯̃Z
¯̂Z

]

+

[

G −K
0 K

] [

W

V

]

where ¯̃Z and ¯̂Z denote the estimation error and estimated
states when there is no model error, respectively. The above
equation can be written in a more compact form as

˙̄Z(t) = Ῡ(t)Z̄(t) + Γ(t)Ḡ(t) (16)

A few definitions regarding the stability of a stochastic
process are now presented.

Definition 1. GivenM ≥ 1 and β ∈ R, the system in(16)
is said to be(M,β)-stable in the mean if

‖ Φ̄(t, t0)µZ̄(t0) ‖≤Meβ(t−t0) ‖ µZ̄(t0) ‖ (17)

whereΦ̄(t, t0) is the evolution operator generated bȳΥ(t),
µZ̄(t) = E[Z̄(t)], and ‖ · ‖ indicates the appropriate two
norm.

Since most applications involve the case whereβ ≤ 0,
(M,β)-stability guarantees both a specific decay rate of the
mean (given byβ) and a specific bound on the transient
behavior of the mean (given byM ).

Definition 2. If the stochastic system in(16) is (M,β)-stable
in the mean, then the transient bound of the system mean
response for the exponential rateβ is defined to be

Mβ = inf
{

M ∈ R; ∀t ≥ t0 :‖ Φ̄(t, t0) ‖≤Meβ(t−t0)
}

(18)

The optimal transient boundMβ = 1 can be achieved by
choosing a sufficiently largeβ, i.e.,

β(t− t0) ≥

∫ t

t0

‖ Ῡ(τ) ‖ dτ =⇒

‖ Φ̄(t, t0) ‖≤ e
∫

t

t0
‖Ῡ(τ)‖dτ

≤ eβ(t−t0) , t ≥ t0

Therefore it is of interest to know the smallestβ ∈ R such
that ‖ Φ̄(t, t0) ‖≤ eβ(t−t0), t ≥ t0. Given a system, which
is (M,β)-stable in the mean, the transient boundMβ of the
system mean can be readily obtained based on the premises
of the following theorem.

Theorem 1. Let P̄(t) = E[Z̄(t)Z̄
T
(t)] and Λ̄δ(τ) =

E[Ḡ(t)Ḡ
T
(t − τ)]. Now suppose the system in(16) is

(M,β)-stable in the mean, then there exists a continuously
differentiable positive definite matrix function̄P(t) satisfying
the Lyapunov matrix differential equation

˙̄P(t) = Ῡ(t)P̄(t) + P̄(t)ῩT (t) + Γ(t)Λ̄ΓT (t) (19)



such that

M2
β ≤ sup

t≥t0

σmax(P̄(t))/σmin(P̄(t0)) (20)

whereσmax(·) and σmin(·) denotes the maximum and mini-
mum singular values, respectively.

Proof: See proof of Theorem 1 in [12].

B. Closed-Loop Stability and Transient Response Bound for
Uncertain Systems

Consider the system (15) where model error is present,
i.e.,

Ż(t) = Ῡ(t)Z(t) + ∆Υ(t)Z(t) + Γ(t)G(t) (21)

where

∆Υ(t) =

[

∆F (∆F + ∆DS)
0 0

]

The correlation matrixP(t) = E[Z(t)ZT (t)] satisfies the
following Lyapunov matrix differential equation:

Ṗ = (Ῡ + ∆Υ)P + P(Ῡ + ∆Υ)T + ΓΛΓT (22)

whereΛδ(τ) = E[G(t)GT (t − τ)]. Note thatΓ(t)ΛΓT (t)
can be factored as shown below:

Γ(t)ΛΓT (t) =

[

(GQGT +KRKT ) −KRKT

−KRKT KRKT

]

=

[

G
0

]

Q
[

GT 0
]

+

[

PHT

−PHT

]

R−1
[

HP −HP
]

= LQLT +N(t)R−1NT (t)

Theorem 2. The uncertain system in(21) is (M,β)-stable
in the mean if

‖ ∆Υ(t)P̄(t) ‖2≤ σmin(Q)σmin(R−1) ‖ L ‖2‖ N(t) ‖2

(23)

whereP̄(t) satisfies

˙̄P = ῩP̄ + P̄ῩT + LQLT +NR−1NT (24)

Proof: See proof of Theorem 2 in [12].
Therefore(M,β)-stability in the mean is guaranteed if

the inequality equation (23) is satisfied. LetQ∗ and R∗

be chosen so that the above inequality is satisfied. Now
substitutingQ∗ andR∗ into (22) we have

Ṗ∗ = (Ῡ + ∆Υ)P∗ + P∗(Ῡ + ∆Υ)T + LQ∗LT

+NR∗−1NT
(25)

The solution of the above equation is

P∗(t) = [Φ̄(t, t0) + Φ∆(t, t0)]P
∗(t0)[Φ̄(t, t0)+

Φ∆(t, t0)]
T +

∫ t

t0

[Φ̄(t, τ) + Φ∆(t, τ)]
{

LQ∗LT+

N(τ)R∗−1NT (τ)
}

[Φ̄(t, τ) + Φ∆(t, τ)]T dτ

(26)

where[Φ̄(t, t0)+Φ∆(t, t0)] represents the evolution operator
corresponding to(Ῡ + ∆Υ).

Corollary 1. If the system given in(21) is (M,β)-stable in
the mean, then there exists a continuously differentiable pos-
itive definite symmetric matrix functionP∗(t) given by(26)
such that

M2
β ≤ sup

t≥t0

σmax(P
∗(t))/σmin(P

∗(t0)) (27)

here Mβ represents the transient bound of the perturbed
system’s mean response.

C. Mean Square Stability

Previously we analyzed stability in the mean. Here, it is
shown that the(M,β)-stability in the mean implies mean
square stability. More details on mean square stability can
be found in [14] and [15].

Definition 3. A stochastic system of the forṁZ(t) =
Υ(t)Z(t) + Γ(t)G(t) is mean square stable if

lim
t→∞

E[Z(t)ZT (t)] < C (28)

where C is a constant square matrix whose elements are
finite.

Note that
d

dt
E[ZZ

T ] = Ṗ = ΥP + PΥT + ΓΛΓT

and the solution to the above equation can be written as

P(t) =

∫ t

−∞

Φ(t, τ)Γ(τ)ΛΓT (τ)ΦT (t, τ)dτ

(M,β)-stable in the mean implies the system matrix,Υ(t) =
Ῡ(t)+∆Υ(t), generates a stable evolution operator,Φ(t, t0),
thereforeP(t) has a bounded solution [16].

D. Almost Sure Asymptotic Stability

The solution to the stochastic system given in (21) cannot
be based on the ordinary mean square calculus because the
integral involved in the solution depends onG(t), which is
of unbounded variation. For the treatment of this class of
problems, the stochastic differential equation can be rewritten
in Itô form as [17]

dZ(t) = [Ῡ(t)Z(t) + ∆Υ(t)Z(t)]dt+ Γ(t)Λ1/2dB(t)

or simply as

dZ(t) = Υ(t)Z(t)dt+ Γ(t)Λ1/2dB(t) (29)

wheredB(t) is an increment of Brownian motion process
with zero-mean, Gaussian distribution and covariance

E[dB(t)dBT (t)] = Idt (30)

The solutionZ(t) of (29) is a semimartingale process that
is also Markov [18].

Definition 4. The linear stochastic system given in(29) is
asymptotically stable with probability1, or almost surely
asymptotically stable, if

P
(

Z(t) → 0 as t→ ∞
)

= 1 (31)



A stochastic Lyapunov stability approach is usually em-
ployed to analyze almost sure stability. Given below is the
well-known classical result on the global asymptotic stability
for stochastic systems [14], [19]:

Theorem 3. Assume that there are functionsV (z, t) ∈ C2,1,
i.e., twice continuously differentiable inz and once int, and
κ1, κ2, κ3 ∈ class-K such that

κ1(‖ z ‖) ≤ V (z, t) ≤ κ2(‖ z ‖) (32a)

LV (z, t) ≤ −κ3(‖ z ‖) (32b)

for all
(

z, t
)

, wherez indicates a sample path ofZ(t, ω),
i.e., z(t) = Z(t, ωı) |ωı∈Ω. Then, for every initial valuez0,
the solution of(29) has the property that

Z(t) → 0 almost surely ast→ ∞ (33)

The operatorL{·} acting onV (z, t) is given by

LV (z, t) = lim
dt→0

1

dt
E

[

dV (Z(t), t)|Z(t) = z
]

(34)

wheredV (Z(t), t) can be calculated using the Itô Formula.

Note that in some literature an explicit notation for
LV (z, t) is given as

LV (z, t) =
∂V (z, t)

∂t
+

[

∂V (z, t)

∂z

]T

Υ(t)z+

1

2
Tr

{

Λ1/2ΓT (t)
( ∂2V

∂z∂zT

)

Γ(t)Λ1/2
}

which is the same as (34).(M,β)-stability in the mean
response implies thatΥ(t) generates an asymptotically stable
evolution for the linear system in (29), but it does not imply
almost sure asymptotic stability due to the persistently acting
disturbance. In fact, givenΥ(t) generates an asymptotically
stable evolution, the necessary and sufficent condition for
almost sure asymptotic stability is

lim
t→∞

‖ Γ(t) ‖2 log(t) = 0 (35)

A detailed proof of this argument can be found in [20].
Equation (35) constitutes the sufficent condition for the
almost sure asymptotic stability of a linear stochastic system
given (M,β)-stability in the mean.

IV. A DAPTIVE Q

In this section an adaptive law is developed to update the
disturbance term process noise covariance online so that the
controlled system is(M,β)-stable in the mean. Consider the
Itô version of the linear stochastic system given in (8):

dZ(t) =
{

FZ(t) +DSẐ(t)
}

dt+GdB1(t) (36)

where dB1(t) is an increment of Brownian motion
process with zero-mean, Gaussian distribution and
E[dB1(t)dB

T
1 (t)] = Q dt. The Itô version of the assumed

linear stochastic system given in (10) is

dZm =
{

FmZm +DmSẐ
}

dt+GdB2 (37)

where dB2(t) is also an increment of Brownian mo-
tion process with zero-mean, Gaussian distribution and
E[dB2(t)dB

T
2 (t)] = Qdt. Now the estimator can be written

as

dẐ =
{

Fm+DmS
}

Ẑdt+KH [Z − Ẑ]dt+KdB3

where the measurement nose,V(t), is formally approximated
as dB3(t)

dt and E[dB3(t)dB
T
3 (t)] = Rdt. Let H [Z(t) −

Ẑ(t)] = Ỹ(t), i.e.,

dẐ =
{

Fm +DmS
}

Ẑdt+KỸdt+KdB3 (38)

Notice that the estimator in (38) is bounded-input bounded-
output (BIBO) stable in the mean, i.e., if the measurement
minus estimate residual,̃Y(t), is bounded in the mean, then
Ẑ(t) is bounded in the mean. The adaptive law developed
here will update the assumed process noise covariance,Q(t),
so that the measurement residual is bounded. A bounded
measurement residual implies that the plant given in (36) is
also BIBO stable in the mean. An update law for the assumed
process noise covariance is obtained on the premises of the
following theorem [14].

Theorem 4. Assume there is a nonnegative functionV (Y, t)
such that

LV (y, t) ≤ 0 (39)

for all
(

y, t
)

∈ Rm × R+, where y indicates a sample
path of Y(t, ω), i.e., y(t) = Y(t, ωı) |ωı∈Ω. Then,V (Y, t) is
a nonnegative supermartingale process and, for any initial
conditionY(t0) = y0,

P

(

sup
∞>t≥t0

V (Y, t) ≥ λ
)

≤
V (y0, t0)

λ
(40)

whereλ is any positive constant.

Proof: If LV (y, t) ≤ 0, then Dynkin’s formula [14] can
be used:

E
[

V (Y, t)
]

− V (y0, t0) = E
[

∫ t

t0

LV (Y, τ)dτ
]

≤ 0

ThusE
[

V (Y, t)
]

≤ V (y0, t0) andE
[

V (Y, t)
]

→ V (y0, t0)
as t → t0. These two facts imply supermartingale property
and (40) is the supermartingale probability inequality.

Now consider the following nonnegative function:

V (Ỹ, t) =

∫ t

t0

Ỹ
T
(τ)KT

ssKssỸ(τ)dτ + Tr{G∆Q(t)GT }

where ∆Q(t) = Q∗ − Q(t) and Q∗ ≥ Q(t), ∀t ≥ t0.
Note thatQ∗ will satisfy the inequality equation (23) and
Kss is the steady-state Kalman gain corresponding to the
initial process noise covariance,Q(t0). Now LV (ỹ, t) can
be calculated as

LV (ỹ, t) = ỹT (t)KT
ssKssỹ(t) − Tr{GQ̇(t)GT }

Select the adaptive law forQ(t) as

Q̇(t) = γ(GTG)−1GT [Kssỹ(t)ỹT (t)KT
ss]G(GTG)−1

(41)
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whereγ > 1 is the adaptive gain. Now we have

LV (ỹ, t) ≤ 0

i.e., V (Ỹ, t) is a supermartingale and

P

(

sup
∞>t≥t0

V (Ỹ, t) ≥ λ
)

≤
V (Ỹ0, t0)

λ

Therefore

lim
t→∞

∫ t

t0

Ỹ
T
(τ)KT

ssKssỸ(τ)dτ <∞ a.s.⇒

lim
t→∞

Ỹ(t) = 0 a.s.

Thus we have bounded measurement residual and the plant
is BIBO stable in the mean. Since we assume the plant
is controllable and observable, the BIBO stability in the
mean implies exponential stability in the mean. Therefore
the adaptive law given in (41) will guarantee the plant is
(M,β)-stable in the mean. A schematic representation of
the proposed adaptive controller is given in Fig. 1

V. RESULTS

For simulation purposes, we consider a two degree of
freedom helicopter that pivots about the pitch axis by angleθ
and about the yaw axis by angleψ. As shown in Fig. 2, there
is a thrust forceFp acting on the pitch axis that is normal
to the plane of the front propeller and a thrust forceFy
acting on the yaw axis that is normal to the rear propeller.
Therefore a pitch torque is being applied at a distancerp
from the pitch axis and a yaw torque is applied at a distance
ry from the yaw axis. The gravitational force,Fg, generates
a torque at the helicopter center of mass that pulls down on
the helicopter nose. As shown in Fig. 2, the center of mass
is a distance oflcm from the pitch axis along the helicopter
body length.

After linearizing aboutθ0 = ψ0 = θ̇0 = ψ̇0 = 0, the
helicopter equations of motion can be written as

(Jeq,p +mhelil
2
cm)θ̈ = KppVm,p +KpyVm,y −Bpθ̇

−mheliglcm

(Jeq,y +mhelil
2
cm)ψ̈ = KyyVm,y +KypVm,p −Byψ̇

Fig. 2. Two Degree of Freedom Helicopter

The control input to the system are the input voltages of
the pitch and yaw motors,Vm,p andVm,y, respectively. Let
u = [u1 u2]

T = [Vm,p Vm,y]
T andx = [θ ψ θ̇ ψ̇]T ,

now the state-space representation of the above system is

ẋ = Ax +Bu + w (43)

where the constant gravitational torque,mheliglcm , is con-
sidered as external disturbance,w. For simulation purposes,
the viscous damping coefficient about the yaw axis is se-
lected so that the nominal control action on the true plant is
unstable. The measured output equation is given as

Y = Cx + V (44)

where C =

[

1 0 0 0
0 1 0 0

]

and V is the Gaussian mea-

surement noise with covarianceR = 1 × 10−5δ(τ)I.
Notice that the disturbance term can be written asd =
[0 0 dθ̈ dψ̈]T . The first two zero elements in the
disturbance-term indicate the perfect knowledge of the sys-
tem kinematics. The disturbance-term dynamics is modeled
as

ḋθ̈m(t) = −dθ̈m(t) + W1(t), ḋψ̈m(t) = −3dψ̈m(t) + W2(t)

The nominal controller is selected to be an infinite time
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Fig. 3. Desired and Actual States:Q = 1 × 10−3I2×2

horizon LQR. For simulation purposes the initial states are
selected to be[θ0 ψ0 θ̇0 ψ̇0]

T = [−45o 0 0 0]T

and the desired statesθd and ψd are selected to be45o

and30o, respectively. More details on the numerical values
of the system parameters and the simulation setup can be
found in [12]. The desired response given in Fig. 3(a) is
the system response to nominal control when there is no
model error and external disturbance. Figure 3(b) shows the
unstable system response obtained for the first simulation
whereQ = 1 × 10−3I2×2. The unstable response given in



Fig. 3(b) indicates that the selectedQ does not satisfy the
inequality in (23).
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Fig. 4. Actual States and Input: Adaptive Q

Figure 4 shows the stable system response and the control
input obtained using the adaptive DAC approach where
Q0 = 1 × 10−3I2×2. Figure 4(a) indicates that the adaptive
controller is able to stabilize the system despite the low initial
Q0. In Fig. 5, the estimated disturbance term and the time
varyingQ(t) are given.
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Fig. 5. Disturbance term andQ(t)

VI. CONCLUSION

This paper presents the formulation of an observer-based
stochastic DAC approach for LTI-MIMO systems which
automatically detects and minimizes the adverse effects of
both model uncertainties and external disturbances. Assum-
ing all system uncertainties and external disturbance can be
lumped in a disturbance term, this control approach utilizes
a Kalman estimator in the feedback loop for simultaneously
estimating the system states and the disturbance term from
measurements. The estimated states are then used to develop
a nominal control law while the estimated disturbance term
is used to make necessary corrections to the nominal control
input to minimize the effect of system uncertainties and
the external disturbance. The stochastic stability analysis
conducted on the controlled system reveals a lower bound
requirement on the covariance matrices,Q and R−1, to
ensure controlled system stability. Since the measurement
noise covariance can be obtained from sensor calibration,
the process noise matrixQ is treated as a tuning parameter.
Based on the stochastic Lyapunov analysis, an adaptive law is
developed for updating the selected process noise covariance
online so that the controlled system is stable. The simulation
results reveal that if the selectedQ is below the lower bound,
then the controlled system is unstable. The controlled system

is stabilized after implementing the adaptive approach for
updatingQ(t) online.
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[19] Arnold, L., Stochastic Differential Equations: Theory and Applica-

tions, Wiley, New York, NY, 1972.
[20] Appleby, J. A. D., “Almost Sure Stability of Linear Itô-Volterra
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