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Abstract – The main objective of this work is to model
and exploit available maritime contextual information to
provide a hypothesis on suspicious vessel maneuvers. This
concept involves utilizing the L1 tracking to perform L2/L3
data fusion, i.e. refinement and assessment for situations
and threats. A new context-based tracker known as the Con-
Tracker is developed. The purpose of the ConTracker is
to incorporate the contextual information into a traditional
α − β tracker in such a way so that it provides a repeller
or an attractor characteristics to a specific region of inter-
est. Any behavior of the vessel that is inconsistent with the
repeller or the attractor characteristics of the current vessel
location would be classified as suspicious. Such an incon-
sistent vessel behavior would be directly indicated by a high
measurement residual which may be used to estimate an
accurate process noise covariance using a multiple-model
adaptive estimator. Based on the rate of change of the esti-
mated process noise covariance values, an L2/L3 hypothe-
sis generator red-flags the target vessel. Simulation results
indicate that the context based tracking enhances the relia-
bility of erratic maneuver detection.

Keywords: Trafficability, ConTracker, MMAE, L2/L3 fu-
sion,α− β tracker.

1 Introduction
Traditional tracking algorithms heavily rely on target

model and observations but do not exploit local informa-
tion. Though these approaches work well for some targets,
they often fail to account for the movements of intelligent
objects. Advancement of complex tracking schemes suggest
that increasing the amount of information included in the al-
gorithm can improve the quality of the tracking process. A
terrain-based tracking approach which accounts for the ef-
fects of terrain on target speed and direction of movement is
presented in Ref. [1]. It has been shown that the incorpora-
tion of local contextual information such as the terrain data
can significantly improve the tracker performance [2]. In
recent years, researchers have explored the overt use of con-
textual information for improving state estimation in ground
target tracking by incorporating this information into the
tracking algorithm as a potential field to provide a repelleror
an attractor characteristic to a specific region of interest[3].

In Ref. [4], the local contextual information, termed traffi-
cability, incorporates local terrain slope, ground vegetation
and other factors to put constraints on the vehicle’s max-
imum velocity. Simulation results given in Ref. [4] show
that the use of trafficability can improve estimate accuracy
in locations where the vehicle path is influenced by terrain
features.

The main goal of this work is to exploit available mar-
itime information to provide a hypothesis on suspicious boat
movements. For example, it is desired to “red-flag” a boat
that approaches a restricted high value unit area. Also, a
vessel that is erratically zigzagging across a marked ship-
ping channel may also be red-flagged for suspicious activ-
ity. The process to provide a hypothesis of this notion is de-
picted in Fig. 1. This concept involves exploiting the math-
ematical rigorous approaches of L1 tracking in an L2/L3
situation and threat refinement and assessment scheme (see
Ref. [5] for Joint Directors of Laboratories’ description of
the various data fusion levels). The proposed methodology
consists of three main components; a context-based tracker
called ConTracker, a Multiple Model Adaptive Estimator
(MMAE), and a hypothesis generator.
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Figure 1: System Flowchart

The ConTracker (for Context-based Tracker) combines



contextual information, such as the depth, marked shipping
channel locations and high value unit information, with L1
measurement information to provide state estimates (posi-
tion and velocity). The purpose of the ConTracker is to use
the contextual information in such a way to provide a re-
peller or an attractor characteristic to a specific region, de-
veloped through a grid-spaced map of a particular area of
interest [3]. Any behavior of the vessel that is inconsistent
with the repeller or the attractor characteristic of the current
location would be classified as suspicious. Such an incon-
sistent vessel behavior would be directly indicated by a high
measurement residual which may be used to estimate an ac-
curate process noise covariance.

The ConTracker accuracy is not only a function of the
contextual information provided, its performance also de-
pends on the usual Kalman “tuning” issue, i.e. determina-
tion of the process noise covariance [6]. The tuning process
is a function of the actual vessel motion, which can vary.
This variation is the key to the hypothesis generator. This is
best explained by example. Suppose that a boat is heading
towards a high value unit. The contextual information in-
corporated into the ConTracker would repel the boat away
from the high value unit during the propagation stage of the
tracker. However, if the boat still proceeds towards the high
value unit, which is shown directly through the measure-
ments of the boat location, then in order to provide good
tracker characteristics a high value for the process noise co-
variance must be chosen, i.e. tuned.

The aforementioned tuning issue is usually done in an ad-
hoc manner. However, mathematical tools can be used to au-
tomatically tune the tracker. MMAE approaches are useful
for process noise identification (tuning) problem. MMAE
approaches run parallel trackers, each using a different value
for the process noise covariance. The covariance is identi-
fied using the likelihood function of the measurement resid-
uals, which provides weights on each individual tracker [7].
The ConTracker provides state estimates to the MMAE al-
gorithm, which identifies the process noise covariance. This
process noise covariance is fed back into the ConTracker for
better tracker performance. This covariance is also incorpo-
rated into an L2/L3 hypothesis scheme that provides a hy-
pothesis on whether or not a boat motion should be alerted
to an analyst. The L2/L3 hypothesis generator “red-flags”
the boat based on the rate of change of the process noise co-
variance and the contextual information provided. Details
of these processes are provided in the proceeding sections.

2 ConTracker
The main difference between a traditional tracker and the

context-based tracker is that the target model used in the
ConTracker accounts for the local contextual information.
The local contextual information is incorporated into the
ConTracker model as trafficability values. Trafficability is
a value between zero and one, where zero indicates a region
that is not traversable and one indicate a region that is com-

pletely traversable. These trafficability values are basedon
local maritime traversability information and accounts for
the following four “contextual” data:

• Depth information

• Marked channel information

• Anti-Shipping Reports (ASR)

• Locations of High-Value Units (HVU)

The individual trafficability values corresponding to each
piece of contextual information is combined into a single
value which would be used to indicate the repeller or the
attractor characteristic of a specific region. Details of this
procedure are given next.

Figure 2: Maritime Trafficability Values Database

First, a particular area of interest is divided into a grid-
field, similar to a15 × 20 grid-field shown in Fig. 2. In
Fig. 2, the purple channels indicate marked shipping lanes.
As shown in Fig. 2, the area of interest contains three
high-value units centered around cells(2, 11), (6, 14), and
(11 . . . 15, 8). The area also contains two anti-shipping ar-
eas centered about cells(4, 2) and (5, 17). Finally, low
depth areas are indicated using different shades of brown.
According to the vessel type that is being tracked, a single
trafficability value,νi, is assigned to each cell. This variable
is a decimal value between 0 and 1 and corresponds to the
fraction of maximum velocity that the vessel can attain in
that grid location. For example, the grid cell(10, 17) has a
trafficability of zero due to the depth information and there-
fore the vessels are supposed to avoid and navigate around
this particular cell.

Trafficability data will be used to deflect the direction of
target motion given by the past state information. In order
to implement this, at each propagation stage in the Con-
Tracker, we consider a3 × 3 trafficability grid-field that
depends on the current vessel position. For example, if
the vessel is located in cell(13, 3), the3 × 3 trafficability



grid-field consists of cells(12, 2), (12, 3), (12, 4), (13, 2),
(13, 3), (13, 4), (14, 2), (14, 3), and(14, 4). A generic rep-
resentation of the3 × 3 trafficability grid-field is shown in
Fig. 3. The vessel is assumed to be located in square 5 of
the3×3 grid. The3×3 grid will be continually re-centered
about the vessel as it moves throughout the region so that it
is always located in the center (square 5) of the3 × 3 traf-
ficability grid-field. In Fig. 3, the unit vector̂Gtg ∈ R

2

represents the preferred direction of the vessel strictly based
on the trafficability information of the surrounding cells,
Ĝ− ∈ R

2 is a unit vector in the direction of target mo-
tion given by the past state information, and the unit vec-
tor Ĝ+ ∈ R

2 represents the nudged velocity direction. A

Figure 3:3× 3 Trafficability Grid-Field

preferred direction based on the velocity constraint will be
calculated based upon the equation

Ĝtg =

∑

j(νjĜj)

‖∑

j(νjĜj)‖
(1)

wherej ǫ J is a set of feasible directions. The unit vec-
tor Ĝj ∈ R

2 points from the current vessel location to
the center of squarej. It is assumed that a vessel’s ve-
locity would not change its direction by more than ninety
degrees between two consecutive time steps. Therefore,
cutoff lines perpendicular to the previous direction of mo-
tion, Ĝ−, will be used to limit the motion of the vessel as
shown in Fig. 3. A square is assumed to be feasible if its
centroid is contained within the feasible region. For this
example, in Fig. 3, squares 2, 3, 6, 8 and 9 are feasible,
i.e.J = {2, 3, 6, 8, 9}. Note that the vessel is allowed to
change its velocity direction by more than ninety degrees if
all the feasible cells have zero trafficability. The proposed
technique for determining the cutoff is chosen because it is
least expensive in terms of computational requirements. The
assumed direction of motion is given as

Ĝ+ = Ĝ− + αĜtg (2)

whereα is a weighting coefficient that is a function ofνj .
The proposed functional form forα is based on the average
difference in the trafficability values between the currentlo-
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Figure 4: Proposed Form for Coefficientα

cation and the surrounding feasible locations,µ:

µ =

∑

j(vj − v5)
∑

j(1)
(3)

A plot of α versusµ is shown in Fig. 4. Since the goal is
to use trafficability information to slightly alter the assumed
direction, the maximum magnitude ofα is chosen to be 0.5.
Several cases can be discussed from this plot. First, consider
the scenario where all feasible cells have the same traffica-
bility value as the current location. When that occurs, each
of the cells is equally probable and should have no influence
on the overall direction. From the plot, this scenario corre-
sponds toµ = 0, which yieldsα = 0. Another scenario is
when the vessel is facing an impassable territory in all fea-
sible directions (trafficability of zero). This will resultin a
negativeµ, corresponding to a negativeα. This causes the
assumed direction to be directed away from the impassable
regions.

2.1 Filter Algorithm
The theoretical developments of the ConTracker algo-

rithm, which has its basis on the standardα − β tracker,
are now shown. The state vector used in the filter isx ∈ R

4,
i.e.,

x =
[

λ φ vλ vφ

]T
(4)

whereλ, φ, vλ andvφ are the longitude and latitude loca-
tions of the target vessel and the corresponding rates, re-
spectively. The standardα − β tracker approach assumes
a first-order random-walk process for the accelerations [6].
Our approach modifies this concept by using the following
discrete-time model:

xk+1 =













λ + vλ∆t
φ + vφ∆t

ν
√

v2
λ + v2

φ cos θ

ν
√

v2
λ + v2

φ sin θ













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k

+ wk (5)

where

E{wkw
T
k } = Υ

[

q1k
0

0 q2k

]

ΥT = ΥQkΥT



with Υ ≡
[

0 0 1 0
0 0 0 1

]T

. The angleθ, which is the angle

between the velocity vector and the localy-axis (north axis),
defines the assumed direction of motion of the vessel,Ĝ+,
i.e.,

Ĝ+ =
[

cos θ sin θ
]T

(6)

This is determined by use of the trafficability data as ex-
plained earlier. The coefficientν is the trafficability of the

current cell. The
√

v2
λ + v2

φ term is simply the magnitude

of the vessel velocity. The trigonometric terms are used to
project this value onto the appropriate axes. When no traf-
ficability information is present,ν defaults to one, and the
trigonometric terms are given by

cos θ =
vλ

√

v2
λ + v2

φ

, sin θ =
vφ

√

v2
λ + v2

φ

(7)

which reduces to the standardα − β form. Notice that the
Ĝ− in Eq. (2) is given as

Ĝ− =





vλ√
v2

λ
+v2

φ
vφ√

v2
λ
+v2

φ



 (8)

The measurement vector is assumed to be

y =
[

λ φ
]T

+
[

vλ vφ

]T
(9)

wherev =
[

vλ vφ

]T
is the zero mean Gaussian white-

noise processes, i.e.,E[vjvT
k ] = Rδjk. Let H =

[

1 0 0 0
0 1 0 0

]

, theny = Hx+v. The target model without

the velocity nudging can be written in concise form as

xk+1 = Ψxk + wk (10)

where

Ψ =









1 0 ∆t 0
0 1 0 ∆t
0 0 0 0
0 0 0 0









Notice that the velocity nudging is not accounted for in the
filter design. The estimation error covariance is defined as
Pk = E[(xk − x̂k)(xk − x̂k)T ], and the following equa-
tions are used to propagate and update the error covariance
matrix:

P−
k+1 = ΨP+

k ΨT + ΥQkΥT (11)

P+
k = [I −KkHk]P−

k (12)

whereP−
k = E[(xk− x̂−

k )(xk − x̂−
k )T ] is thea-priori error

covariance andP+
k = E[(xk − x̂+

k )(xk − x̂+
k )T ] is thepos-

teriori error covariance. The matrixKk is the Kalman gain
and can be calculated using the following equation:

Kk = P−
k HT [HP−

k HT + R]−1 (13)

The vectorx̂−
k is referred to as thea-priori state estimate

and the vector̂x+
k is referred to as theposterioristate esti-

mate. The estimates are propagated and updated using the
following equations:

x̂−
k+1 =













λ̂+ + v̂+
λ ∆t

φ̂+ + v̂+
φ ∆t

ν
√

(v̂+
λ )2 + (v̂+

φ )2 cos θ

ν
√

(v̂+
λ )2 + (v̂+

φ )2 sin θ













∣
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∣

∣

∣

∣

∣

∣

∣

∣

k

(14)

x+
k = x−

k + Kk[yk −Hx−
k ] (15)

The ConTracker algorithm is summarized in Table 1. Note
that the process noise covarianceQk is indicative of how
accurate the target model is. If the target vessel follows the
model precisely, thenQk would be fairly small. If the vessel
maneuvers are erratic and inconsistent with the model, then
the process noise covariance would be large. Since we do
not know the precise value of the process noise covariance,
an MMAE is implemented to estimate the process noise co-
variance based on the measurement residual.

Table 1: Summary of ConTracker Algorithm

Initialize

x̂(t0) = x̂−
0 , P−

0 = E[(x0 − x̂−
0 )(x0 − x̂−

0 )T ]

Kalman Gain

Kk = P−
k HT [HP−

k HT + R]−1

Update

x̂+
k = x̂−

k + Kk[yk −Hx̂−
k ]

P+
k = [I −KkHk]P−

k

Velocity Nudging

Ĝ− =









v̂
+

λ
√

(v̂+

λ
)2+(v̂+

φ
)2

v̂
+

φ
√

(v̂+

λ
)2+(v̂+

φ
)2









k

, Ĝtg =
∑

j
(νjĜj)

‖
∑

j
(νjĜj)‖

Ĝ+ = Ĝ− + αĜtg

[

cos θ sin θ
]T

= Ĝ+

Propagation

P−
k+1 = ΨP+

k ΨT + ΥQkΥT

x̂−
k+1 =















λ̂+ + v̂+
λ ∆t

φ̂+ + v̂+
φ ∆t

ν
√

(v̂+
λ )2 + (v̂+

φ )2 cos θ

ν
√

(v̂+
λ )2 + (v̂+

φ )2 sin θ















k



3 MMAE
In this section a brief overview of the MMAE approach is

shown. More details can be found in Refs. [7–9]. Multiple-
model adaptive estimation is a recursive estimator that uses
a bank of filters that depend on some unknown parame-
ters. In our case these parameters are the process noise vari-
ances (diagonal elements of the process noise covariance),
denoted by the vectorqk =

[

q1k
q2k

]

. For notational sim-
plicity the subscriptk is omitted forq. Initially a set of
distributed elements is generated from some known proba-
bility density function (pdf) ofq, denoted byp (q), to give
{q(ℓ); ℓ = 1, . . . , M}. HereM denotes the number of
filters in the filter bank. The goal of the estimation pro-
cess is to determine the conditional pdf of theℓth element
q(ℓ) given the current-time measurementyk. Application of
Bayes’ Law yields

p (q(ℓ)|Yk) =
p (Yk,q(ℓ))

p (Yk)
=

p (Yk|q
(ℓ)) p (q(ℓ))

M
∑

j=1

p (Yk|q
(j)) p (q(j))

(16)

whereYk denotes the sequence{y0, y1, . . . , yk}. The
probabilitiesp (q(ℓ)|Yk) can be computed through [7]

p (q(ℓ)|Yk) =
p (yk,Yk−1,q

(ℓ))

p (yk,Yk−1)

=
p (yk|Yk−1,q

(ℓ)) p (q(ℓ)|Yk−1)p (Yk−1)

p (yk|Yk−1)p (Yk−1)

=
p (yk|x̂−(ℓ)

k ) p (q(ℓ)|Yk−1)
M
∑

j=1

[

p (yk|x̂−(j)
k ) p (q(j)|Yk−1)

]

sincep (yk, |Yk−1, q(ℓ)) is given byp (yk|x̂−(ℓ)
k ) in the

Kalman recursion. The recursion formula can be cast into
a set of defined weights̟ (ℓ)

k , so that

̟
(ℓ)
k = ̟

(ℓ)
k−1p (yk|x̂−(ℓ)

k ), ̟
(ℓ)
k ← ̟

(ℓ)
k

M
∑

j=1

̟
(j)
k

(17)

where̟
(ℓ)
k ≡ p (q(ℓ)|ỹk). The weights at timet0 are ini-

tialized to̟
(ℓ)
0 = 1/M for ℓ = 1, 2, . . . , M . The conver-

gence properties of the MMAE are shown in Ref. [7], which
assumes ergodicity in the proof. The ergodicity assumptions
can be relaxed to asymptotic stationarity and other assump-
tions are even possible for non-stationary situations [10].
The conditional mean estimate is the weighted sum of the
parallel filter estimates:

x̂−
k =

M
∑

j=1

̟
(j)
k x̂

−(j)
k (18)

Also, the error covariance of the state estimate can be com-
puted using

P
−

k =

M
∑

j=1

̟
(j)
k

[

{P−

k }(j) +
(

x̂
−(j)
k − x̂

−

k

) (

x̂
−(j)
k − x̂

−

k

)T
]

(19)
The specific estimate forq at timetk, denoted bŷqk, and
error covariance, denoted byPk, are given by

q̂k =

M
∑

j=1

̟
(j)
k q(j) (20a)

Pk =

M
∑

j=1

̟
(j)
k

(

q(j) − q̂k

)(

q(j) − q̂k

)T

(20b)

Equation (20b) can be used to define3σ bounds on the es-
timateq̂k [11]. Notice that the estimated process noise co-

variance from the MMAE,Qk =

[

q̂1k
0

0 q̂2k

]

, is fed back

into the ConTracker and the L2/L3 hypothesis generator.

4 L2/L3 Hypothesis Generator
As mentioned earlier, the estimated process noise covari-

ance is indicative of how well the target vessel follows the
near-constant velocity model. The incorporation of traffica-
bility data into the model allows variations in target vessel
velocity that are consistent with the given contextual infor-
mation. For example, if the target vessel in cell(7, 13) of
Fig. 2 that is traveling toward cell(5, 15) makes a sharp
right turn to avoid the high-value unit in cell(6, 14), then
the sudden change in vessel’s velocity is consistent with the
trafficability data provided and therefore the vessel would
not be red-flagged. However, if the target vessel in cell(6, 3)
that is traveling toward cell(3, 1) continues to travel in a
straight line with a constant velocity, then the vessel would
be red-flagged despite its consistent behavior in accordance
with the near-constant velocity model. This is because its
passage into cell(5, 2) is in contrast to the anti-shipping ac-
tivities reported in that area. Thus, the incorporation of the
trafficability data into the near-constant velocity model as-
sesses the reliability of L2/L3 hypothesis generator.

The near-constant velocity model combined with the traf-
ficability information is given by

xk+1 =













λ + vλ∆t
φ + vφ∆t

ν
√

v2
λ + v2

φ cos θ

ν
√

v2
λ + v2

φ sin θ













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k

+ wk (21)

Any abrupt maneuver of the target vessel that is inconsis-
tent with the near-constant velocity model or the trafficabil-
ity information can be treated as process noise. This would
in turn result in a sudden increase in the process noise co-
variance estimated by the MMAE. The two main objectives



of the L2/L3 hypothesis generator are to red-flag a vessel
based on the anomalies in its behavior that is indicated by
the change in process noise covariance and identify the rea-
son behind the red-flagging.

In order to red-flag a target vessel, we consider two sets
of process noise covariance values. One set,{q̂1k

, q̂2k
} is

the MMAE estimate based on the ConTracker measurement
residual values and the second set,{q̆1k

, q̆2k
} is a second

pair of MMAE estimates based on a standardα− β tracker.
The only difference between these two trackers is that the
standardα− β tracker does not make use of any contextual
information. The second set of estimates,{q̆1k

, q̆2k
}, are

used to normalize the first set of process noise covariance
values. The normalized process noise covariances values
are given as

q̄1k
=

q̂1k

q̆1k

, q̄2k
=

q̂2k

q̆2k

(22)

Normalization would allow to eliminate any minor devia-
tions in the process noise covariance values due to addi-
tive measurement noise. It also helps to clearly identify any
abrupt maneuver of the target vessel that is inconsistent with
the given trafficability information. After normalizing the
elements of the process noise covariance matrix, their Eu-
clidian norm is calculated as||qk|| =

√

(q̄1k
)2 + (q̄2k

)2.
The rate of change of the normalized process noise covari-

ance norm can be calculated as∆qk = 1
∆t

[

||qk||−||qk−1||
]

.

Finally a vessel is red-flagged if the rate of change on the
normalized process noise covariance norm is greater than a
prescribed threshold, i.e.∆qk > ∆qmax⇒ Red-Flag.

The red-flagging reasoner deals with identifying the con-
textual information that is conflicting with the current target
vessel location. For example, the grid cell(2, 11) of Fig. 2
has a trafficability of zero due to the high-value unit loca-
tion. Therefore if a vessel is located in cell(2, 11), then
the conflicting contextual information is the high-value unit
locations. Since the ConTracker is assumed to have access
to all the contextual information, the simplest red-flagging
reasoner can be synthesized by identifying which of the four
contextual data contributes to the zero trafficability at the
current location. The main assumption behind this approach
is that there is only one piece of contextual information that
is contributing to the zero trafficability at any specific time.
A main disadvantage of this red-flagging reasoner is that if
the observed target locations are highly noisy, then the es-
timated target location and the corresponding trafficability
value may not be consistent with the true location and the
true trafficability value. This problem can be resolved by
considering large enough grid size and accurate measure-
ments.

5 Results
In order to evaluate the performance of the proposed

scheme, a test case scenario is developed where we consider

Hampton Roads Bay, Virginia, near the Norfolk Naval Sta-
tion. The area of interest is first divided into a15× 20 grid-
field as shown in Fig. 2. Afterwards a trafficability value is
assigned to each cell based on the target vessel type and the
individual contextual data. As shown in Fig. 2, the harbor
area contains three high-value units centered around cells
(2, 11), (6, 14), and(11 . . . 15, 8). The harbor area also con-
tains two anti-shipping areas centered about cells(4, 2) and
(5, 17). There are several marked shipping lanes in the har-
bor area that are indicated by shaded purple channels.

For simulation purposes we consider two different ski
boats. Both ski boat tracks are indicated by orange lines in
Fig. 2. Details on the individual Ski Boats are given below.

• Ski Boat 1: Ski Boat 1 starts in cell(15, 8) and travels
toward cell(2, 1). Ski Boat 1 crosses over two differ-
ent marked channels at cells(14, 7) and(11, 5) while
heading toward the distressed vessel. Afterwards, the
Ski Boat 1 crosses over a anti-shipping area located
around cell(14, 2) and travels towards cell(2, 1).

• Ski Boat 2: Ski Boat 2 starts in cell(15, 1) and travels
toward cell(4, 20). Ski Boat 2 crosses over a marked
channel in cell(11, 7) and a high-value unit area lo-
cated in cell(11, 8). Ski Boat 2 crosses over a sec-
ond high-value unit area located about cell(6, 14) and
an anti-shipping area located around cell(5, 17) while
traveling toward cell(4, 20).

Due to constraints on space, here we only consider the sim-
ulations results for the second ski boat.

5.1 Ski Boat 2
As shown in Fig. 2, the second ski boat starts in cell

(15, 1) and travels toward cell(4, 20). Figure 5 shows the
measured,y, and estimated,Hx̂, tracks for ski boat 2.
Figure 6(a) contains the estimated process noise covariance
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variance values from the ConTracker/MMAE{q̂1k
, q̂2k
}

and theα−β tracker/MMAE{q̆1k
, q̆2k
}. Figure 6(b) shows



the normalized process noise covariance norm,||qk||, for ski
boat 2. Notice the sudden increase in||qk|| at times 420 sec,
490 sec, 900 sec, 970 sec and 1020 sec. The first increase in
the process noise covariance values occurs when ski boat 2
crosses over the marked channel located about cell(11, 7).
The second increase in the process noise covariance values
occurs when ski boat 2 crosses over a high-value unit area
located about the cell(11, 8) around 490 sec. The third jump
in the process noise covariance values occurs when the ski
boat enters a second high-value unit area located about cell
(6, 14) around 900 sec. The fourth increase in the estimated
process noise covariance value occurs when the target ves-
sel travels through a low depth area located in cell(6, 16)
around 970 sec. The final increase in the process noise co-
variance occurs when ski boat 2 enters the anti-shipping area
located about cell(5, 17) around 1020 sec.
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Figure 6: ConTracker &α − β Tracker Estimated Process

Noise Covariance and Normalized Norm for Ski Boat 2

Shown in Fig. 7 are the rate of change of normalized pro-
cess noise covariance norm,∆qk, and the trafficability val-
ues,ν for ski boat 2. The maximum allowable∆qk for ski
boat 2 is selected to be∆qmax = 0.30. Notice that at times
420 sec, 490 sec, 900 sec, 970 sec and 1020 sec,∆qk is
higher than its threshold value and therefore the target vessel
would be red-flagged at these instances. Also note the low
trafficability values at these instances as shown in Fig 7(b).

Figure 8(a) shows the angle between the velocity vector
and the localy-axis for the ConTracker and theα−β tracker.
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Figure 7: Time History of Rate of Change of Normalized
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for Ski Boat 2

Notice that the angle obtained from theα − β tracker is
much smoother compared to the one obtained from the Con-
Tracker. The discrepancies in the ConTracker’s angle is due
to the velocity nudging that occurs when the target vessel
encounters a zero-trafficability area. Figure 8(b) shows the
red-flag alerts for ski boat 2. Note that the red-flag occur-
rence and the large deviations inθ are consistent with the
results shown in Fig. 7.

6 Conclusion
The objective of this work is to model and exploit avail-

able maritime contextual information to provide a hypothe-
sis on suspicious vessel maneuvers. This concept involves
utilizing the L1 tracking approach to perform L2/L3 situ-
ation and threat, refinement and assessment. A new con-
text based tracker known as the ConTracker is developed
here. This tracker, which has its foundation in the standard
α − β tracker incorporates the available contextual infor-
mation into the target vessel model as trafficability values.
Based on the trafficability values, the target vessel is either
attracted or repelled from a particular area. Though the tra-
ditionalα − β tracker uses a near-constant velocity model,
the ConTracker allows reasonable variations in velocity that
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Figure 8: ConTracker &α− β Tracker Estimated Direction

and Red-Flag Indicator for Ski Boat 2

are consistent with the contextual information. But abrupt
variations in velocity (variations not due to trafficability in-
fluence) would account for erratic maneuver. The accuracy
of the ConTracker estimates depends on the contextual data
and the process noise covariance value, which is a tuning
parameter. A multiple model adaptive estimator is imple-
mented to estimate the accurate process noise covariance
value. Variations in velocity that are inconsistent with the
contextual information would result in an increase in the es-
timated process noise covariance value. Based on the rate
of change of the estimated process noise covariance values,
an L2/L3 hypothesis generator red-flags the target vessel.
Simulation results indicate that the context based tracking
enhances the reliability of erratic maneuver detection.
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