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In this paper a constrained relative attitude determination solution of a formation of
two vehicles is considered and the effect of constraint violation on the estimation error is
studied. The solution for the relative attitude between the two vehicles is obtained only
using line-of-sight measurements between them and a common (unknown) object observed
by both vehicles. The solution represents the minimum number of measurements required
to determine the relative attitude and no ambiguities are present. The constraint used in
the solution is a triangle constraint on the vector observations. This constraint represents
an ideal situation, which may be violated in practice due to sensor misalignments and/or
noisy measurements. A sensitivity analysis is performed in order to assess how out-of-plane
observations affect the overall solution. In particular, an analytical expression for this
sensitivity is derived. Simulations runs are also shown to verify the analytical expression.

I. Introduction

Most inertial navigation systems used for vehicles incorporate the Global Positioning System (GPS)
along with inertial measurement units providing both inertial position and attitude. If relative information
is required then these measurements must be converted to relative coordinates. Although GPS can be used to
provide relative information using pseudolites, GPS and GPS-like signals are susceptible to interference and
jamming, among other issues. Therefore developing GPS-less navigation systems is currently an active area of
research.1 Recent research concerning vision-based navigation for Uninhabited Air Vehicles (UAV)s indicates
that relative navigation can be achieved using camera-based images. Line-of-sight (LOS) vectors between
vehicles in formation can be used for relative navigation and in particular relative attitude determination.
Reference 2 implements an extended Kalman filter to estimate the relative position and attitude of two air
vehicles using multiple LOS measurements between them along with other onboard measurements from gyros
and accelerometers. This approach has the advantage of not relying on external sensors but may require
considerable onboard computations. Computing the relative attitude directly without filtering for the two-
vehicle formation using LOS information between them can offer computational efficiency without reliance
on filter convergence issues because point-by-point solutions are possible with deterministic methods.

The attitude is determined as the angular departure from some reference. Attitude sensors provide
either arc lengths or dihedral angle observations that are known in a reference coordinate system. The
angle measurements can be combined to determine entire directions. Oftentimes these directions are LOS
observations to an observed object such as a star, the Sun, the Earth’s magnetic field vector or landmarks.
Since the attitude of an object is described by a 3 × 3 orthogonal rotation matrix with determinant +1, it
has three independent parameters; two of which describe an axis and the third the rotation about this axis.
Therefore at least two unit vector measurements are needed to determine the attitude. But since each unit
vector contains two independent pieces of information, the attitude is over-determined in this case. Therefore
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it is convenient to divide attitude determination algorithms into two classes: 1) deterministic solutions where
the minimal scalar measurements are used, and 2) over-deterministic where more than the minimal scalar
measurement set is used to determine the attitude.

Many algorithms have been published to determine the attitude from two or multiple unit vectors, the
most widely used of which are the TRIAD3 and QUEST4 algorithms. When more than the minimal set
of vector observations is used to determine the attitude an optimal solution is obtained by minimizing
an appropriate cost function, which was first introduced as the well known Wahba problem.5 A purely
deterministic solution for the attitude involves one direction and one angle or three angles but this case
is shown to have a discrete ambiguity,6 which needs further information to resolve. The advantages of a
deterministic solution are 1) since the minimal scalar measurements are used there is no need to minimizing
the cost function and 2) any deterministic algorithm will provide an optimal solution.

Using a set of LOS observations between vehicles in a three-vehicle formation has been shown to offer a
deterministic solution in Ref. 2, which is not possible if each vehicle is considered separately. The observability
of this relative attitude solution depends on both vehicle geometry and sensor location. It is well known
that the rotation around a unit vector is unobservable when that unit vector is the only observation used
for attitude determination. Reference 2 shows that having only one LOS set between each of the individual
vehicles provides sufficient information to determine all relative attitudes in a three-vehicle system. An
unobservable case arises when all vectors are in the same plane, e.g. they form a triangle. Reference 7 extends
the previous result to a two-vehicle formation with a common observed object, which can be another vehicle
or a landmark, by applying a parametric constraint to the attitude solution. This constraint is based on
assuming that a triangle set of observations is given. In the work of Ref. 2 this issue causes problems in the
solution, while in Ref. 7 this constraint is forced to be true and hence relieves the arising difficulties. This
results in a deterministic solution for the relative attitude with no ambiguity and no observability issues.

The triangle scenario does reflect a realistic physical situation. For example, this occurs naturally when
two UAVs have a common LOS between them and measure some common object other than each other,
which forms a triangle of LOS observations. It is important to note that no information on the location
of the object is required in the solution, only the fact that both vehicles observe the common object. This
constitutes a significant departure from standard navigation or attitude approaches that use known objects
or landmarks. The triangle constraint is used to determine a solution, however, due to sensor misalignments
and/or noise in the measurements the actual LOS observations will not form a perfect triangle. In this paper
this error will be studied by deriving an analytical expression of the error sensitivity for out-of-plane vectors.

The organization of this paper is as follows. First, the configuration for the constrained observation
geometry and a description of the sensor model are given. Then, the constrained relative attitude solution
is summarized. Next, a review of quaternions is provided. Then, a sensitivity expression to out-of-plane
deflections is derived. Finally, simulation results are shown for a static formation.

 1v  

2w  
2v  

1w   B2 B1

Figure 1. Observation Geometry

II. Configuration and Sensor Model

Figure 1 shows the configuration and observations used for the solution of the relative attitude from frame
B1 to frame B2. The vector w1 is the LOS observation from B2 to B1 expressed in B2 coordinates. The
vector v1 is the LOS observation from B2 to B1 expressed in B1 coordinates; note, in practice the negative
of this vector is measured. The vector w2 is the LOS observation from B2 to the common object expressed
in B2 coordinates. Finally, the vector v2 is the LOS observation from B1 to the common object expressed in
B1 coordinates.
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Line-of-sight observations between multiple vehicles can be obtained using standard light-beam and focal-
plane-detector technology. One such system is the vision-based navigation (VISNAV) system,8 which consists
of a position sending diode (PSD) as the focal plane that captures incident light from a beacon omitted from
a neighboring vehicle from which a LOS vector can be determined. The light source is such that the system
can achieve selective vision. This sensor have the advantage of having a small size and a very wide field-of-
view (FOV).9 The measurement can be expressed as coordinates in the PSD focal plane, denoted by α and
β. The focal plane coordinates can be written in a 2 × 1 vector m ≡ [α β]T and the measurement model
follows

m̃ = m+w (1)

A typical noise model used to describe the uncertainty in the focal-plane coordinate observations is given as

w∼N
(

0, RFOCAL
)

(2a)

RFOCAL =
σ2

1 + d (α2 + β2)

[

(

1 + dα2
)2

(dαβ)
2

(dαβ)2
(

1 + dβ2
)2

]

(2b)

where σ2 is the variance of the measurement errors associated with α and β, and d is on the order of 1. The
covariance for the focal plane measurements is a function of the true values and this covariance realistically
increases as the distance from the boresight increases. The measurement error associated with the focal
plane measurements results in error in the measured LOS vector. A general sensor LOS observation can be
expressed in unit vector form given by

b =
1

√

f + α2 + β2







α

β

f






(3)

where f denotes the focal length. The LOS observation has two independent parameters α and β. Therefore
in the presence of random noise in these parameters the LOS vector still must maintain a unit norm.
Although the LOS measurement noise must lie on the unit sphere we can approximate the measurement
noise as additive noise, given by

b̃ = b+ υ (4)

with
υ∼N (0,Ω) (5)

where υ is assumed to be a Gaussian random vector with zero mean and covariance Ω. Shuster4 has shown
that the probability density for unit vector measurements lies on a sphere and can accurately be approximated
by a density on a plane tangent to the vector for a small FOV sensors. This approximation is known as
the QUEST measurement model,4 which characterizes the LOS noise process resulting from the focal plane
model as

Ω ≡ E
{

υυT
}

= σ2
(

I3×3 − bbT
)

(6)

It is clear that this is only valid for a small FOV in which a tangent plane closely approximates the surface
of a unit sphere. For wide FOV sensors, a more accurate measurement covariance is shown in Ref. 10.
This formulation employs a first-order Taylor series approximation about the focal-plane axes. The partial
derivative operator is used to linearly expand the focal-plane covariance in Eq. (2), given by

J =
∂b

∂m
=

1
√

1 + α2 + β2







1 0

0 1

0 0






− 1

1 + α2 + β2
bmT (7)

Then the wide-FOV covariance model is given by

Ω = J RFOCALJT (8)

If a small FOV model is valid, then Eq. (8) can still be used, but is nearly identical to Eq. (6). For both
equations, Ω is a 3 × 3 covariance matrix for a unit vector measurement with two independent parameters
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and therefore must be singular. A nonsingular covariance matrix for the LOS measurements can be obtained
by a rank-one update to Ω:

Ωnew = Ω +
1

2
trace (Ω)bbT (9)

which can be used without loss in generality to develop attitude-error covariance expressions.2 Equation (8)
represents the covariance for the LOS measurements in their respective body frame. The four measurements,
using notation defined by Figure 1 instead of b, and their respective covariances are summarized by

w̃1 = w1 + υw1, υw1∼N (0, Rw1
) (10a)

w̃2 = w2 + υw2, υw2∼N (0, Rw2
) (10b)

ṽ1 = v1 + υv1, υv1∼N (0, Rv1) (10c)

ṽ2 = v2 + υv2, υv2∼N (0, Rv2) (10d)

Since in practice each vehicle will have their own set of LOS measurement devices, then the measurements
in Eq. (10a) can be assumed to be uncorrelated.

III. Constrained Solution

This section summarizes the constrained attitude solution. More details can be found in Ref. 7. Consid-
ering the measurements shown in Figure 1, to determine the full attitude between the B2 and B1 frames the
attitude matrix must satisfy the following measurement equations:

w1 = Av1 (11a)

d = wT

2 Av2 (11b)

We assume that |d| ≤ 1; otherwise a solution will not exist. Here it is assumed that the LOS vectors v1 and
w1 are parallel. Also note that from Figure 1 no observation information is required from the third object to
either B1 or B2. Hence, no information such as position is required for this object to determine the relative
attitude. A solution for the attitude satisfying Eq. (11) is discussed in Ref. 6 and will be utilized to form
a solution for the constrained problem discussed here. The solution for the rotation matrix that satisfies
Eq. (11) can be found by first finding a rotation matrix that satisfies that first equation and then finding
the angle that one must rotate about the reference direction to align the two remaining vectors such that
their dot product is equivalent to that measured in the remaining frame in the formation. The first rotation
can be found by rotating about any direction by any angle, where B = R (n1, θ) is a general rotation about
some axis rotation that satisfies Eq. (11a). The choice of the initial rotation axis is arbitrary, here the vector
between the two reference direction vectors is used and the rotation is as follows:

B =
(w1 + v1)(w1 + v1)

T

(1 + vT
1 w1)

− I3×3 (12)

where n1 = (w1 + v1) and θ = π. This rotation matrix will align the LOS vectors between frames, but
the frames could still have some rotation about this vector, so therefore the angle about this axis must be
determined to solve the second equation. To do so the vectorw∗ is first defined, which is the vector produced
after applying the rotation B on the vector v2. This will allow us to determine the second rotation needed to
map v2 properly to the B2 frame with w∗ = B v2. Since the rotation axis is the w1 vector, this vector will be
invariant under this transformation and the solution to the full attitude can be written as A = R (n2, θ)B.

Consider solving for the rotation angle using the planar constraint, the constraint can be written as the
following:

0 = wT

2 [w1×]R (n2, θ)w
∗ (13)

Substituting the second rotation matrix into Eq. (13), and with n2 = w1, leads to

0 = wT

2 [w1×][w1w
T

1 − cos(θ)[w1×]
2
w∗ − sin(θ)[w1×]w∗] (14)

Expanding out this expression we can write

(

wT

2 [w1×]w∗
)

cos(θ) =
(

wT

2 [w1×]
2
w∗

)

sin(θ) (15)
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Notice that if we divide Eq. (15) by −1 the equation would be unchanged but the solution for the angle
θ would differ by π. Therefore, using the planar constraint the solution for the angle θ can be written as
θ = β + φ, where

β = atan2(wT

2 [w1×]w∗,wT

2 [w1×]
2
w∗) (16)

and φ = 0 or π. An ambiguity exists when using this approach but it is important to note that one of the
possible solutions for this approach is equivalent to the triangle constraint case.

Finally the solution for the attitude is given by A = R (w1, θ)B. The solution is now summarized:

B =
(w1 + v1)(w1 + v1)

T

(1 + vT
1 w1)

− I3×3 (17a)

R (w1, θ) = I3×3 cos(θ) + (1 − cos(θ))w1w
T

1 − sin(θ)[w1×] (17b)

θ = atan2(wT

2 [w1×]w∗,wT

2 [w1×]
2
w∗) + π (17c)

A = R (w1, θ)B (17d)

This result shows that for any formation of two vehicles a deterministic solution will exist using one direction
and one angle. Due to the fact that our case is truly deterministic there is no need to minimize a cost function
and the solution will always be the maximum likelihood one. It is very important to note that without the
resolution of the attitude ambiguity any covariance development might not have any meaning since although
the covariance might take a small value if the wrong possible attitude is used then the error might be fairly
large and not bounded by the attitude covariance.

The solution in Eq. (17) can be rewritten without the use of any transcendental functions. The following
relationships can be derived:

cos(θ) = − wT
2 [w1×]2w∗

‖w1 ×w2‖‖v1 × v2‖
(18a)

sin(θ) = − wT
2 [w1×]w∗

‖w1 ×w2‖‖v1 × v2‖
(18b)

This leads to cos(θ) = −b/c and sin(θ) = −a/c with

a = wT

2 [w1×] ([w1×] + [v1×]) [v1×]v2 (19a)

b = wT

2 [w1×] ([w1×][v1×]− I3×3) [v1×]v2 (19b)

c = (1 + vT

1 w1)‖w1 ×w2‖‖v1 × v2‖ (19c)

Note that c =
√
a2 + b2. Then the matrix R is given by

R = −b

c
I3×3 +

(

1 +
b

c

)

w1w
T

1 +
a

c
[w1×] (20)

Noting that w1w
T
1 B = w1v

T
1 then the solution in Eq. (17d) can be rewritten as

A =
b

c

(

I3×3 −
(w1 + v1)(w1 + v1)

T

(1 + vT
1 w1)

+w1v
T

1

)

+
a

c
[w1×]

(

v1w
T
1 + v1v

T
1

(1 + vT
1 w1)

− I3×3

)

+w1v
T

1

(21)

Note in practice the measured quantities from the previous section are used in place of the observed quantities
shown in Eq. (17), and Eqs. (19) and (21).

The covariance matrix for an attitude estimate is defined as the covariance of a small angle rotation
taking the true attitude to the estimated attitude. Typically the small Euler angles are used to parameterize
the attitude error-matrix. Reference 7 derives the attitude error-covariance for the constrained solution by
using the attitude matrix with respect to the small angle errors. The attitude error-covariance is given by

P =















−[Atruev2×]

−wT
2 [w1×][Atruev2×]













R∆1
R∆1∆2

RT
∆1∆2

R∆2







−1





−[Atruev2×]

−wT
2 [w1×][Atruev2×]







T








−1

(22)
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where

R∆1
= Rw1

+AtrueRv1A
T

true (23a)

R∆2
= wT

2 [Atruev2×]Rw1
[Atruev2×]w2 + (Atruev2)

T
[w1×]Rw2

[w1×] (Atruev2)

+wT

2 [w1×]AtrueRv2A
T

true[w1×]w2

(23b)

R∆1∆2
= −Rw1

[Atruev2×]w2 (23c)

This expression is a function of the true attitude, Atrue, but the true attitude can effectively be replaced
with the estimated attitude to within first order.

IV. Attitude Matrix Error Representation

The attitude matrix is parameterized using the quaternion, which is based on the Euler axis/angle
parameterization of the attitude matrix. The quaternion is defined as

q =

[

̺

q4

]

(24)

where ̺ = e sin (θ/2) and q4 = cos (θ/2); e is the Euler rotation axis and θ is Euler rotation angle. The
quaternion must also satisfy the unit constraint qTq = 1. The attitude matrix can be written in terms of
the quaternion parameterization:

A = ΞT (q) Ψ (q) (25)

where

Ξ(q) ≡
[

q4I3×3 + [̺×]

−̺T

]

(26a)

Ψ(q) ≡
[

q4I3×3 − [̺×]

−̺T

]

(26b)

Also the inverse quaternion is defined by q−1 = [−̺T q4]
T so that A(q−1) = AT (q).

Successive rotations can be represented using quaternion multiplication made in the same order as the
attitude matrix multiplication:11

A(q′)A(q) = A(q⊗ q′) (27)

The bilinear composition of the quaternion is q⊗ q′ and is defined by

q⊗ q′ =
[

−q′4̺+ q4̺′ − ̺[̺′×]

−q′4q4 + ̺′T̺

]

(28)

In this paper a small angle-error approach is used to determine the attitude error induced by an out-of-plane
vector. The attitude error, denoted by δA, is given by a multiplication of two attitude matrices, A1 and A2,
with δA = A1A

T
2 . For small attitude errors δA can be approximated using a first-order expansion so that

A1 = e−[δα×]A2 ≈ (I3×3 − [δα×])A2 (29)

where δα = [δα1 δα2 δα3]
T represents the small roll, pitch and yaw error rotations. Then using Eq. (27)

the error quaternion can be expressed as
δq = q1 ⊗ q−1

2 (30)

where the error quaternion can be related to small Euler rotation by δq =
[

δαT /2 1
]T

.
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Figure 2. Out-of-Plane Geometry

V. Sensitivity to Out-of-Plane Deflection

In this section an expression for the sensitivity of the attitude error is derived for the case that a perfect
triangle configuration is not given. The triangle assumption can only be violated by the case where one
of the observation vectors is out of the plane containing the other two observations. Since the w1 and v1

vectors are common LOS observations expressed in different coordinates, then by definition they must be in
the same direction and therefore these vectors can’t be out of the plane. The v2 and w2 vectors are the only
two vectors that can be out-of-plane. Since one of these vectors has to be used with the w1 and v1 direction
to define a plane, then only one observation vector needs to be chosen to be out of the plane.

Consider rotating the v2 vector out of the plane by an angle Φ. Then the resulting out-of-plane vector
can be defined as

vΦ = R(Φ, e)v2 (31)

where e is the axis of rotation; see Figure 2. Then it follows that

e = − [v2×]2v1

‖v2 × v1‖
(32)

Note that ‖[v2×]2v1‖ = ‖v2×v1‖. The out-of-plane vector can be written using the definition of the attitude
matrix:11

vΦ =
[

I3×3 cos(Φ) + (1− cos(Φ))eeT + sin(Φ)[e×]
]

v2 (33)

Noting that eTv2 = 0 simplifies Eq. (33) to give

vΦ = (I3×3 cos(Φ) + sin(Φ)[v1×]/‖v2 × v1‖)v2 (34)

The goal is to obtain an expression that relates the increase in the attitude error due to the out-of-
plane deflection. This can be accomplished using the solution in Eq. (17d) to obtain an expression for the
sensitivity of the error to the out-of-plane deflection. The attitude error matrix can be written as

δAΦ = AΦA
T (35)

where the matrix A is the attitude matrix formed using the observation set {w1, v1, w2, v2} and the matrix
AΦ is the attitude matrix formed using the observation set {w1, v1, w2, vΦ}. As explained previously the
only out-of-plane vector is given by rotating v2 onto vΦ. The attitude solution for A is accomplished by
two successive rotations, the first rotation is given by the matrix B and the second rotation is given by the
matrix R, where R ≡ R (w1, θ) is used for convenience. The solution for the estimated attitude is written as
A = RB. The matrix B aligns the v1 and w1 directions and therefore this matrix is independent of vΦ. The
second rotation is a simple Euler axis/angle rotation about the w1 vector by the angle of θ. Its equivalent
quaternion is given by

qR =

[

sin(θ/2)w1

cos(θ/2)

]

(36)

This shows that all of the out-of-error is expressed solely by θ, as seen by Eq. (17c). The attitude matrix
associated with qR is denoted by R. The quantity θΦ is used to represent the error in θ due to the out-of-plane
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deflection. The quaternion associated with θΦ is given by

qRΦ
=

[

sin(θΦ/2)w1

cos(θΦ/2)

]

(37)

and its associated attitude matrix is RΦ. Then AΦ = RΦ B, so that

δAΦ = RΦ B(RB)T = RΦBBT RT = RΦRT (38)

So the error is only a function of RΦ and R. Using quaternion multiplication Eq. (38) can be rewritten as

δqRΦ
= qRΦ

⊗ q−1
R

(39)

where the error quaternion can be related to small angle errors by δqRΦ
= [δαT

Φ/2 1]T . By carrying out the
quaternion multiplication the vector component of the error quaternion can be shown to be given by

δαΦ = 2 [sin(θΦ/2) cos(θ/2)− cos(θΦ/2) sin(θ/2)]w1 (40)

By noting that sin((θΦ − θ)/2) = sin(θΦ/2) cos(θ/2) − cos(θΦ/2) sin(θ/2) and assuming (θΦ − θ) is small,
Eq. (40) becomes

δαΦ = (θΦ − θ)w1 (41)

Note that w1 is independent of Φ and only θΦ depends on Φ, where w1 defines the direction of δαΦ. The
magnitude of the small angle vector gives the angle of rotation about w1, taking AΦ to A. Calculating
the derivative of the magnitude of δαΦ with respect to Φ quantifies the sensitivity of the solution to the
out-of-plane deflection angle. Since w1 is assumed to be a unit vector the magnitude of the small error
angle can be written as Θ = δαT

Φw1. To consider the sensitivity of the solution to out-of-plane deflection
the sensitivity in Θ is considered. Hence the following defined quantity is used to study the sensitivity is
Θ ≡ (θΦ − θ). The sensitivity of the solution to out-of-plane deflection is given by

dΘ

dΦ

∣

∣

∣

∣

Φ=0

=
dθΦ
dvT

Φ

dvΦ

dΦ

∣

∣

∣

∣

Φ=0

(42)

Expressions for the derivatives in Eq. (42) are needed. Using w∗ = Bv2, θ can be written as

θ = atan2(wT

2 [w1×]Bv2,w
T

2 [w1×]2Bv2) + π (43)

To simplify the derivation of the sensitivity expression Eq. (43) can be rearranged using w1 = Bv1 and

v∗
2 = BTw2. Then by defining Y ≡ v∗

T

2 [v1×]v2 and X ≡ v∗
T

2 [v1×]2v2 the angle θ is given by

θ ≡ atan2(Y,X ) + π (44)

To compute the sensitivity in Eq. (42) first θΦ is calculated using {w1, v1, w2, vΦ} and then this expression
is differentiated with respect to vΦ. The expression for θΦ is given by

θΦ = atan2(YΦ,XΦ) + π (45)

where the terms in Eq. (45) are defined by YΦ = v∗
T

2 [v1×]vΦ and XΦ = v∗
T

2 [v1×]
2
vΦ. The expression for

the sensitivity dθΦ

dvT

Φ

can now be calculated from Eq. (45). It follows that

dθΦ
dvT

Φ

=
1

X 2
Φ + Y2

Φ

(

XΦ
∂YΦ

dvT
Φ

− YΦ
∂XΦ

dvT
Φ

)

(46)

Then the expression for dθΦ

dvT

Φ

is evaluated at Φ = 0, resulting in vΦ = v2 and the derivative terms can be

written as ∂YΦ

dvT

Φ

= v∗
T

2 [v1×] and ∂XΦ

dvT

Φ

= v∗
T

2 [v1×]2. Using these expressions in Eq. (46) the first sensitivity

term can be written as
dθΦ

dvT
Φ

∣

∣

∣

∣

vΦ=v2

=
1

X 2 + Y2

(

Xv∗
T

2 [v1×]− Yv∗
T

2 [v1×]2
)

(47)
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The expression for dvΦ

dΦ can be determined from Eq. (34):

dvΦ

dΦ
= (−I3×3 sin(Φ) + cos(Φ)[v1×]/‖v2 × v1‖)v2 (48)

By setting Φ = 0 in Eq. (48), the expression for dvΦ

dΦ

∣

∣

Φ=0
can be determined to be

dvΦ

dΦ

∣

∣

∣

∣

Φ=0

=
[v1×]v2

‖v2 × v1‖
(49)

Then combining Eq. (47) and Eq. (49) the sensitivity of the solution to out-of-plane deflection defined in
Eq. (42) can be expressed as

dθΦ
dΦ

∣

∣

∣

∣

Φ=0

=
1

X 2 + Y2

(

Xv∗
T

2 [v1×]− Yv∗
T

2 [v1×]2
) [v1×]v2

‖v2 × v1‖
(50)

Using the identity [v1×]3 = −[v1×] and the definitions of Y and X then Eq. (50) becomes

dθΦ
dΦ

∣

∣

∣

∣

Φ=0

=
1

X 2 + Y2

(X 2 + Y2)

‖v2 × v1‖
(51)

Then finally by simplifying Eq. (51) the final expression for the sensitivity of the solution to out-of-plane
deflection is given by

dθΦ
dΦ

∣

∣

∣

∣

Φ=0

=
1

‖v2 × v1‖
(52)

It is expected that the out-of-plane deflection is small under most operating conditions and therefore Eq. (52)
gives a good approximation for the sensitivity of the relative attitude solution due to constraint validation.

VI. Simulations

The simulations use a static formation of three vehicles, with each vehicle having two focal plane detec-
tors (FPD)s and two of the three vehicles having light source devices. As mentioned previously the third
vehicle does not require a light source because the triangle constraint is used in the solution. The relative
attitude mapping between each vehicle’s body frame is determined from LOS measurements. The formation
configuration uses the following true LOS vectors:

w1 =







1

0

0






, w2 =







0

1

0






, v2 =







cos(135◦)

0

− sin(135◦)






(53)

The last vector is chosen so that a triangle configuration is assured for the true vectors. The remaining
LOS truth vectors are determined from those listed in Eq. (11), without noise added, using the appropriate
attitude transformation. For this configuration the true relative attitude is given by

A =







1 0 0

0 0 1

0 −1 0






(54)

For the simulation the LOS vectors are converted into focal-plane coordinates and random noise is
added to the true values having covariances described in §II, with σ = 17 × 10−6 rad. Since each FPD
has its own boresight axis, and the measurement covariance in Eq. (2) is described with respect to the
boresight, individual sensor frames must be defined to generate the FPD measurements. The measurement
error-covariance for each FPD is determined with respect to the corresponding sensor frames and must be
rotated to the vehicle’s body frame as well. The letter S is used to denote sensor frame. The orthogonal
transformations for their respective sensor frames, denoted by the subscript, used to orientate the FPD to
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Figure 3. Relative Attitude Estimate Errors

the specific vehicle, denoted by the superscript, are given by

Av1

sB1

=







−0.8373 −0.2962 0.4596

−0.2962 −0.4609 0.8366

0.4596 −0.8366 0.2981






, Av2

sB1

=







−0.8069 0.4487 0.3843

0.4487 −0.0423 0.8927

0.3843 0.8927 −0.2355






(55a)

Aw1

sB2

=







−0.8889 0.0644 0.4535

0.0644 −0.9626 0.2630

0.4535 0.2630 0.8515






, Aw2

sB2

=







0.4579 −0.0169 0.8888

−0.0169 −0.9998 −0.0103

0.8888 0.0103 −0.4581






(55b)

The configuration is considered for 1,000 Monte Carlo trials. Measurements are generated in the sensor frame
and rotated to the body frame to be combined with the other measurements to determine the full relative
attitudes. The wide-FOV measurement model for the FPD LOS covariance is used. Relative attitude angle
errors are displayed in Figure 3. Good performance characteristics are given using the constrained solution.
This figure shows that the derived attitude-error covariance does indeed bound these errors in a 3σ sense,
which is computed to be

Pδαδα = 1× 10−9







0.9790 −0.1166 −0.0889

−0.1166 0.4056 0.0889

−0.0889 0.0889 0.5308






(56)

This configuration is also considered for 100 Monte Carlo trials for various out-of-plane deflection angles.
The angle is varied from −0.05 deg to 0.05 deg using 0.01 degree intervals. Measurements are generated in
the sensor frame and rotated to the body frame to be combined with the other measurements to determine
the full relative attitudes. The wide-FOV measurement model for the FPD LOS covariance is used. The
Monte Carlo relative attitude angle errors are calculated for each trial and are plotted for all the considered
out-of-plane deflection angles. The covariance of the angle error is calculated for out-of-plane deflection
angles given the 100 Monte Carlo runs. The numerical variance runs are plotted with the angle errors for
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Figure 4. Plot of the Sensitivity to Out-of-Plane Deflections

all deflection angles. Results are shown in Figure 4. The theoretical error is calculated using Eq. (52) and
the linear approximation about Φ = 0, given by Θ = dΘ

dΦ

∣

∣

Φ=0
Φ. Good agreement between computed errors

through the Monte Carlo runs and the theoretical predictions is shown. Also the numerical variance does
not vary with out-of-plane deflection; moreover, out-of-plane deflection biases the solution only and does not
increase its variation about the mean.

VII. Conclusions

In this paper a sensitivity expression was derived for a relative attitude determination approach for two
vehicles using a triangle constraint in the observations. The triangle constraint is useful because it requires
two less observations than a deterministic relative approach without the constraint. In actual practice, the
triangle scenario reflects a realistic physical situation; however, out-of-plane deflections can occur due to
misalignments and/or noise. This paper studied how out-of-plane observations, which violate the constraint,
affect the constrained solution. The case study shown in this paper showed that the derived expression
matches simulated results. In essence the constraint violation leads to a bias in the attitude solution. The
analytically derived expression for the sensitivity is useful to quantify whether or not a particular system
using the constrained triangle solution causes issues in comparison to the required accuracy of the estimated
solution.
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