
Entropy-Based Space Object Data Association

Using an Adaptive Gaussian Sum Filter

Daniel R. Giza∗, Puneet Singla†, John L. Crassidis‡, Richard Linares§, Paul J. Cefola¶

University at Buffalo, State University of New York, Amherst, NY, 14260-4400

Keric Hill‖

Pacific Defense Solutions, 1300 N. Holopono Street, Suite 116, Kihei, HI, 96753

This paper shows an approach to improve the statistical validity of orbital estimates
and uncertainties as well as a method of associating measurements with the correct resi-
dent space objects and classifying events in near realtime. The approach involves using an
adaptive Gaussian mixture solution to the Fokker-Planck-Kolmogorov equation for its ap-
plicability to the resident space object tracking problem. The Fokker-Planck-Kolmogorov
equation describes the time-evolution of the probability density function for nonlinear
stochastic systems with Gaussian inputs, which often results in non-Gaussian outputs. The
adaptive Gaussian sum filter provides a computationally efficient and accurate solution for
this equation, which captures the non-Gaussian behavior associated with these nonlinear
stochastic systems. This adaptive filter is designed to be scalable, relatively efficient for
solutions of this type, and thus is able to handle the nonlinear effects which are common
in the estimation of resident space object orbital states. The main purpose of this paper
is to develop a technique for data association based on entropy theory that is compatible
with the adaptive Gaussian sum filter. The adaptive filter and corresponding measurement
association methods are evaluated using simulated data in realistic scenarios to determine
their performance and feasibility.

I. Introduction

Recent events in space, including the collision of Russia’s Cosmos 2251 satellite with Iridium 33 and
China’s Feng Yun 1C anti-satellite demonstration, have stressed the capabilities of Space Surveillance Net-
work (SSN), its associated tracking sensors, orbit estimators and analysis tools. The SSN continuously
tracks more than 18,000 resident space objects (RSOs) and debris at any given time providing critical col-
lision avoidance warnings not only to military and NASA systems but to commercial systems as well. The
information on the RSOs is stored in a catalog. However, because of the large number of RSOs and the
limited number of sensors available to track these objects, it is impossible to maintain persistent surveillance
on all objects. Therefore there is inherent uncertainty and latency in the catalog. The rapid estimation of the
orbit and identity of RSOs and the accurate assessment of confidence in those estimates will be a significant
improvement particularly for the space situational awareness (SSA) community and the warfighter. The
near-real time detection of RSO maneuvers for collision avoidance directly affects the protection of space
assets, as the recent Iridium satellite collision illustrates. Here an unexpected maneuver placed a satellite
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into an orbit which resulted in a collision. Responsive, near real-time algorithms which are based on ac-
curate uncertainty information have the potential to rapidly detect changes in orbital state by comparing
observations to the estimated state and uncertainty. This would enable faster sensor response and collision
risk assessment.

Effective SSA requires more than just estimating locations or collecting images of RSOs. It is the ability to
identify a satellite’s capabilities and predict future operations and performance limits with known confidence.
The challenge lies in bringing together limited measurements from multiple sensors, sensor management, and
computationally efficient uncertainty characterization methods to deliver to decision makers the capability
to assess a situation in terms of threat and/or impact in a timely manner. Currently, intervals between
orbit updates for RSOs can be 24 hours or longer and decisions are made without accurate knowledge of the
uncertainty in the orbit estimates. Realtime orbit estimation, object identification, and event classification
would allow the warfighter to respond to threats quickly, while accurate uncertainty information would allow
the warfighter to respond appropriately.

While there are many established sequential estimators that can perform realtime orbit estimation and
provide the associated covariance, the RSO tracking problem presents special difficulties. The current esti-
mation technique tends to be applied with limited tracking data for a wide variety of orbit regimes when there
is little or no information included in the estimation process on the RSO mass, shape, radiative properties
or attitude. In addition, it is likely that the uncertainty distribution for many RSOs is not Gaussian and
cannot be represented accurately by a covariance matrix that has been developed with an assumed Gaussian
probability density function (pdf).

The most common method for representing orbital uncertainty is to approximate the initial distribution
using a Gaussian model and use linear error theory to propagate the mean and covariance of the Gaus-
sian model forward in time. This can lead to significant errors when propagating uncertain orbits for large
amounts of times.1,2 In addition to this approach, several approximate techniques exist in the literature
to approximate the initial condition uncertainty evolution, the most popular being Sequential Monte Carlo
(SMC) methods,3 Gaussian closure,4 Equivalent Linearization,5 and Stochastic Averaging.6 All of these
algorithms, except Monte Carlo methods, are similar in several respects and are suitable only for linear or
moderately nonlinear (quasi-linear) systems because the effect of neglected higher-order terms can lead to
significant errors. Monte Carlo methods require extensive computational resources and become increasingly
infeasible for high-dimensional dynamic systems.7 Furthermore, all these approaches provide only an ap-
proximate description of the uncertainty propagation problem by restricting the solution to a small number
of parameters, for instance the first N moments of the sought pdf.

For stochastic continuous dynamic systems the exact evolution of the state pdf is given by the Fokker-
Planck-Kolmogorov Equation (FPKE).8 Park et al.9 have discussed the use of the FPKE to analyze the
spacecraft trajectory statistics by incorporating higher-order Taylor series terms in the spacecraft dynamics.
Analytical solutions for the FPKE exist only for a stationary probability density function and are restricted
to a limited class of dynamical systems.8,10 Recently Terejanu et al. have developed an Adaptive Gaussian
Sum filter (AGSF) approach11,12 for accurate uncertainty propagation through nonlinear dynamical systems
while incorporating the solution to the FPKE. This approach has been successfully applied to propagate
initial orbit uncertainty through a low-Earth orbit with nonconservative atmospheric drag13 and has also
been applied to the spacecraft attitude estimation problem.14,15

Data association (DA) involves the matching of sensor measurements to specific tracks or targets. The
need for an effective DA algorithm has been mentioned previously. If measurement-to-target matching fails,
proper state estimation will be impossible. Nearest Neighbor (NN) is the simplest DA algorithm, used for
single target tracking. When multiple measurements fall within a target’s validation gate, the one that is
closest with respect to a pre-defined distance measure is assumed to come from that target. Sometimes
called the optimal assignment approach, global nearest neighbor (GNN) is the multi-target version of the
NN approach. Instead of minimizing a single distance, GNN looks to minimize a global distance measure.
Two assumptions are made: 1) each measurement can only be associated to one track, and 2) each track
can only be associated with one measurement.

Unlike the DA algorithms, Joint Probabilistic Data Association (JPDA) does not associate each mea-
surement with a specific track. Instead, a probability for measurement-to-target association is calculated
for each measurement within a target’s validation gate. Karlsson and Gustafsson16 propose a Monte Carlo
approach to JPDA. Instead of assigning a measurement-to-estimate probability, a measurement-to-particle-
cloud probability is computed. Four filter-DA combinations are simulated: Particle Filter (PF) with Monte
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Carlo JPDA, PF with NN association, Extended Kalman Filter (EKF) with JPDA, and EKF with NN
association. Two targets are present, each moving in straight-line paths that cross at one point. A root-
mean-square-error analysis is performed over sixty simulations. For both filters, the JPDA outperformed the
NN association. The PF was superior with the JPDA, while the converse was true for the NN association.

Frank et al.17 examine two different filters based on combining the PF with the JPDA algorithm.
Each filter uses a different assumption: 1) the states of the targets conditioned on past measurements are
mutually independent [this is termed the Independent Sample Based Joint Probabilistic Data Association
Filter (ISBJPDAF)], and 2) the states of the targets conditioned on past measurements are correlated [this
is termed the Coupled Sample Based Joint Probabilistic Data Association Filter (CSBJPDAF)]. Another
combination of the particle filter with a JPDA filer is shown by Vermaak et al.18 Their algorithm is referred to
as the Monte Carlo Joint Probabilistic Data Association Filter (MCJPDAF). Association uncertainty is dealt
with by combining all feasible hypotheses according to their corresponding posterior probabilities. These
values are computed using Monte Carlo samples. This produces a more accurate probabilistic description
compared to the Gaussian one that is produced by a standard JPDAF.

In recent years, PFs have been receiving more of a focus in literature. Hue et al.19 investigated the
applicability of using PFs to multiple target tracking. One of the advantages of this type of approach is
that it is highly effective at handling nonlinear models and non-Gaussian noise. In this paper, the classical
PF is combined with a Gibbs sampler-based estimation of the assignment probabilities. Two assumptions
are made: 1) a given measurement can originate from either one target, or from clutter, and 2) a given
target can produce one or measurements during each scan. One of the differences between this algorithm
and that of the Probabilistic Multiple Hypothesis Tracking (PMHT) and JPDA is that the former does not
require a priori knowledge of the probability of detecting a target. The simplest method proposed involves
measurements from a single sensor of a fixed number of targets. This is then extended to a varying number
of targets, and lastly to a scenario with multiple sources of measurements.

Although PF-based methods are highly useful for data association involving non-Gaussian problems,
which are typical for RSO tracking, they have the significant disadvantage of being computational expen-
sive. This is because PFs are based on Monte Carlo sampling approaches. Even though methods have been
proposed to reduce the computational load, such as replacing the standard importance sampling with a
Markov Chain Monte Carlo (MCMC) method,20 they generally are still not viable for actual RSO tracking
applications. As illustrated in Refs. [11–13, 15], the AGSF algorithm can produce the entire non-Gaussian
pdf with much less computations than what is typically required in particle filters. To develop a successively
refining pdf representation, it is important to define a metric for the data association error, so that improve-
ment due to refinements can be assessed. In this paper the metric for modeling error in terms of information
geometry is defined while making use of the Kullback-Leibler (KL) divergence measure.

The combination of the AGSF with an entropy-based approach for data association is well suited for
orbit problems where the errors may be highly non-Gaussian. Current methods, such as particle filters,
that reproduce the entire pdf are computationally expensive in general. Also, most DA algorithms for orbit
estimation problems are based on Gaussian models, which can provide inaccuracies when non-Gaussian
conditions exist. The main advantages of the approach shown in this paper over existing approaches are: 1)
it provides a computationally efficient approach which can be implementable in realtime using modern-day
computers, and 2) it can work well for highly non-Gaussian problems.

The organization of this paper is as follows. First a review of the FPKE is provided. Then the AGSF is
summarized followed by a review of entropy-based DA. A comparison is made using the entropy-based DA
approach with an Unscented Kalman filter and the AGSF.

II. The Fokker-Planck-Kolmogorov Equation (FPKE)

In conventional deterministic systems, the system state assumes a fixed value at any given instant of
time. However, in stochastic dynamics it is a random variable and its time evolution is given by the following
stochastic differential equation:

ẋ = f(t,x) + g(t,x)Γ(t), x(t0) = x̄0 (1)

where Γ(t) represents a Gaussian white-noise process with the correlation function Qδ(t1 − t2) and x̄0

represents the nominal initial state. The uncertainty associated with the state vector x(t) ∈ Rn is usually
characterized by a time parameterized state pdf, p(t,x). In essence, the study of stochastic systems reduces

3 of 13

American Institute of Aeronautics and Astronautics



to finding the nature of the time-evolution of the system-state pdf (see Fig. 1) described by the FPKE:8

∂

∂t
p(t,x) = LFP p(t,x)

=
∂fT (t,x)p(t,x)

∂x
+

1

2
Tr

(
g(t,x(t))QgT (t,x(t))

∂2p

∂x∂xT

)
(2)

The FPKE is a formidable equation to solve, because of the following issues: 1) Positivity of the pdf, 2)
Normalization constraint of the pdf:

∫
Rn p(t,x)dx = 1, & 3) No fixed Solution Domain: how to impose

boundary conditions in a finite region and restrict numerical computation to regions where p >∼ 10−9.

X3

f(X2 η2 θ)ηi

X
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Figure 1. State and pdf Transition

Analytical solutions for the FPKE exist only for a stationary pdf and are restricted to a limited class
of dynamical systems.8,10 Thus researchers are actively looking at numerical approximations to solve the
FPKE,21–25 generally using the variational formulation of the problem. These traditional numerical ap-
proaches which discretize the space in which the pdf lies suffer from the “curse of dimensionality.” To
overcome this obstacle, we will use a recently developed Adaptive Gaussian Sum Filter (AGSF) to accu-
rately solve the FPKE. The key idea of the AGSF is to approximate the state pdf by a finite sum of Gaussian
density functions whose mean and covariance are propagated from one time-step to the next using linear the-
ory. The weights of the Gaussian kernels are updated at every time-step, by requiring the sum to satisfy the
FPKE.11 When properly formulated, the Gaussian mixture in the AGSF can be solved efficiently and accu-
rately using convex optimization solvers, even if the mixture model includes many terms. This methodology
effectively decouples a large uncertainty propagation problem into many small problems. As a consequence,
the solution algorithm can be parallelized on most High Performance Computing (HPC) systems. Finally, a
Bayesian framework can be used on the AGSF structure to assimilate (noisy) observational data with model
forecasts.12

A. Solution Using the AGSF

This subsection briefly summarizes the approach; details can be found in Refs. [11, 26, 27]. The Gaussian
mixture model approximation (denoted by the caret ˆ) of the forecast pdf can be written as:

p̂(t,x(t)) =

N∑
i=1

wi(t)N (x(t) | µi(t),Pi(t)) (3)
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In this equation, µi(t) and Pi(t) represent the mean and covariance of the ith component of the Gaussian
pdf, N (x(t) | µi(t),Pi(t)), respectively ,and wi denotes the amplitude of ith Gaussian in the mixture. The
positivity and normalization constraint on p̂(t,x) leads to the following conditions at every time-step:

N∑
i=1

wi(t) = 1 and wi(t) ≥ 0, ∀i (4)

In Ref. [28], it is shown that because all the components of the mixture pdf in Eq. (3) are Gaussian, only
estimates of their mean and covariance need to be maintained. These estimates can be propagated using the
linear system propagation methods such as the propagation part of the extended Kalman filter (EKF):

µ̇i(t) = f(t,µi(t)) (5)

Ṗi(t) = Ai(t)Pi(t) + Pi(t)A
T
i (t) + g(t,µi(t))Q(t)gT (t,µi(t)) (6)

where Ai(t) = ∂f(t,xk)
∂x |x=µi . We mention that mean and covariance of each Gaussian component can also

be propagated by using a continuous-time derivation of the Unscented Kalman Filter (UKF),29 which uses a
set of deterministically chosen sigma-points that capture the mean and covariance of the initial distribution.
The propagation equations for mean and covariance are given as

Xi = [µi . . . µi] +
√
c [0 A −A] , c = α2(n+ κ) (7)

µ̇i = f(Xi)wm (8)

Ṗi = XiWfT (Xi) + f(Xi)WXi
T + g(t,µi)QgT (t,µi) (9)

where Xi is the n × 2n + 1 matrix of sigma-points and the weight vector, wm, and weight matrix, W , are
given by

λ = α2(n+ κ)− n

W
(mean)
0 =

λ

n+ λ

W
(cov)
0 =

λ

(n+ λ) + (1− α2 + β)

W
(mean)
j =

1

(2(n+ λ))
, j = 1, . . . , 2n

W
(cov)
j =

1

(2(n+ λ))
, j = 1, . . . , 2n

wm =
[
W

(mean)
0 . . . W

(mean)
2n

]T
(10)

W = (I− [wm . . . wm])× diag
(
W

(cov)
0 . . . W

(cov)
2n

)
× (I− [wm . . . wm])

T
(11)

The constants α, β, and κ in the above equations are constant parameters of the method. The spread
of sigma points is determined by α and is typically a small positive value, i.e. 1 × 10−4 ≤ α ≤ 1. The
parameter β is used to incorporate prior knowledge of the distribution, and is optimally chosen as 2 for a
normal distribution. The parameter κ can be used to exploit knowledge of the distributions higher moments,
and for higher order systems choosing κ = 3− n minimizes the mean-squared-error up to the fourth order.
The use of the UKF in the mixture model is especially advantageous since it does not require the computation
of the Jacobian matrix Ak.

Notice that the weights wi of the Gaussian components are not known at time t and must be computed as
part of the solution process. To determine the unknown weights, the error in the FPKE is used as a feedback
to update the weights of different Gaussian components in the mixture pdf. In other words, we seek to
minimize the FPKE error under the assumption of Eqs. (3)−(6). This leads to the following optimization
problem:

min
wi(t)

J =
1

2

∫
e2(t,x)dx, s.t.

N∑
i=1

wi(t) = 1, wi(t) ≥ 0 (12)
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Here e(t,x) represents the FPKE error:

e(t,x) =
∂p̂(t,x)

∂t
− LFP p̂(t,x) (13)

Again making use of the FPKE for the definition of LFP , and Gaussian mixture approximation of Eq. (3)
for p̂(t,x) , the cost function can be rewritten as described in Ref. [30]:

min
wi(t′)

J =
1

2
w(t′)TMcw(t′) + w(t′)TNcw(t), s.t. 1T

N×1w(t′) = 1, w(t′) ≥ 0N×1 (14)

Here w(t′) represents a vector of unknown weights at time t+ ∆t while w(t) represents the vector of known
initial weights at time t, 1N×1 ∈ RN×1 is a vector of ones, 0N×1 ∈ RN×1 is a vector of zeros and the matrices
Mc ∈ RN×N and Nc ∈ RN×N are given by

Mcij =
1

∆t2
|2π(Pi + Pj)|−1/2 exp

[
−1

2
(µi − µj)

T × (Pi + Pj)
−1(µi − µj)

]
for i 6= j (15)

Mcii =
1

∆t2
|4πPi|−1/2 (16)

Ncij =
1

∆t
pgi

∫
V

(
∂pTgj
∂µj

µ̇j + Tr

[
∂pgj
∂Pj

Ṗj

]
− 1

∆t
pgj +

∂pTgj
∂x

f(t,x) + pgjTr

[
∂f(t,x)

∂x

]

− 1

2
Tr

[
g(t,x)QgT (t,x)

∂2pgj
∂x∂xT

])
dx, pgj = N (x(t) | µj(t),Pj(t)) (17)

In prior work,11,26,27 it is shown that the matrix Mc is positive semi-definite and the cost function J is lower
bounded. As a consequence of this, the aforementioned optimization problem can be posed as a convex
optimization problem which is guaranteed to have a unique solution.31

A major challenge in solving this minimization problem is the need to evaluate integrals involving Gaus-
sian pdfs over the volume V in the expression of matrix Nc. These integrals can be computed exactly
for polynomial nonlinearities and in general can be approximated by using a Gaussian quadrature, Monte
Carlo integration or Unscented transformation.32 While in lower dimensions the Unscented transformation
is mostly equivalent to the Gaussian quadrature, in higher dimensions the Unscented transformation is com-
putationally more appealing in evaluating integrals since the number of points grows only linearly with the
number of dimensions. Of course there is a tradeoff; there is a loss of accuracy32 in the integration, which
can only be overcome by adding additional points to the summation. In Refs. [13, 30], the efficacy of the
Unscented transformation in approximating these expectation integrals is demonstrated.

B. Measurement Update for Reducing Uncertainty

The use of sensor data to correct and refine the dynamical model forecast so as to reduce the associated
uncertainty is a logical improvement over purely model-based prediction. However, mathematical models
for various sensors are generally based upon the “usefulness” rather than the “truth” and do not provide all
the information that one would like to know. Care must be taken when assimilating the observational data.

Standard nonlinear filtering algorithms use a discrete-time process model and measurement model, given
by the following equation:

yk = h(tk,xk) + vk, xk = x(tk) (18)

where the nonlinear function h(.) captures the sensor model and vk denotes the measurement noise, which
is a temporally uncorrelated, zero-mean random sequence with known covariance, Rk.

Roughly speaking, between two measurement time instants the procedure discussed in the last section
can be used to propagate the weights, mean and covariance of different Gaussian components through a
nonlinear dynamical system and whenever a measurement is available, Bayes’ rule can be used to update
the conditional pdf:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)∫
p(yk|xk)p(xk|Yk−1)dxk

(19)
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Here, p(xk|Yk−1) represents the prior pdf usually obtained by propagating the initial pdf through the FPKE,
p(yk|xk) describes the likelihood that we observe yk given xk and p(xk|Yk) represents the posterior pdf of
xk. While both the state and the covariance matrix are updated using the EKF or UKF measurement
update equations, the weights are updated using the Bayes’ rule:

µi(tk+1|tk+1) = µi(tk+1|tk) + Ki(tk) (yk − h(t,µi(tk+1|tk))) (20)

Pi(tk+1|tk+1) = (I−Ki(tk)Hi(tk))Pi(tk+1|tk), Hi(tk) =
∂h(t,xk)

∂xk

∣∣∣∣
xk=µi(tk+1|tk)

(21)

Ki(tk) = Pi
k+1|kH

i
k

(
Hi

kP
i
k+1|k(Hi

k)T + Rk

)−1
(22)

wi(tk+1|tk+1) =
wi(tk+1|tk)βi

k∑N
i=1 wi(tk+1|tk)βi

k

, βi
k = N

(
zk − h(t,µi(tk+1|tk)), Hi(tk)Pi(tk+1|tk)HT

i (tk) + Rk

)
(23)

A quasi-optimal state estimate and corresponding error covariance matrix can be obtained by making use
of the following relations:

µt|k =

N∑
i=1

wi(t|tk)µi(t|tk), Pt|k =

N∑
i=1

wi(t|tk)
[
Pi(t|tk) + (µi(t|tk)− µt|k)(µi(t|tk)− µt|k)T

]
(24)

Proposal: Update Forecast Weights
S M t

EKF 1
Propagation

St

EKF 1
Measurement

U d t

Sensor Measurement

0 40 3 0 5

Initial
guess

Step Update

EKF 2
Propagation

EKF 2
Measurement WeightForecast

Weight

0.40.3 0.5

0.2

guess
pdf

Propagation
Step

EKF 3

Measurement
Update

EKF 3

UpdateWeight
Update 0.30.5 0.2

Propagation
Step

Measurement
Update0.30.2 0.3

≠
Update I: Continuous-time dynamical systems 

Updates the weights by constraining the Gaussian sum approximation to satisfy the Fokker-Planck equation

Update II: Discrete-time nonlinear systems
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Weights to minimize the integral square difference between the true forecast pdf and its Gaussian sum 
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Figure 2. A Schematic of Adaptive Gaussian Sum Filter (AGSF)

Figure 2 shows the implementation scheme for the proposed nonlinear filter. An advantage of the proposed
method is the decoupling of uncertainty characterization problem into many small scale linear uncertainty
propagation problems. As a consequence, the algorithm can be parallelized on today’s high performance
computing systems.

In Refs. [11–15,30], results have been presented comparing these new ideas with many existing methods
using several benchmark problems including the spacecraft attitude estimation problem.15 In all of these
diverse test problems, the adaptive Gaussian mixture-based nonlinear filtering algorithm is found to produce
considerably smaller errors as compared to existing methods.

III. Entropy-Based Data Association

To develop a successively refining pdf representation, it is important to define a metric for the data
association error, so that improvements due to refinements can be assessed. In this paper, an information-
theoretic basis is used to quantify the target tracking error. The inspiration comes from the notion of entropy
in Shannon’s famous 1948 paper.33 Entropy measures the average uncertainty of a random variable, i.e., it
is a measure of the amount of information needed to describe a random variable. The more information is
known about a random variable, the less uncertain it is, which can be interpreted as a reduction of entropy.
Fundamentally, entropy is a function of the density function and can be evaluated within a probabilistic
framework. If one agrees that the pdf of a random variable is a representation of uncertainty, then it is
meaningful to quantify the data association error in terms of the information theoretic metrics. The idea of
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using a pdf based metric is compelling given the fact that both the likelihood and posterior pdf are generally
non-Gaussian in nature.

Target 
Hypothesis 

Predict Target Position using 
Adaptive Gaussian Sum Filter 

True 
Measurement 

Estimated 
Measurement 

! 

p(x(tk ))

! 

L = p(y(tk ))

! 

ˆ L = p( ˆ y (tk ))

! 

KL Divergence,  D(L, ˆ L )

Figure 3. The KL-Divergence Based Framework for Data Association

The Shannon entropy is the most popular choice for measuring information contained in a random
variable, x, from its pdf p(x):

H(x) = −
∫
p(x) log p(x)dx (25)

Kullback34 and Kolmogorov35,36 extended the notion of Shannon’s entropy to measure the distance between
two density functions. The Kullback-Leibler (KL) divergence measure, or relative entropy, describes the
information geometry for the space of density functions and is defined as the ratio of the prediction error
obtained with an assumed (incorrect) spectral density to the one obtained with the correct spectral density:

D(p, q) =

∞∫
−∞

p(x) ln
p(x)

q(x)
dx =

∞∫
−∞

p(x) ln p(x)dx−
∞∫
−∞

p(x) ln q(x)dx (26)

It can be shown that D(p, q) is non-negative and is zero if and only if p = q. The first term in the
aforementioned expression for the KL-divergence is the measure of uncertainty in the true pdf p while
second term is the measure of uncertainty in q relative to the true pdf p. Also, if p is assumed to be Gaussian
with covariance matrix Σ, then the first term can be analytically computed as:

∞∫
−∞

p(x) ln p(x)dx = ln
(√
|2πeΣ|

)
(27)

In Refs. [37–39] an information theoretic KL-divergence measure has been proposed to measure the confidence
for fusion and tracking that has been lacking earlier in the literature.

To understand the role of the KL-divergence in data association, consider the problem of associating a
measurement y to one of the possible M targets. The variable xk denotes the state vector corresponding to
the kth target and p(xi) denotes the prior density function for the state vector xk corresponding to the kth

target before the measurement y arrives. Here, p(xk) is parameterized by the Gaussian mixture model as
described previously:

p(xk) =

N∑
i=1

wk
i (t)N (xk | µk

i (t),Pk
i (t)) (28)

Further, let us assume that L = p(y|x) represents the known likelihood function representing our confidence
in the accuracy of the measurement data. Now, by propagating the prior state pdf p(xk) for each target
through the measurement model of Eq. (18), we can obtain the estimated likelihood function L̂k representing
our confidence in the estimated measurement data assuming it belongs to the kth target:

L̂k = p(ŷ|xk) =

N∑
i=1

wk
i (t)N (y | h(µk

i (t)),Hk
iP

k
i (t))HkT

i + R) (29)

Now, the KL-divergence metric can be used to discriminate between different targets. An interpretation of
the KL-divergence is that if the pdf L̂k is very unlikely, then D(L,Lk) is large. It should be noted that
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the KL-divergence measure is essentially equivalent to a standard χ2 test for Gaussian variables, which is
commonly used in data association approaches. Therefore, the KL-divergence measure is useful for both
Gaussian and non-Gaussian cases.

IV. Numerical Results

In this section, numerical results are shown validating the key ideas presented in this paper. To show the
effectiveness of the proposed ideas, we consider the problem of tracking a high area-to-mass ratio (HAMR)
object in a low-Earth orbit subject to nonconservative atmospheric drag. The planar equations of motion
for an object in low-earth-orbit that is affected by nonconservative atmospheric drag forces are given by40

ẍ+
µx

r3
= aDx

(t, x, y, ẋ, ẏ), aD =
1

2

CdA

m
ρv2rel

vrel

|vrel|

ÿ +
µy

r3
= aDy

(t, x, y, ẋ, ẏ), ρ = ρ0e
−

(r−R⊕)

h

where Cd is the coefficient of drag, A is the cross-sectional area, m is the mass of the object, and ρ is the
atmospheric density at a given altitude. The atmospheric density model is assumed to be an exponential
model with reference density ρ0. It is also worth noting that the vrel is not the velocity state vector, but
rather the velocity relative to the Earth’s atmosphere.

For simulation purposes, the value of the ballistic coefficient, B = CdA
m , is chosen to be 1.4 which is

consistent with a HAMR object.41 Perfect knowledge of system dynamics is assumed, i.e., there is no
process noise in the system. The initial state-pdf is assumed to be Gaussian with the following mean and
covariance:

µ0 =


6.6032× 106

0

0

7.7695× 103

 P0 =


1.78× 106 0 0 0

0 2.50× 105 0 0

0 0 6.25 0

0 0 0 25


The mean of the initial pdf corresponds to a starting altitude of 225 km. The covariance matrix reflects a
larger uncertainty in the radial position and the tangential velocity than in the in-track position and the
radial velocity, respectively.

The initial state pdf is propagated through the orbit dynamics for a full orbit using the AGSF, UKF and
the sequential Monte Carlo (SMC) method with 50, 000 runs. In addition to the initial Gaussian pdf, 15
mixture components with zero weights are introduced along the principal axis of the the initial covariance
matrix. Figure 4 shows the contour plots corresponding to 1% of the state pdf’s peak value during various
times of the orbit. As expected the effects of nonlinearities and atmospheric drag skew the state pdf, which is
accurately captured by the AGSF approximation and SMC runs. It is clear that the UKF and the AGSF pdf
are initially identical and remain similar for some time, however, the UKF no longer accurately represents
the area of uncertainty given by the SMC samples contour at the end of one orbit. These plots clearly shows
the effectiveness of the AGSF method in capturing the non-Gaussian behavior of the state pdf.

To show the effectiveness of the KL-divergence measure for data association, sensor measurements (po-
sition of a RSO) are simulated at the end of an orbit. A total of 700 Monte Carlo runs have been performed
to generate different measurement data, as shown in Fig. 5(a). The blue and red contour lines in Fig. 5(a)
correspond to contours for the state pdf propagated through the measurement model using the UKF and
the AGSF approximations, respectively. To show the efficacy of capturing the non-Gaussian behavior, the
simulated measurements are divided into four different regions (Regions 1–4) of varying degree of nonlinear-
ity. Furthermore, measurements corresponding to false targets are also generated, denoted by Regions 5 and
6. The rest of the Monte Carlo runs correspond to the high probable region of the actual state pdf.

The KL-divergence measure is computed for both the AGSF and UKF approximated pdf by using 10, 000
Gaussian quadrature points and assuming the true measurement pdf (likelihood function) to be Gaussian
with standard deviation of 100 m. For notational sake, the KL-divergence measure computed by using the
AGSF approximation is represented by dAGSF while the one using the UKF approximation is represented
by dUKF . Figure 5(b) shows plots for both dAGSF and dUKF for different Monte Carlo runs of simulated
measurements. As expected the value of dAGSF is consistently less than the value for dUKF for measurements
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(a) Initial PDF Contours (b) 0.25 Orbits

(c) 0.5 Orbits (d) 0.75 Orbits

(e) 1 Orbit

Figure 4. State pdfs Propagation for a HAMR object in a LEO Orbit with Atmospheric Drag. The blue line
represents the Gaussian approximation, red line represents the Gaussian mixture approximation while black
dots represent the Monte Carlo particles.

belonging to Regions 1–4 and 5. This fact is more noticeable in Fig. 5(c) which shows a plot of the ratio
of the two KL-divergence measures, i.e. dAGSF /dUKF . Furthermore, both the UKF and AGSF correctly
identify the false measurements corresponding to Region 5 by a sudden increase in the value of the KL-
divergence measure, although the increase is much larger for the AGSF derived one. However, the UKF fails
to identify the false measurements corresponding to Region 6 due to the skewness of the actual pdf which
is not captured by the UKF. This once again illustrates the benefit of capturing the actual non-Gaussian
pdf. These plots clearly illustrates the effectiveness of the AGSF and KL-divergence measure in correctly
identifying targets under large uncertainty.
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Figure 5. Data Association Results

V. Conclusion

In this paper a new approach for data association of resident space object tracking was developed. The
approach combines an adaptive Gaussian sum filter with the Kullback-Leibler divergence measure-based
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data association metric to track space objects accurately. This approach has several advantages over existing
approaches, including: it is able to approximate the pdf associated with nonlinear systems well and it is
computationally efficient so that it can be executed in realtime using modern-day computers. The numerical
results presented in this paper clearly provide a basis for optimism that the proposed approach can effectively
work for realtime resident space object track/data association.
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