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Abstract — The main objective of this work is to modeln Ref. [4], the local contextual information, termed traffi
and exploit available maritime contextual information ta@ability, incorporates local terrain slope, ground vetieta
provide a hypothesis on suspicious vessel maneuvers. Tns other factors to put constraints on the vehicle’s max-
concept involves utilizing the L1 tracking to perform L2/L8num velocity. Simulation results given in Ref. [4] show
data fusion, i.e. refinement and assessment for situatidhat the use of trafficability can improve estimate accuracy
and threats. A new context-based tracker known as the Camlocations where the vehicle path is influenced by terrain
Tracker is developed. The purpose of the ConTrackerf@atures.

to incorporate the contextual information into a traditain ~ The main goal of this work is to exploit available mar-
« — [ tracker in such a way so that it provides a repelleitime information to provide a hypothesis on suspicioustboa
or an attractor characteristics to a specific region of intermovements. For example, it is desired to “red-flag” a boat
est. Any behavior of the vessel that is inconsistent with ttreat approaches a restricted high value unit area. Also, a
repeller or the attractor characteristics of the currensgel vessel that is erratically zigzagging across a marked ship-
location would be classified as suspicious. Such an incquing channel may also be red-flagged for suspicious activ-
sistent vessel behavior would be directly indicated by & hidty. The process to provide a hypothesis of this notion is de-
measurement residual which may be used to estimate @ated in Fig. 1. This concept involves exploiting the math-
accurate process noise covariance using a multiple-modehatical rigorous approaches of L1 tracking in an L2/L3
adaptive estimator. Based on the rate of change of the eslituation and threat refinement and assessment scheme (see
mated process noise covariance values, an L2/L3 hypotiRef. [5] for Joint Directors of Laboratories’ descriptioh o
sis generator red-flags the target vessel. Simulation tesulhe various data fusion levels). The proposed methodology
indicate that the context based tracking enhances the-relieonsists of three main components; a context-based tracker
bility of erratic maneuver detection. called ConTracker, a Multiple Model Adaptive Estimator

(MMAE), and a hypothesis generator.
Keywords: Trafficability, ConTracker, MMAE, L2/L3 fu-

sion,a — 3 tracker.

Measurements

1 Introduction

Traditional tracking algorithms heavily rely on target Adaptive ID
model and observations but do not exploit local informa-  p,ocess
tion. Though these approaches work well for some targets,
they often fail to account for the movements of intelligent MMAE
objects. Advancement of complex tracking schemes suggest
that increasing the amount of information included in the al
gorithm can improve the quality of the tracking process. A
terrain-based tracking approach which accounts for the ef-
fects of terrain on target speed and direction of movementis L2/13 Hypothesis
presented in Ref. [1]. It has been shown that the incorpora- Generator
tion of local contextual information such as the terrairadat
can significantly improve the tracker performance [2]. In
recent years, researchers have explored the overt use-of con
textual information for improving state estimation in gnal
target tracking by incorporating this information into the Figure 1: System Flowchart
tracking algorithm as a potential field to provide a repadler
an attractor characteristic to a specific region of intef@st ~ The ConTracker (for Context-based Tracker) combines
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contextual information, such as the depth, marked shippiptgtely traversable. These trafficability values are based
channel locations and high value unit information, with Llocal maritime traversability information and accounts fo
measurement information to provide state estimates (pasie following four “contextual” data:

tion and velocity). The purpose of the ConTracker is to use
the contextual information in such a way to provide a re-
peller or an attractor characteristic to a specific regi@i, d o Marked channel information
veloped through a grid-spaced map of a particular area of

interest [3]. Any behavior of the vessel that is inconsisten e Anti-Shipping Reports (ASR)

with the repeller or the attractor characteristic of therent . . .

location wcr))uld be classified as suspicious. Such an incon-* Locations of High-Value Units (HVU)

sistent vessel behavior would be directly indicated by & highe individual trafficability values corresponding to each
measurement residual which may be used to estimate anggce of contextual information is combined into a single
Ccurate process noise covariance. value which would be used to indicate the repeller or the

The ConTracker accuracy is not only a function of thgttractor characteristic of a specific region. Details i th
contextual information provided, its performance also dgrocedure are given next.

pends on the usual Kalman “tuning” issue, i.e. determina-
tion of the process noise covariance [6]. The tuning proce ==
is a function of the actual vessel motion, which can var AT T | e
This variation is the key to the hypothesis generator. This [z il T
best explained by example. Suppose that a boat is heac
towards a high value unit. The contextual information ir
corporated into the ConTracker would repel the boat aw.
from the high value unit during the propagation stage of tt
tracker. However, if the boat still proceeds towards théhic
value unit, which is shown directly through the measur:
ments of the boat location, then in order to provide goc
tracker characteristics a high value for the process naise 1"
variance must be chosen, i.e. tuned. i
The aforementioned tuning issue is usually done in an |’
hoc manner. However, mathematical tools can be used to | : 3 >
tomatically tune the tracker. MMAE approaches are usefur ™ = == —
for process noise identification (tuning) problem. MMAE
approachesrun parallel trackers, each using a differdunva
for the process noise covariance. The covariance is identi-_. : . L . .
fied using the likelihood function of the measurement resid- First, a particular area of interest is divided into a grid-
: i
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Figure 2: Maritime Trafficability Values Database

; . . L leld, similar to al5 x 20 grid-field shown in Fig. 2. In
uals, which provides weights on each individual tracker [7 . 2
. . ig. 2, the purple channels indicate marked shipping lanes.
The ConTracker provides state estimates to the MMAE al- - . .
. o o ) . \s shown in Fig. 2, the area of interest contains three
gorithm, which identifies the process noise covarlancehsThli h-value units centered around cefts 11), (6, 14), and
process noise covariance is fed back into the ConTracker ? A

: : : ; (1)1 ...15,8). The area also contains two anti-shipping ar-
better tracker performance. This covariance is also ingor :
eas centered about celld,2) and (5,17). Finally, low

rated into an L2/L3 hypothesis scheme that provides a hy- o . :
pothesis on whether or not a boat motion should be c'zllert(¥(?1|pth areas are indicated using different shades of brown.

to an analyst. The L2/L3 hypothesis generator “red-flag CCF”O'”?Q to the ves_sel type that is being track_ed, a_smgle
._“trafficability value;, is assigned to each cell. This variable
the boat based on the rate of change of the process noise. co- .
. ) ; : IS a decimal value between 0 and 1 and corresponds to the
variance and the contextual information provided. Details

. . . ._Traction of maximum velocity that the vessel can attain in
of these processes are provided in the proceeding schorgRat grid location. For example, the grid célb, 17) has a

K trafficability of zero due to the depth information and there

2 ConTracker fore the vessels are supposed to avoid and navigate around
The main difference between a traditional tracker and tligs particular cell.

context-based tracker is that the target model used in theTrafficability data will be used to deflect the direction of

ConTracker accounts for the local contextual informatiotarget motion given by the past state information. In order

The local contextual information is incorporated into theo implement this, at each propagation stage in the Con-

ConTracker model as trafficability values. Trafficabilisy i Tracker, we consider 8 x 3 trafficability grid-field that

a value between zero and one, where zero indicates a reglepends on the current vessel position. For example, if

that is not traversable and one indicate a region that is cothe vessel is located in cell3, 3), the3 x 3 trafficability



grid-field consists of cell§12,2),(12,3), (12,4), (13,2),
(13,3),(13,4), (14,2), (14,3), and(14,4). A generic rep-
resentation of th8 x 3 trafficability grid-field is shown in
Fig. 3. The vessel is assumed to be located in square 5 of
the3 x 3 grid. The3 x 3 grid will be continually re-centered oo
about the vessel as it moves throughout the region so that it
is always located in the center (square 5) of 3he 3 traf-
ficability grid-field. In Fig. 3, the unit vectoétg € R?
represents the preferred direction of the vessel striethed
on the trafficability information of the surrounding cells,
G~ € R?is a unit vector in the direction of target mo-
tion given by the past state information, and the unit vec- Figure 4: Proposed Form for Coefficiemt
tor Gt € R2 represents the nudged velocity direction. A

cation and the surrounding feasible locatigns,

7 Zj(”j —vs5)
v v v B = = (3)
1 / 2 3 Zj(l)
> . A plot of a versusu is shown in Fig. 4. Since the goal is
v §\6 A— to use trafficability information to slightly alter the assed
/ >G
; direction, the maximum magnitude afis chosen to be 0.5.
v |l v 9 Several cases can be discussed from this plot. First, camsid
‘ . the scenario where all feasible cells have the same traffica-
ey, ot bility value as the current location. When that occurs, each
of the cells is equally probable and should have no influence
Figure 3:3 x 3 Trafficability Grid-Field on the overall direction. From the plot, this scenario corre

sponds tqu = 0, which yieldsa: = 0. Another scenario is

pwvhen the vessel is facing an impassable territory in all fea-

sible directions (trafficability of zero). This will resuilt a

negativeu, corresponding to a negative This causes the

S (v Gj) ass_umed direction to be directed away from the impassable
(1) regions.

J
2.1 Filter Algorithm

preferred direction based on the velocity constraint wll
calculated based upon the equation

Gtg e Se—
152 (v G)l

wherej e J > a set of feasible directions. The unit Vec- pq theoretical developments of the ConTracker algo-
tor G; € R® points from the current vessel location tc}ithm, which has its basis on the standard- 3 tracker,

the center of squarg. It is assumed that a vessel's veg o o\ shown. The state vector used in the filter is R?,
locity would not change its direction by more than ninet;,/e

degrees between two consecutive time steps. Therefore, T
: . . S x=[XA ¢ un vy | 4)

cutoff lines perpendicular to the previous direction of mo-
tion, G~, will be used to limit the motion of the vessel agvhere), ¢, vy andwvy are the longitude and latitude loca-
shown in Fig. 3. A square is assumed to be feasible if itons of the target vessel and the corresponding rates, re-
centroid is contained within the feasible region. For thigpectively. The standard — 3 tracker approach assumes
example, in Fig. 3, squares 2, 3, 6, 8 and 9 are feasib#efirst-order random-walk process for the accelerations [6]
i.e.J =1{2, 3, 6, 8 9}. Note that the vessel is allowed toOur approach modifies this concept by using the following
change its velocity direction by more than ninety degreesdfscrete-time model:
all the feasible cells have zero trafficability. The progbse
technique for determining the cutoff is chosen because it is

L . . @+ vg At
least expensive in terms of computational requirements. Th

assumed direction of motion is given as Xkl = vy[v3 +vicosd || T W ®)
. R .\ vy /v? +v2sind
G' = G +aGy ) VT

where

A+ upAt

wherea is a weighting coefficient that is a function of.
The proposed functional form fer is based on the average
difference in the trafficability values between the curient

E{wywj } T { a0 ]TT =TQrY"

0 g,



T " s .. .
. _00 10 . The vectorx, is referred to as tha-priori state estimate
with Y = [O 0 0 1} - The angle, whichis the angle g e vectok; is referred to as thposterioristate esti-
between the velocity vector and the logadxis (north axis), mate. The estimates are propagated and updated using the
defines the assumed direction of motion of the vegseél, following equations:

i.e.,

A A\t oL pT
G* = [cosf sin6]” 6) AT+ O AL
This is d ined b f th fficability d s @;_At
is is determined by use of the trafficability data as ex- -  — — — ‘ (14)
plained earlier. The coefficiemtis the trafficability of the a v/ (03)? + (05) cosd
current cell. The, /v3 + v3 term is simply the magnitude vy /(03)% + (8)?sin 6
of the vessel velocity. The trigonometric terms are used to x{ = x; + Kulyr — Hxg] (15)

project this value onto the appropriate axes. When no traf-
ficability information is present, defaults to one, and the The ConTracker algorithm is summarized in Table 1. Note

trigonometric terms are given by that the process noise covarian@g is indicative of how
v accurate the target model is. If the target vessel follows th
cost = sinf = ——2 (7) model precisely, the@;, would be fairly small. If the vessel

U\
D k)
\/Ui + 'Ui \/Ui + 'Ui maneuvers are erratic and inconsistent with the model, then

_ ) the process noise covariance would be large. Since we do
which reduces to the standasid— 5 form. Notice that the ot know the precise value of the process noise covariance,

G~ inEq. (2) is given as an MMAE is implemented to estimate the process noise co-
variance based on the measurement residual.

UX

G- = |V 8)
NG Table 1. Summary of ConTracker Algorithm
The measurement vector is assumed to be Initialize
T T ~ " _ " "
y= [/\ ¢] + [VA qu} 9) x(to) = %, Py = El(x0 — %; ) (x0 — %5 )"]
wherev = [vy v,]” is the zero mean Gaussian white- Kalman Gain
noise processes, i.eE[v;vi] = Rd;,. Let H = Ky =P, HT[HP  HT + R|™*
[(1) (1) 8 8 , theny = Hx+v. The target model without Update
the velocity nudging can be written in concise form as %+ = %7 + Kily — Hx;)
=0 10 _
Xk+1 Xk + Wi (10) Plj =[I- Kka]Pk
where 10 At 0 Velocity Nudging
o+
01 0 At —
=100 0o o G- = | Vel G, = 21%iGi)
00 0 0 O PTG

. : o , VD2 ||
Notice that the velocity nudging is not accounted for in the

filter design. The estimation error covariance is defined as Gt=G + aGtg
P, = E[(xx — %1)(xx — %1)T], and the following equa- T
tions are used to propagate and update the error covariance [cosf sinb] =G
matrix: Propagation
Py = YRIUT +TQ YT (11) Py = WPHOT 4 7Q, YT

P =[I - KyH]P; (12) At 4 ot At
whereP, = E[(x), — %, )(xx — %5 )T] is thea-priori error o ot + o At
covariance and’,” = E[(x; — X )(xx — % )] is thepos- Fret Ty J(61)2 + (9)% cos 6
teriori error covariance. The matrik, is the Kalman gain RS
and can be calculated using the following equation: vy /(0X)2 + (05)?sind L

Ky=P, H'[HP, H" + R]™* (13)



3 MMAE Also, the error covariance of the state estimate can be com-

In this section a brief overview of the MMAE approach puted using

shown. More details can be found in Refs. [7-9]. Multiple- M -
model adaptive estimation is a recursive estimator that us@, = _ w.” {{Pk}‘j) + (i(,j‘” - &;) (i(,j‘” - &;) }
a bank of filters that depend on some unknown parame- j=1

ters. In our case these parameters are the process noise vari . ) ) ) (19)
ances (diagonal elements of the process noise covariangé;f speC|f|_c estimate fay at tlmetk,_denoted by, and
denoted by the vectay, = [¢1, ¢z, ]|. For notational sim- error covariance, denoted ., are given by

plicity the subscriptt is omitted forq. Initially a set of M

distributed elements is generated from some known proba- an = Z w}gj)q(j) (20a)
bility density function (pdf) ofq, denoted by (q), to give =

{q¥;¢ = 1,..., M}. Here M denotes the number of M

fiters in the filter bank. The goal of the estimation pro-  p, _ §~ () (q(j) _ flk) (q(j) B qk)T (200)
cess is to determine the conditional pdf of theelement et

q'®) given the current-time measurement Application of '

Bayes’ Law yields Equation (20b) can be used to defitve bounds on the es-
timateqy [11]. Notice that the estimated process noise co-
Y O] Y. lg® (0 ] 5 )
p(a”Yy) = p(p (';’{(:) ) Af( Ha)pla™) (16) variance from the MMAEQ);, = q(l)k q() ,is fed back
. . 2%
> p(Yila”)p(a?) into the ConTracker and the L2/L3 hypothesis generator.
j=1
whereY,, denotes the sequendso, y1, ..., yx}. The 4 L2/L3 Hypothesis Generator
probabilitiesp ()| Y) can be computed through [7] As mentioned earlier, the estimated process noise covari-
o ance is indicative of how well the target vessel follows the
p(@OYy) = p(yr, Yi-1,9") near-constant velocity model. The incorporation of traffic
P(Yks Y1) bility data into the model allows variations in target vdsse
p(yr|Yeo1,9) p (a®@|Yr_1)p (Y1) Velocity that are consistent with the given contextual info
- »(yil Ye1)p (Y1) mation. For examp!e, if the target vessel in &ll13) of
() Oy Fig. 2 that is traveling toward cell5, 15) makes a sharp
__ plywlx ) (@ Ye-1) right turn to avoid the high-value unit in cel6, 14), then
M Ny . the sudden change in vessel’'s velocity is consistent wéh th
> [P ulx ) p (@Y i) icabil |
2 |P\YER )P k=1 trafficability data provided and therefore the vessel would
=1 not be red-flagged. However, if the target vessel in(@)

) P () that is traveling toward cel(3, 1) continues to travel in a
sincep (y, |Yk_—1a q) is given byp (yk|x,, ") in the _ straight line with a constant velocity, then the vessel woul
Kalman recursion. The (rge)cursmn formula can be cast inf red-flagged despite its consistent behavior in accoedanc
a set of defined weights, *, so that with the near-constant velocity model. This is because its
passage into ce(b, 2) is in contrast to the anti-shipping ac-
tivities reported in that area. Thus, the incorporationhaf t
M ‘ trafficability data into the near-constant velocity modg! a
Z W,(f) sesses the reliability of L2/L3 hypothesis generator.
j=1 The near-constant velocity model combined with the traf-
ficability information is given by

(£)
~— w
o =P pyrlgs ), w17

wherew,(f) = p(q'9|y.). The weights at time, are ini-

tialized t0w((f) =1/Mfor¢=1,2,..., M. The conver- A+ uaAt

gence properties of the MMAE are shown in Ref. [7], which ¢ + vyt

assumes ergodicity in the proof. The ergodicity assumption Xkl = v/ V3 + v cosd +wi (21)
can be relaxed to asymptotic stationarity and other assump- v \/m sin 6

tions are even possible for non-stationary situations.[10] AT T8

The conditional mean estimate is the weighted sum of tt&e . .
X . ) ny abrupt maneuver of the target vessel that is inconsis-
parallel filter estimates:

tent with the near-constant velocity model or the trafficabi

M ity information can be treated as process noise. This would

%, = sz(qj)f(;;(j) (18) inturnresultin a sudden increase in the process noise co-
= variance estimated by the MMAE. The two main objectives



of the L2/L3 hypothesis generator are to red-flag a vess¢hmpton Roads Bay, Virginia, near the Norfolk Naval Sta-
based on the anomalies in its behavior that is indicated tign. The area of interest is first divided intd & x 20 grid-
the change in process noise covariance and identify the réald as shown in Fig. 2. Afterwards a trafficability value is
son behind the red-flagging. assigned to each cell based on the target vessel type and the
In order to red-flag a target vessel, we consider two sétslividual contextual data. As shown in Fig. 2, the harbor
of process noise covariance values. One{8gt,, ¢z, }is area contains three high-value units centered around cells
the MMAE estimate based on the ConTracker measureméntil), (6,14), and(11...15,8). The harbor area also con-
residual values and the second 4ét,, 2, } is a second tains two anti-shipping areas centered about ¢ell2) and
pair of MMAE estimates based on a standard [ tracker. (5,17). There are several marked shipping lanes in the har-
The only difference between these two trackers is that ther area that are indicated by shaded purple channels.
standardy — 3 tracker does not make use of any contextual For simulation purposes we consider two different ski
information. The second set of estimaté®,,, 2, }, are boats. Both ski boat tracks are indicated by orange lines in
used to normalize the first set of process noise covariarkig. 2. Details on the individual Ski Boats are given below.

values. The normalized process noise covariances values . ) )
e SkiBoat 1: Ski Boat 1 starts in c€]l5, 8) and travels

are given as ) )
. A toward cell(2, 1). Ski Boat 1 crosses over two differ-
G, = iy o, = 92 (22) ent marked channels at cells4, 7) and (11, 5) while
" "G, heading toward the distressed vessel. Afterwards, the

Normalization would allow to eliminate any minor devia- ~ SKi Boat 1 crosses over a anti-shipping area located
tions in the process noise covariance values due to addi- around cel(14,2) and travels towards ce(2, 1).

t|\l;e measurement ?Or']se' It also helplsr':o c_Ie_arIy |d§ntn§tp]y an 4 skiBoat 2: Ski Boat 2 starts in cell5, 1) and travels
abrupt maneuver of the target vessel that is inconsistehtwi - . cell(4,20). Ski Boat 2 crosses over a marked

tr;e given tr:\frf:cablhty mformatlon. After normal_|z|nﬁ eh E channel in cell(11,7) and a high-value unit area lo-
elements of the process noise covariance matrix, their Eu- .04 'in cell(11,8). Ski Boat 2 crosses over a sec-

idi i — s 2 . 2
CI;]d|an norfm r'ls calcu;athed aﬁquI_— q (1,)* + (@2,)%-  gnd high-value unit area located about ¢éli14) and
The rate of change of the normalized process noise Covari- o anti chinping area located around ¢all17) while

ance norm can be calculatedag, = < |||ax||—|gk—1]]|- traveling toward cel(4, 20).

Finally a vessel is red-flagged if the rate of change on timie to constraints on space, here we only consider the sim-
normalized process noise covariance norm is greater thafigions results for the second ski boat.

prescribed threshold, i.Aq, > Agmax = Red-Flag.

The red-flagging reasoner deals with identifying the coy.1  Ski Boat 2
textual information that is conflicting with the currentdat As shown in Fig. 2, the second ski boat starts in cell
vessel location. For example, the grid ¢@l| 1) of Fig. 2 (15,1) and travels tlowl';\rd cell4, 20). Figure 5 shows the

has a trafficability of zero due to the high-value unit loca: . " :
. : : : measuredy, and estimatedHx, tracks for ski boat 2.
tion. Therefore if a vessel is located in céll, 11), then Hrety ! HX !

" ) o . . _Figure 6(a) contains the estimated process noise covarianc
the conflicting contextual information is the high-valuetun g (@) P

locations. Since the ConTracker is assumed to have access

to all the contextual information, the simplest red-flaggin

reasoner can be synthesized by identifying which of the four ~76.28
contextual data contributes to the zero trafficability & th
current location. The main assumption behind this approach
is that there is only one piece of contextual informatiort tha
is contributing to the zero trafficability at any specific &m

A main disadvantage of this red-flagging reasoner is that if
the observed target locations are highly noisy, then the es-
timated target location and the corresponding trafficghbili
value may not be consistent with the true location and the ‘ ‘ ‘ ‘ ‘
true trafficability value. This problem can be resolved by 36.95 36-9Eam32-69(7De 56-98 36.99
considering large enough grid size and accurate measure-

ments.
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Figure 5: Ski Boat 2 Track: Measured & ConTracker Esti-

5 Results mate

In order to evaluate the performance of the proposedriance values from the ConTracker/MMAE;, , 2, }
scheme, a test case scenario is developed where we considethen — 3 tracker/MMAE{q, , ¢z, } . Figure 6(b) shows



the normalized process noise covariance nojqn||, for ski

boat 2. Notice the sudden increase|in || at times 420 sec,

490 sec, 900 sec, 970 sec and 1020 sec. The first increase in
the process noise covariance values occurs when ski boat 2
crosses over the marked channel located abou{ te|l7).

The second increase in the process noise covariance values 1. ji
occurs when ski boat 2 crosses over a high-value unit area i I 1
located aboutthe cel 1, 8) around 490 sec. The third jump -
in the process noise covariance values occurs when the ski

boat enters a second high-value unit area located about cell % 200 400 _600 800 1000 1200 1400
(6,14) around 900 sec. The fourth increase in the estimated Time(sec)

process noise covariance value occurs when the target ves- (a) Rate of Change of Normalized Process Noise Co-
sel travels through a low depth area located in (&IIL6) variance Norm

around 970 sec. The final increase in the process noise co-

Agy
o B N W b» O

-2

variance occurs when ski boat 2 enters the anti-shippireg are T ; i o
located about cell5, 17) around 1020 sec. 08 ! ! H
o :
0.6 S '
& A b '
— ¢ 0.4 Pt '
[ ' L]
N H
_____ 0.2 ey E
200 400 600 800 1000 1200 1400 ! E 1 !
. = 00 200 4(30 600 800I 1000 1I200 1400
T (%12 Time(sec)
- Qq2
ST (b) Trafficability Values
0 : i : : : . ) . .
0 200 400 ﬁ?ﬁe(g%)c)woo 1200 1400 Figure 7: Time History of Rate of Change of Normalized
. Process Noise Covariance Norm and Trafficability Values
(a) Estimatedy; andg2 )
for Ski Boat 2
8
Notice that the angle obtained from the— g tracker is
6 much smoother compared to the one obtained from the Con-
= Tracker. The discrepancies in the ConTracker’s angle is due
=4 to the velocity nudging that occurs when the target vessel
encounters a zero-trafficability area. Figure 8(b) shows th
2 red-flag alerts for ski boat 2. Note that the red-flag occur-
rence and the large deviationsfnare consistent with the
% 200 400 600 800 1000 1200 1400 results shown in Fig. 7.

Time(sec)

(b) Normalized Process Noise Covariance Norm

6 Conclusion
Figure 6: ConTracker & — (3 Tracker Estimated Process The objective of this work is to model and exploit avail-
Noise Covariance and Normalized Norm for Ski Boat 2 able maritime contextual information to provide a hypothe-
sis on suspicious vessel maneuvers. This concept involves
Shown in Fig. 7 are the rate of change of normalized pratilizing the L1 tracking approach to perform L2/L3 situ-
cess noise covariance nortg, and the trafficability val- ation and threat, refinement and assessment. A new con-
ues,v for ski boat 2. The maximum allowabl&q;, for ski text based tracker known as the ConTracker is developed
boat 2 is selected to b&¢,,,... = 0.30. Notice that at times here. This tracker, which has its foundation in the standard
420 sec, 490 sec, 900 sec, 970 sec and 1020/secis « — 3 tracker incorporates the available contextual infor-
higher than its threshold value and therefore the targseleamation into the target vessel model as trafficability values
would be red-flagged at these instances. Also note the IB&sed on the trafficability values, the target vessel iseith
trafficability values at these instances as shown in Fig.7(battracted or repelled from a particular area. Though the tra
Figure 8(a) shows the angle between the velocity vectditional « — 3 tracker uses a near-constant velocity model,
and the locaj-axis for the ConTracker and the- 3 tracker. the ConTracker allows reasonable variations in velocisy th
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(1]

(2]

(3]

(4]

(5]

(6]

are consistent with the contextual information. But abrupt

variations in velocity (variations not due to trafficahjlin-

[7]

fluence) would account for erratic maneuver. The accuracy
of the ConTracker estimates depends on the contextual data
and the process noise covariance value, which is a tunirl§]
parameter. A multiple model adaptive estimator is imple-

mented to estimate the accurate process noise covariance
value. Variations in velocity that are inconsistent witle th
contextual information would result in an increase in the es

9]

timated process noise covariance value. Based on the rate
of change of the estimated process noise covariance valygg;
an L2/L3 hypothesis generator red-flags the target vessel.

Simulation results indicate that the context based tragkin

enhances the reliability of erratic maneuver detection.
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