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Abstract—This paper presents a Kalman filter-based adap- pends on the selection of process noise covariance assciat
tive disturbance-accommodating stochastic control scheenfor  with the unknown disturbance term [11], [12]. Although the
linear uncertain systems to minimize the adverse effects of Kalman filter-based DAC approach has been successfully

both model uncertainties and external disturbances. A rigoous tilized f tical licati th h t b
stochastic stability analysis reveals a lower bound requement utiized tor practical applicatons, there has not been any

on system process noise covariance to ensure the stability o ligorous stochastic stability. analysis to reVGa'_ the lme"
the controlled system when the nominal control action on the pendency between the estimator process noise covariance

true plant is unstable. Finally, an adaptive law is synthesied and controlled system stability. The two main contribusion
fo_r the §e|ect|on of stabilizing system process noise covance. of this paper are 1) a stochastic stability analysis, and 2)
Simulation results are presented where the proposed contto . . .
scheme is implemented on a two degree-of-freedom helicopte an adaptlve I"’,‘W for updating _the Se,k,aCtEd prolce_ss_n0|se
covariance online. The stochastic stability analysisdatis
a lower-bound requirement on the assumed disturbance term
|. INTRODUCTION process noise covariance matrix and the measurement noise

Uncertainty in dynamic systems may take numerovariance matrix to guarantee exponential stability ia th
ous forms, but among them, the most significant amean sense when the nominal control action on the true
noise/disturbance uncertainty and model/parameter ungglant would result in an unstable system. Based on the
tainty. External disturbances and system uncertainties cgtochastic Lyapunov analysis, an adaptive law is developed
obscure the development of a viable control law. The mafar updating the selected process noise covariance ordine s
objective of Disturbance Accommodating Controller (DACjhat the controlled system is stable.
is to make necessary corrections to the nominal controlThe structure of paper is as follows: A detailed formulation
input to accommodate for external disturbances and syd-the stochastic disturbance accommodating controller fo
tem uncertainties [1]-[4]. The disturbance accommodatiddglMO systems followed by a stochastic stability analysis is
observer approach has shown to be extremely effective fgiven next. Afterwards, an adaptive scheme is developed for
disturbance attenuation [5]-[7]; however, the perforneanthe selection of stabilizing disturbance term processenois
of the observer can significantly vary for different typesovariance. Simulation results are then presented where th
of exogenous disturbances, which is due to observer garoposed control scheme is implemented on a two degree-
sensitivity. of-freedom helicopter.

This paper presents a robust control approach based on
a significant extension of the conventional observer-based N
disturbance-accommodating control concept, which compen L€t (€2, 7, P) denote a complete probability space. Con-
sates for both unknown model parameter uncertainties apider annt_h-order linear time-invariant stochastic system of
external disturbances by estimating a model-error vectgie following form:

(throughout this paper we will use the phrase “disturbance X(t) = AX(t) + Bu(t) + W(t), X(to) = Xo
term” to refer to th|s_ quantity) in real time. The est|mated_ Y (t) = CX(t) + V(t)

model-error vector is further used as a signal synthesis
adaptive correction to the nominal control input to achievdere, the stochastic state vectii(t) = X(t,w) : [to, t] x
maximum performance. This control approach utilizes @ — R", is an n-dimensional random variable for fixed
Kalman filter in the feedback loop for simultaneously es~ Throughout this paper, random vectors are denoted using
timating the system states and the disturbance term frdrldface capital letters and for convenience, the depasyden
measurements [8]-[10]. The estimated states are then ueéd stochastic process anis not explicitly shown. The true

to develop a nominal control law while the estimated distate and control distribution matriceed € R"*" B ¢
turbance term is used to make necessary correctionsR®*"), are assumed to be unknown. Also, the system is
the nominal control input to minimize the effects of botlassumed to be under-actuated, ize.< n. The stochastic
unknown system uncertainties and the external disturbanceeasurement vector is given ¥§t) = Y (¢,w) : [to, ts] ¥

It is a well-known fact that the closed-loop performancg — R™ and the known output matrix i€ € R™*"™. The
and stability of the Kalman filter-based DAC approach deneasurement nois&/(t) = V(t,w) : [to,ts] x Q — R™,

II. CONTROLLER FORMULATION

(1)



is assumed to be zero mean Gaussian white noise, i@onstruct the assumed augmented state ve@Qit) =
fv(v) ~ N(0,Ré(7)). Finally, the stochastic external dis- | Xm(t)
turbanceW (t) £ W(t,w) : [to,t7] x Q + R™ is assumed |Dm(t)

], now the assumed model in (7) can be written
to satisfy the matching condition and it is modeled as Y

linear time-invariant system driven by a Gaussian whites@oi Zn(t) = FpZy(t) + Dyyu(t) + GW(2) (10)
process, i.e.,
; where F,,, = Am L) and D,, = B
W(t) = L1(X(1),u(®), W(t)) + V(t), W(to) =0 (2) " Onxn) . Ap,, " O(nxr)]

~ Notice that the uncertainty is now only associated with the

where £,(-) is an unknown linear operator amd(i) = g hamics of the disturbance term. The estimator dynamics
V(t,w) : [to,tf] x Q@ — R, is assumed to be zero mean._ - be written as

Gaussian white noise process, i.gu(V) ~ N(0,Q5(7)).
The assumed (known) system model is Z(t) = FnZ(t) + Dpyu(t) + K@Y () = Y(®)]  (11)

X (t) = A X (t) + BrU(t),  Xm(to) =Xo 3) where K (t) is the Kalman gain andd = HZ with H =
Yo (t) = CXpn (t) 4+ V(1) [C' Omxn]. The estimator dynamics can be rewritten as

The external disturbance and the model uncertainties canj)(%) = Fm2(t)+Dmu(t)+K(t)H[Z(t) —Z(t)] +K(t)V(t)
lumped into a disturbance terr®(¢), through . ]
Notice that the estimator uses the assumed system model

D(t) = AAX(t) + ABu(t) + W(?) (4) in (10) for the propagation stage and the true measurements

whereAA = (A — A,,) andAB = (B — B,,). Using this for the update stage, i.&Z(t) = E[Z,,(¢t)|{Y:...Yo}]. The

H _ T p—1
disturbance-term the true model can be written in terms §f/Man gain can be calculated ds(t) = P(H)H R,

the known system matrices as follows: where P(t) = E[(Zm(t) = Z(1)(Zm(t) — Z(t))T] can be
obtained by solving the continuous-time matrix differahti

X(t) = AnX(t) + Bmu(t) + D(t), Y(t) = CX(t) +V(t) (5) Riccati equation [13]:

The control lawu(t), is selected so that the true systemwill p—=F, P+ PF,,T — PHTR'HP + GQGT (12)
track the reference model(t) = A,,X(t) + B,,U(t). The

true system tracks the reference model if the following wWo
conditions are satisfied: ut) = — K X(t) (13)

or the reference system, the nominal controller is given as

Xo = X(to), BmU(t) = By,U(t) — D(t) (6) where K,, ¢ R"™*" is the feedback gain. Now the total

where convergence is understood in the mean square sefg8{rol law can be written in terms of the estimated system
The disturbance term is not known, but an observer can Bi@tes and the estimated disturbance term as

implemented in the feedback-loop to estimate the distwban T 1T XT o5

term online. For this purpose, the system in (1) is rewritten U= —(BpBm)" By, [BWKW I(”X")} Dl SZ(t)

as the following extended dynamically equivalent system: (14)
X1 = [ Am Ty | | X4 1B 1002y where s = —(BTB,.)'BT. [Bme 1}. Notice that
D Loy Lop D Loy v . . . . .

N (BT B,,) is a nonsingular matrix since3,, is assumed
where Lax, Lop, and Ly, are partitions only(:-), a re- to have linearly independent columns. A summary of the
alization of unknownf,(-). Let Z(t) = ;()((?) CF = proposed control scheme is given Table. I.

Am Tinxn By, Onxn TABLE |
o (E;D)]' D o ]’ andG = I : . Now the SUMMARY OF DAC
u nxn
extended system given in (7) can be written as
Z(t) = FZ(t) + Du(t) + GV(t), Z(ty) =Zo (8) Plant Z(t) = FZ(t) + Du(t) + GV(t)
where Z, = [xo Dyo]T. It should be noted that we do Y(t) = HZ(t) + V(1)

not have precise knowledge about the dynamics of the
disturbance term. For simplicity, the disturbance term is| opserver| P = FnP + PFn” — PHTR-YHP + GQGT
modeled as

Do(t) = Ap. Don(t) + W), Dmlto) =0 (9) K(t) = P(HTR™

where Ap, is Hurwitz andW(t) £ W(t,w) : [to,ts] x Z(t) = FnZ(t) + Dmu(t) + K ()Y (t) = Y(1)]
2 — R™ is zero mean Gaussian white noise process, i.e., X
fw(w) ~ N(0,Q5(r)). Equation (9) is used solely in DAC U(t):(BTan)leTn[—Bme —I]Z(t)

the estimator design to estimate the true disturbance term.



It is important to note that ifQQ = 0, thenD,,(t) = on the system mean response can be obtained in terms of

Fp— KH 0 z
KH  Fu+DuS| |2

D,.(tp) = 0 and the total control law becomes just thehe time varying correlation matrix.

nominal control. If the nominal controli(¢), on the true  Consider a case where there is no model error, Fe=
plant would result in an unstable system, then selectingfa,, D = D,,, andV(¢) = W(t). If there is no model error,
small Q would also result in an unstable system. On thgen the estimator is unbiased, i.E[Z] =ps = 0. Now
other hand, selecting a larg@ value would compel the we can write

estimator to completely rely upon the measurement sign

and therefore the noise associated with the measuremgs n [G —K] {W}
signal is directly transmitted into the estimates. Thisldou |5 0 K ||V

result in a noisy control signal which could lead to problems

such as chattering and controller saturation. Also notea®a where 7 and 7 denote the estimation error and estimated
R, the measurement noise covariance, increases, the obsesygtes when there is no model error, respectively. The above
gain decreases and thus the observer fails to update mation can be written in a more Compact form as
propagated disturbance term based on measurements. For .

a highly uncertain system, if the nominal control action Z(t) =Yt Z(t)+T(t)G(t) (16)

on the true plant would result in an unstable system, then o . . )
selecting a smalt) or a large R would also result in an A few definitions regarding the stability of a stochastic
unstable closed-loop system as shown in [11]. It is cleRFOCESS are now presented.

that the performance and stability of the conventional DAGefinition 1. GivenM > 1 and 3 € R, the system ir{16)
depends upon judicious selection of the model disturbanigesaid to be(), 3)-stable in the mean if

covariance&). In the next section, a rigorous stability analysis

is presented which investigates the explicit dependentyeof | ®(t, to)pz(to) < MeP=0) || pz(to) | 17)
closed-loop system stabilit andR. = -
P sy ity o@ where ®(t,t) is the evolution operator generated By(),
[1l. STABILITY ANALYSIS pz(t) = E[Z(t)], and | - || indicates the appropriate two

Substituting the control law, (14), into the plant dynam°™™:

ics, (8), the true system can be written as Since most applications involve the case whgre< 0,

SN ; - (M, B)-stability guarantees both a specific decay rate of the
Z(t) = FZ(t) + DSZ(t) + GV(®), Y(t) = HZ(t) + V(1) mean (given bys) and a specific bound on the transient
From hereon the explicit notation for time varying quasetti behavior of the mean (given hy/).

Ids ?\g‘rﬁtgg Zv;lnert;;he:%ésnnssnsk of confusion. The estimal@feiition 2. If the stochastic system (46)is (M, (3)-stable
y ! wh in the mean, then the transient bound of the system mean

Z=F,Z+D,,52+ KH([Z - 2] + KV response for the exponential rateis defined to be

Let Z = Z — Z be the estimation error, then the error Mg = inf{M ER;VE > tg || (t, to) ||< Meﬁ(t*t")}
dynamics can be written as (18)

z- [F,, — KH + AF)Z + [AF + ADS]Z + GV — KV The optimal transient boun#i/z = 1 can be achieved by
whereAF = F — F,, andAD = D — D,,. Combining the choosing a sufficiently largg, i.e.,

error dynamics and the estimator dynamics we could write, L
i ) Bit—to)> [ | T(r) |dr =
Z| |(Fn—KH+AF) (AF+ADS)| |Z - o
2] KH (Fn + D) | |2 | Bt to) [|< el TN < eBlt0) g >
{G —K] [V] Therefore it is of interest to know the smallgéte R such
0 K|V that || ®(t,t) ||< e?t—%), t > to. Given a system, which
or in a more compact form as is (M, §)-stable in the mean, the t_ransient boung of the _
) system mean can be readily obtained based on the premises
Z(t)="TH)Z(@1) +I(t)G(t) (15) of the following theorem.
- N = >/ 5T <
where Z = [ZT ZT]T andg = [V" VT}T_ Theorem 1. Let P(t) = E[Z(¢)Z (¢)] and Ad(r) =

E[g(t)gT(t — 7)]. Now suppose the system (i6) is
A. Closed-Loop Stability and Transient Response Bound {ay/, 3)-stable in the mean, then there exists a continuously
Systems with No Uncertainties differentiable positive definite matrix functig?(t) satisfying
In this subsection a detailed analysis of the closed-lodipe Lyapunov matrix differential equation
system’s asymptotic stability in the mean is given wheneher N o S -
are no uncertainties. As it is shown here, a transient bound P (t) = Y()P(t) + P(¢)X" (¢) + L(¢)AL" (2) (19)



such that Corollary 1. If the system given if21) is (M, 3)-stable in
the mean, then there exists a continuously differentiabte p

2 . D i D
Mj < tb;ltpo amax(P(t))/omin(P(to)) (20) itive definite symmetric matrix functioR*(¢) given by(26)
- ) ~_such that
where omax(-) and omin(-) denotes the maximum and mini- )
mum singular values, respectively. Mj < sup omax(P™(t))/omin(P* (t0)) (27)

Proof: See proof of Theorem 1 in [12]. B here Mg represents the transient bound of the perturbed

B. Closed-Loop Stability and Transient Response Bound ffStém’s mean response.

Uncertain Systems C. Mean Square Stability
~ Consider the system (15) where model error is present,previously we analyzed stability in the mean. Here, it is
€., shown that the(M, 5)-stability in the mean implies mean

Z(1) = T(DZ() + AT Z(1) + T(HG(t 21) Square stability. More details on mean square stability can
() () 2() + H2MH +THG(H) @1 be found in [14] and [15].

where Definition 3. A stochastic system of the forg(t) =
AT() = AF (AF+ADS) T(t)Z(t) + [(t)G(t) is mean square stable if
0 0
lim E[Z(t)ZT(t)] < C (28)

The correlation matrixP(t) = E[Z(t)Z7 (t)] satisfies the teo
following Lyapunov matrix differential equation: where C is a constant square matrix whose elements are

. _ _ finite.

P=(T+AT)P +P(Y +AY)T +TATT (22)

Note that

where Ad(7) = E[G(t)G” (t — 7)]. Note thatT'(t)AT'” (t) d ,
can be factored as shown below: EE[ZZT] =P ="TP+PY" +TAI"

T(1)ATT (£) = (GQGT + KRK") —KRK" and the solution to the above equation can be written as

~KRKT KRKT .
G PHT | __ P(t) = / o(t, )T(1)ATT (1)®T (¢, 7)dr
= M Q[GT 0] + {—PHT] R™'[HP —HP] e
— LOLT + N®)RINT (1) (M, B)-stable in the mean implies the system matiiX¢) =

Y (t)+ATY(t), generates a stable evolution operade(t,, ¢,),
Theorem 2. The uncertain system i21) is (M, 3)-stable thereforeP(¢) has a bounded solution [16].

in the mean if , .
D. Almost Sure Asymptotic Stability

I AT)P(#) [*< min(@)omin(R™) | L 2] N(2) |I? The solution to the stochastic system given in (21) cannot
(23)  be based on the ordinary mean square calculus because the
whereP(t) satisfies integral involved in the solution depends Gi¢), which is

L of unbounded variation. For the treatment of this class of
P=YP+PYT +LQLY + NR™INT (24) problems, the stochastic differential equation can beittsar

) in Itd6 form as [17]
Proof: See proof of Theorem 2 in [12]. ]

Therefore (M, 3)-stability in the mean is guaranteed if dZ(t) = [T(t)Z(t) + AY(t)Z(t)]dt + T(t)AY/2dB(t)
the inequality equation (23) is satisfied. L&* and R*

be chosen so that the above inequality is satisfied. NOW simply as
substituting@* and R* into (22) we have dZ(t) = Y(t)Z(t)dt + F(t)Al/QdB(t) (29)
Pt = (Y 4+ AT)P* + P (T + AT)T + LQ*LT o5 where dB(t) is an increment of Brownian motion process
+NR*'NT (25) with zero-mean, Gaussian distribution and covariance
The solution of the above equation is E[dB(t)dB (t)] = Idt (30)
P*(t) = [®(t, to) + Palt, to)]P*(to)[@(t, to)+ The solutionZ(t) of (29) is a semimartingale process that

. t . is also Markov [18].
Da(t,t d(t, da(t,7){LQ*L 26 - . . . .
alt o)l + /to[ (t:7) + @af T)]{ @L+ (26) Definition 4. The linear stochastic system given (20) is
N(T)R*ANT(T)}[@(LL’T) + @A, 7)) dr asymptotically stable with probability, or almost surely
B asymptotically stable, if
where[®(t,t) +Pa(t, to)] represents the evolution operator
corresponding tqT 4+ AY). P(Z(t) —0 as t—oo) =1 (31)



A stochastic Lyapunov stability approach is usually enwhere dBy(t) is also an increment of Brownian mo-
ployed to analyze almost sure stability. Given below is th@n process with zero-mean, Gaussian distribution and

well-known classical result on the global asymptotic digbi
for stochastic systems [14], [19]:

Theorem 3. Assume that there are functioh¥z,t) € C1,
i.e., twice continuously differentiable mand once int, and
K1, Ko, k3 € classk such that

rill 2 1)) < Vi(z:t) < ra(ll 2 [])
LV(z,1) < —rs(ll 2 )

(32a)
(32b)
for all (z,t¢), wherez indicates a sample path (¢, w),

i.e., z(t) = Z(t,w,) |u,eq. Then, for every initial value,
the solution of(29) has the property that

Z(t) — 0 almost surely ag — oo (33)
The operator€{-} acting onV (z,t) is given by
LV (z,t) = Jim éE[dV(Z ),0)|Z2(t)=2] (34)

wheredV (Z(t),t) can be calculated using thedltFormula.

E[dBs(t)dB2 (t)] = Q dt. Now the estimator can be written
as

dZ = {F,+D,S}Zdt + KH[Z — Z]dt + KdBs

where the measurement nos&;), is formally approximated
as ) and E[dBs(t)dBY (1)) = Rdt. Let H[Z(t) —
Z(t)] =Y(t), e,

dZ = {Fy, + D S}Zdt + KYdt + KdBs

(38)

Notice that the estimator in (38) is bounded-input bounded-
output (BIBO) stable in the mean, i.e., if the measurement
minus estimate residuaY,(t), is bounded in the mean, then
Z(t) is bounded in the mean. The adaptive law developed
here will update the assumed process noise covariéhee,

so that the measurement residual is bounded. A bounded
measurement residual implies that the plant given in (36) is
also BIBO stable in the mean. An update law for the assumed
process noise covariance is obtained on the premises of the
following theorem [14].

Note that in some literature an explicit notation forheorem 4. Assume there is a nonnegative functiofy, t)

£V (z,t) is given as
T
_ 0V (z,1) oV (z,t)
LV (z,t) = 5 P T(t)z+

T 10 (g ron )

which is the same as (34)JM, 8)-stability in the mean

response implies thaf (¢) generates an asymptotically stable
evolution for the linear system in (29), but it does not imply

such that

£V (y,t) <0 (39)

for all (y, t) € R™ x R,, wherey indicates a sample
path of Y(¢,w), i.e., y(t) = Y(t,w,) |w,eq. Then,V(Y,t) is

a nonnegative supermartingale process and, for any initial
conditionY (o) = Yo,

IP’( sup V(Y. ) > /\) < Vo to) (40)
co>t>to A

almost sure asymptotic stability due to the persistentingc \ynere ) is any positive constant.
disturbance. In fact, giveff'(¢t) generates an asymptotically

stable evolution, the necessary and sufficent condition for

almost sure asymptotic stability is

Jim || T(¢) |* log(t) = 0 (35)

Proof: If £V (y,t) <0, then Dynkin’s formula [14] can
be used:

E[V(Y.1)] - V(o to) = E[/t SV(Y.7)dr] <0

A detgiled proof of _this argument can be fom_J_nd in [20]ThusE[V(Y,t)} < V(Y. to) andE[V(Y,t)] — V(Y. to)
Equation (35) constitutes the sufficent condition for thgg; _, to. These two facts imply supermartingale property

almost sure asymptotic stability of a linear stochastitesys
given (M, )-stability in the mean.

IV. ADAPTIVE Q

and (40) is the supermartingale probability inequality.m
Now consider the following nonnegative function:

V(Y,t) = / t Y (KL KN (7)dr + THGAQ(H)GT )

In this section an adaptive law is developed to update the to
disturbance term process noise covariance online so that {{here AQ(t) = Q* — Q(t) and Q* > Q(t),Vt > to.
controlled system ig$M, 3)-stable in the mean. Consider theygte thatQ* will satisfy the inequality equation (23) and

Itd version of the linear stochastic system given in (8):
dZ(t) = {FZ(t) + DSZ(t)}dt + GdB(t)

where dBi(t)
process with

(36)

is an

zero-mean, Gaussian distribution

increment of Brownian motion
and

K, is the steady-state Kalman gain corresponding to the
initial process noise covariancé)(ty,). Now £V (y,t) can
be calculated as

LV(y,t) = ¥ (KL K y(t) — TH{GQ(t)GT}

E[dB,(t)dB7 (t)] = Qdt. The Itd version of the assumedSelect the adaptive law fap(t) as

linear stochastic system given in (10) is

dZ, = {FyZy + Dy, SZ}dt + GdBs (37)

Qt) =(GTG) 1 GT KLy ()Y () KL]G(GTG)
(42)
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Ref.

_ | Nominal Controllet—>() . Plant —>@—Y—>
X £y \7‘;:,
(BE Bm) "B 7
Pitch Axis
/
Estimatod<— Fig. 2. Two Degree of Freedom Helicopter
Model M I.)Adaptive Law Q /
) The control input to the system are the input voltages of
the pitch and yaw motord/,,, , andV,, ,, respectively. Let
Fig. 1. Adaptive DAC Block Diagram u= [Ul uz]T — [me Vm,y]T andx = [9 " 0 1/']]T,

now the state-space representation of the above system is

wherev > 1 is the adaptive gain. Now we have X=Ax+ Bu+w (43)

where the constant gravitational torquey,;; glc. , is con-

V(1) <0 sidered as external disturbanee, For simulation purposes,
ie., V(\?,t) is a supermartingale and the viscous damping coefficient about the yaw axis is se-
- lected so that the nominal control action on the true plant is
IP’( sup V(Y,t) > )\) < V(Y/(\JvtO) unstable. The measured output equation is given as
pozt=to Y = Ox+V (44)
Therefore
tor ~ where C = [1 00 O} and V is the Gaussian mea-
lim Y (NKLK.Y(r)dr <o as.= 01 00
=0 S, } surement noise with covariancB = 1 x 107°§(7)1.
tlil& Y(t)=0 a.s. Notice that the disturbance term can be written das=

0 0 dj dlz;]T. The first two zero elements in the

Thus we have bounded measurement residual and the plgaf,rhance-term indicate the perfect knowledge of the sys

is BIBO stable in the mean. Since we assume the plagh, kinematics. The disturbance-term dynamics is modeled
is controllable and observable, the BIBO stability in thgg

mean implies exponential stability in the mean. Therefore i

the adaptive law given in (41) will guarantee the plant idj, (1) = —d;, (t) + Wi(t), dj, (t) = —3d; (1) +Wal(t)
(M, 5)-stable in the mean. A schematic representation ofy,o \\ominal controller is selected to be an infinite time
the proposed adaptive controller is given in Fig. 1

12
200, x10

V. RESULTS -
) ) . 0 150 i
For simulation purposes, we consider a two degree of e

O 100

freedom helicopter that pivots about the pitch axis by afigle 3

B ok

Actual States

and about the yaw axis by angle As shown in Fig. 2, there g e B

is a thrust forceF,, acting on the pitch axis that is normal o “«=--mm-mmmrmmmmy s ”g)

to the plane of the front propeller and a thrust forEg B - = m
acting on the yaw axis that is normal to the rear propeller. Time(sec) Time(sec)
Therefore a pitch torque is being applied at a distangce @) (b)

from the pitch axis and a yaw torque is applied at a distance
ry from the yaw axis. The gravitational forcéy, generates

a torque at the helicopter center of mass that pulls down Rorizon LQR. For simulation purposes the initial states are

the helicopter nose. As shown in Fig. 2, the center of Mags o cted to bl o 6o wolT — [<45° 0 0 0]

L)sozyd:ztna;;e of.,, from the pitch axis along the hehcopterand the desireq state, and wd- are selected tc_’ be5°
S : : and 30°, respectively. More details on the numerical values
After linearizing aboutd = 4o = 0o = vo = 0, the .0 o o barameters and the simulation setup can be
helicopter equations of motion can be written as ° hd P . . n Setup ,
found in [12]. The desired response given in Fig. 3(a) is
(Jeq.p +mhezilfm)9 = KppVinp + KpyViny — Bpé the system response to nominal control when there is no
model error and external disturbance. Figure 3(b) shows the
oy L . unstable system response obtained for the first simulation
(Jeqy + Mhnetiley )V = KyyViny + KypVinp — By where@Q = 1 x 1073I4». The unstable response given in

Fig. 3. Desired and Actual State§ = 1 x 1073 Iox>

- mheliglcm



Fig. 3(b) indicates that the
inequality in (23).

selectéd does

Actual States

10 10

4 6 4 6
Time(sec) Time(sec)

(@) (b)
Fig. 4. Actual States and Input: Adaptive Q

Figure 4 shows the stable system response and the control

not satisfy the is stabilized after implementing the adaptive approach for

updatingQ(¢) online.

(1]

[2

—

3

—

(4]

5

—_

input obtained using the adaptive DAC approach where
Qo = 1 x 1073 I,». Figure 4(a) indicates that the adaptivel6]

controller is able to stabilize the system despite the latiain

Qo. In Fig. 5, the estimated disturbance term and the time

varying Q(t) are given.

Disturbance term
Q(t)
3

(7]

(8]

El

[10]
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