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This paper presents a method for accurate on-orbit calibration of rate-integrating three-

axis gyroscopes. On-orbit calibration is required for operationally responsive space systems

in order to deal with rapidly changing technology and support needs. However, a trade-

off usually occurs between accuracy and speed of convergence of the to-be-determined

calibration parameters. In order to achieve a fully autonomous and accurate calibration

approach, a two-step process is proposed. The first step determines an initial estimate

of the gyro calibration parameters using an angular velocity estimate determined from a

star tracker. This angular velocity estimate is provided without the need to identify stars,

thereby bypassing the associated adverse issues that typically arise in star tracker attitude

determination systems. The second step uses the initial gyro calibration estimates in a gen-

eralized multiple-model adaptive estimation approach, which combines outputs from three

filters to determine estimates that are better than each filter alone. Simulation results are

shown to assess the performance of the proposed on-orbit calibration approach.

I. Introduction

Pre-built modular components that can be rearranged to meet diverse mission requirements have been
suggested as a possible approach to achieve operationally responsive space (ORS) systems.1 This “plug-
and-play” concept is similar to that of the personal computer, wherein an open system architecture is used
and components can be assembled in an application specific basis. Basically this approach uses spacecraft
bus configurations defined on a mission categorization basis where mission components can be selected from
an inventory of standard plug-and-play components or subsystems to meet mission objectives. The rapid
assembly of components may mean that the system may lack precise sensor calibration. The guidance,
navigation and control subsystem in particular requires precise calibration for proper operation. Typically
calibration is usually performed prior to launch, but an accelerated launch schedule may require forgoing
extensive calibration procedures. In terms of time required to prepare a mission it is necessary to perform
calibration on-orbit, which is needed to accommodate fully responsive ORS systems.

This work focuses on filtering methods for on-orbit calibration for rate-integrating gyro sensors. Of all
the attitude sensors, gyros are likely the most crucial sensor system. Accurate angular rate information
is often required for precise attitude maneuvers and is also used for filtering of noisy measurements. On-
orbit sequential filtering2 approaches are preferred over batch3 approaches because they provide realtime
estimation of the calibration parameters. The traditional attitude on-orbit calibration approach involves
using a 6-state extended Kalman filter (EKF) to estimate the current attitude and gyro biases simultaneously.
This filter assumes unvarying alignment of the sensors involved in attitude estimation. However, sensor
misalignment is inevitable and would contribute to unreliable attitude estimates.4 More stringent attitude
pointing accuracy requires misalignments to be estimated and implemented into the attitude estimator. It
has been noted in various papers5–7 of the importance of proper calibration for use in fault detection or rate
derivation. Without on-orbit sequential calibration, the sensors have to be re-calibrated on the ground from
time to time to improve residual characteristics.6
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Misalignment calibration is usually performed prior to launch. However, launch shock often makes this
pre-launch calibration somewhat irrelevant. Thus on-orbit alignment calibration is needed to accommodate
these unanticipated changes in alignment before the spacecraft can begin its nominal mission mode. The ill
effects of attitude estimation using misaligned sensors are shown in Ref. 2. On-orbit realtime or sequential
filtering is preferred since misalignment parameters could drift, either due to in-space disturbances (for
example solar wind, aerodynamics, persistence thermal shock) or unattended changes in the attitude sensor’s
relative orientation, especially those with moving mechanisms. A sequential filter constantly outputs the best
estimate of the calibration parameters and can tolerate parameter drifts in realtime with minimal ground
crew intervention or mission disruption.

On-orbit calibration schemes would enhance the degree of autonomy of the attitude determination and
control system to reduce ground crew intervention for an extended period of time. Specifically, autonomy
refers to a mode of ground system operation in which manual human actions are not required to accomplish
desired functions. Autonomous systems are self-acting, self-regulating systems on the spacecraft wherein
functions are delegated to the spacecraft systems. In some cases it may be possible to perform sensor cal-
ibration without attitude knowledge, such as three-axis magnetometers, which is often preferred because
attitude estimation is decoupled from the calibration. However, in other cases, such as typical gyro calibra-
tion, this is not possible.

Realtime gyro calibration is typically accomplished by appending filter states with calibration param-
eters. Good initialization of the parameters is often required to achieve proper convergence. The most
basic approach involves estimating attitude and gyro bias calibration parameters,8 which involves a 6-state
filter. This filter typically works under low angular velocities but cannot correct for gyro scale factor and
misalignment error effects during high angular velocities. Under such operating conditions, gyro scale factor
and misalignment errors strongly degrade the 6-state filter performance.9 Thus, higher-state filters may be
required to estimate for scale factors and misalignments. However, the performance may also be degraded
when using higher-state filters due to information dilution. Reference 10 shows that each time a calibration
parameter state is added to the filter, the estimation of that parameter uses up a certain amount of the
limited information available by the observations. Therefore, adding more states can decrease the amount
of information which was previously available to each of the original states.

This paper presents an approach to provide good initialization of the gyro calibration parameters while
mitigating the information dilution problem. The initialization is performed using an angular velocity
estimate from only star tracker body observations.11 This approach has several advantages over other
existing star tracker determined angular velocity methods, including, it does not require stars to be identified
to provide an angular velocity estimate and it is attitude independent. The information dilution problem
is mitigated by employing a generalized multiple-model adaptive estimation (GMMAE) approach,12 which
combines three filters to provide overall calibration parameter estimates. In Ref. 9 a standard MMAE
approach was employed using the three-filter concept. Standard MMAE approaches use only the current
time measurement-minus-estimate residual in the algorithm. The GMMAE approach is based on calculating
the time-domain autocorrelation function, which is used to form the covariance of a generalized residual
involving any number of backward time steps, thereby providing an increased convergence rate over the
standard MMAE approach.13 Taken together, the initialization procedure and GMMAE approach provide
a robust approach for on-orbit gyro calibration.

The organization of this paper is as follows. First, the general gyro calibration procedure is discussed.
Then, the gyro and star tracker measurement models are summarized, followed by the derivation of the
angular velocity estimation approach directly from star body measurements. The initialization procedure
for the gyro calibration parameters is then derived. Next, reviews of the extended Kalman filter for attitude
estimation and the generalized multiple-model adaptive estimation approach are shown. Simulation results
are then shown followed by a persistency of excitation analysis.

II. Gyro Calibration Procedure

The on-orbit gyro calibration approach in this work can be broken up into an initialization stage and
an operational mode. Figure 1 provides the general framework for the on-orbit gyro calibration approach.
It is well known that the observability of gyro parameters is an issue, which is especially crucial during
the initialization stage when calibration parameters are not well known. To overcome this problem the
notion of decoupling is applied for the estimation of the various calibration parameters as much as possible.
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Figure 1. Gyro Calibration Process

The initialization stage can be decoupled into two steps: 1) scale factor / misalignment estimation, and 2)
bias estimation. Using a difference of the gyro measurements at two times, a crude estimate of the scale
factors and misalignment estimates is first determined. The bias estimate can be determined directly from a
difference of star tracker body observations, providing an attitude-independent estimate that doesn’t require
star identification.

In the operational mode a multiple-model filtering approach is implemented. In particular, 6-state, 9-
state and 15-state EKFs are employed to estimate the attitude, gyro biases, scale factors and misalignments.
The 6-state filter estimates attitude and gyro biases, the 9-state filter estimates attitude, gyro biases and
scale factors, and the 15-state filter estimates attitude, gyro biases, scale factors and misalignments. Multiple
filters are used to overcome the problem of information dilution. The estimate of each filter is combined
the GMMAE approach. The use of the different order filters effectively decouples the calibration parameter
estimation process during the operational mode.

III. Gyro and Star Tracker Measurement Models

This section describes the gyro and star tracker measurement models. More details are provided in the
references herein.
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A. Gyro Measurement Model

A common sensor that measures the angular rate is a rate-integrating gyro. For this sensor, a widely used
three-axis continuous-time model is given by14

ω̃ = ω + β + ηv (1a)

β̇ = ηu (1b)

where ω is the true rate, ω̃ is the measured rate, β is the drift, and ηv and ηu are independent zero-mean
Gaussian white-noise processes with

E
{

ηv(t)η
T
v (τ)

}

= σ2
vδ(t− τ)I3×3 (2a)

E
{

ηu(t)η
T
u (τ)

}

= σ2
uδ(t− τ)I3×3 (2b)

where E{·} denotes expectation and δ(t−τ) is the Dirac delta function. A more general gyro model includes
scale factors and misalignments, which can also be estimated in realtime.2, 3 The general gyro model including
scaling factors and misalignments is given by

ω̃ = (I3×3 + S)ω + β + ηv (3)

with S denoting the matrix of scale factors s ≡ [s1 s2 s3]
T , and misalignments kU ≡ [kU1 kU2 kU3]

T and
kL ≡ [kL1 kL2 kL3]

T :

S ≡







s1 kU1 kU2

kL1 s2 kU3

kL2 kL3 s3






(4)

Note that β and ηv are now expressed in the true (misaligned) gyro coordinate system. The models for the
scale factors and misalignments are given by

ṡ = ηs, E
{

ηs(t)η
T
s (τ)

}

= σ2
sδ(t− τ)I3×3 (5a)

k̇U = ηU , E
{

ηU (t)η
T
U (τ)

}

= σ2
Uδ(t− τ)I3×3 (5b)

k̇L = ηL, E
{

ηL(t)η
T
L(τ)

}

= σ2
Lδ(t− τ)I3×3 (5c)

For most spacecraft applications σs = σU = σL = 0.
For small errors and misalignments the true angular rate can be well approximated by using (I3×3 + S)−1 ≈

I3×3 − S so that
ω = ω̃ − β − Ωκ− (I3×3 − S)ηv (6)

where κ ≡ [s1 kU1 kU2 kL1 s2 kU3 kL2 kL3 s3]
T , which is a vector made up of the rows of S. The matrix

Ω is given by

Ω ≡







(ω̃ − β)T 01×3 01×3

01×3 (ω̃ − β)T 01×3

01×3 01×3 (ω̃ − β)T






(7)

Both Eq. (1) and Eq. (3) represent continuous-time gyro models but in practice discrete-time gyro measure-
ments are employed and therefore discrete-time models are required. The discrete-time gyro measurement
model corresponding to Eq. (1) is given by15

ω̃k+1 = ωk+1 +
1

2
(βk+1 + βk) +

(

σ2
v

∆t
+

1

12
σ2
u ∆t

)1/2

Nvk (8a)

βk+1 = βk + σu ∆t1/2Nuk
(8b)

where the subscript k denotes the kth time-step, ∆t is the gyro sampling interval, and Nvk and Nuk
are

zero-mean Gaussian white-noise processes with covariance each given by the identity matrix. Replacing ωk+1

with (I3×3 + S)ωk+1 in Eq. (8a) provides the discrete-time model for Eq. (3).
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B. Star Tracker Measurement Model

The unit vector form for the jth star tracker observation can be written as

bj = A rj (9)

where bj is star observation in body coordinates, rj is the corresponding inertial unit vector and A is the
attitude matrix which is a proper orthogonal matrix. When measurement noise is present, Ref. 16 has shown
that nearly all the probability of the errors is concentrated on a very small area about the direction of bj ,
so the sphere containing that point can be approximated by a tangent plane, characterized by

b̃j = A ri + υj , υT
j bj = 0 (10)

where b̃j denotes the measurement of bj and the sensor error υj is approximately Gaussian and white, and
satisfies

E {υj} = 0 (11a)

E
{

υjυ
T
j

}

≡ Rj = σ2
(

I3×3 − bjb
T
j

)

(11b)

Equation (11b) is known as the QUEST measurement model. Note that Eq. (11b) is a also function of the
unknown true values in bj . However, the advantage of using the QUEST measurement model is that the
measurement covariance in a filter formulation can effectively be replaced by a nonsingular matrix, given by
σ2I3×3, which does not contain the unknown true values (see Ref. 17 for more details).

IV. Angular Velocity Estimation from Star Measurements

In this section a least-squares approach used for determining the angular velocity from star tracker body
measurements alone is summarized.11 Consider the following unit-vector measurement model at time tk:

b̃jk = Ak rj + υjk (12)

We note that the inertially-fixed star reference vector rj is time-independent, neglecting effects such as proper
motion and velocity aberration. Taking the difference between successive measurements of Eq. (12) gives

b̃jk+1
− b̃jk = (Ak+1 −Ak) rj + υjk+1

− υjk (13)

We assume that the body angular velocity ω is constant between tk and tk+1, and ignore terms higher than
first order in ω∆t. With these assumptions the following first-order approximation can be used:18

Ak+1 ≈ {I3×3 −∆t [ωk×]} Ak (14)

where [ωk×] is the cross product matrix defined by

[a×] ≡







0 −a3 a2

a3 0 −a1
−a2 a1 0






(15)

for any general 3× 1 vector a. Substituting Eq. (14) into Eq. (13) gives

b̃jk+1
− b̃jk = −∆t [ωk×]Ak rj + υjk+1

− υjk (16)

Our goal is to determine an angular velocity estimate independent of attitude and the reference vectors.
This is accomplished by solving Eq. (12) in terms of Ak ri and substituting the resultant into Eq. (16), which
yields

1

∆t
(b̃jk+1

− b̃jk) = [b̃jk×]ωk +wjk+1,k
(17)

where wjk+1,k
is the new effective measurement noise vector given by

wjk+1,k
≡ [ωk×]υjk +

1

∆t
(υjk+1

− υjk) (18)
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Note that ∆t will have finite values, since discrete-time measurements are assumed.
The new measurement noisewjk+1,k

in Eq. (17) is now a function of the angular velocity vector. Assuming
a stationary noise process for υj , the following covariance expression can be derived:

E
{

wjk+1,k
wT

jk+1,k

}

≡ Rjk+1,k
= σ2

j

{

[ωk×](I3×3 − bjkb
T
jk
)[ωk×]T

− (1/∆t)[ωk×](I3×3 − bjkb
T
jk
) + (1/∆t)(I3×3 − bjkb

T
jk
)[ωk×]

+ (1/∆t2)(2 I3×3 − bjk+1
bT
jk+1
− bjkb

T
jk)

}

(19)

It can be shown that the terms that depend on ωk in Eq. (19) are second-order in nature and thus can be
ignored.11 Assuming that these terms can be ignored, the inverse of Rjk+1,k

is given by16

R−1
jk+1,k

=
∆t2

2σ2
j

{

I3×3 + ||bjk+1
× bjk ||−2

[

(bT
jk+1

bjk)(bjk+1
bT
jk

+ bjkb
T
jk+1

) + bjk+1
bT
jk+1

+ bjkb
T
jk

]}

(20)

Note that the covariance is computed using the true values. However, using a similar analysis as the one
shown in Ref. 19 indicates that the errors produced by replacing the true values with the measured ones are
higher order in nature and thus are negligible.

Equation (17) can now be cast into a linear least-squares form for all measurement vectors, which leads
to

ω̂k =
1

∆t







nk
∑

j=1

[b̃jk×]TR−1
jk+1,k

[b̃jk×]







−1
nk
∑

j=1

[b̃jk×]TR−1
jk+1,k

(b̃jk+1
− b̃jk) (21)

where ω̂k is the estimate of ωk and nk is the number of available body measurements at time tk. Only
knowledge of the body vector measurements, sampling interval and measurement covariance is required to
derive an angular velocity estimate. Therefore, the attitude and star reference vectors are not required to
be known. Hence, stars do not need to be identified to determine the angular velocity.

For small ∆t the propagated true value of bj can be given using Eq. (14):

bjk+1
≈ {I3×3 −∆t [ωk×]}bjk (22)

Substituting Eq. (22) into Eq. (20), left multiplying by [bjk×]T and right multiplying by [bjk×] gives

[bjk×]TR−1
jk+1,k

[bjk×] = σ̄−2
j [bjk×]T [bjk×] (23)

where σ̄2
j ≡ 2σ2

j /∆t2. Also, since bT
jk+1

bjk ≈ 1, it is easy to show that [bjk×]TR−1
jk+1,k

(bjk+1
− bjk) ≈

σ̄−2
j [bjk×]Tbjk+1

. Therefore, Eq. (21) is well approximated by

ω̂k =
1

∆t







nk
∑

j=1

σ̄−2
j [b̃jk×]T [b̃jk×]







−1
nk
∑

j=1

σ̄−2
j [b̃jk×]T b̃jk+1

(24)

The predicted error-covariance (i.e., the best available estimate of the error-covariance) is given by

Pk ≡ E
{

(ω̂k − ωk) (ω̂k − ωk)
T
}

≈







nk
∑

j=1

σ̄−2
j [b̃jk×]T [b̃jk×]







−1

(25)

At least two non-collinear body vectors are required for observability, i.e. for the inverse in Eq. (25) to exist.
The error-covariance still depends on the sampling interval due to σ̄2

j . Also, if σ̄
2
j is replaced by σ2

j this yields

the attitude error-covariance, which can be derived from maximum likelihood.19

Using a central difference the angular velocity estimate can be shown to be given by

ω̂k =
1

2∆t







nk
∑

j=1

σ̄−2
j [b̃jk×]T [b̃jk×]







−1
nk
∑

j=1

σ̄−2
j [b̃jk×]T (b̃jk+1

− b̃jk−1
) (26)
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where σ̄2
j ≡ σ2

j /∆t2. The error-covariance derivation leads to the same expression given in Eq. (25) with

σ̄2
j = (1/∆t2)σ2

j . Using a second-order difference the angular velocity estimate can be shown to be given by

ω̂k =
1

2∆t







nk
∑

j=1

σ̄−2
j [b̃jk×]T [b̃jk×]







−1
nk
∑

j=1

σ̄−2
j [b̃jk×]T (4 b̃jk+1

− b̃jk+2
) (27)

where σ̄2
j ≡ [(13σ2

j )/(2∆t2)]. The error-covariance derivation leads to the same expression given in Eq. (25)

with σ̄2
j = [13/(2∆t2)]σ2

j . More details can be found in Ref. 11.

V. Initialization

To allow the use of the GMMAE structure for calibration of a spacecraft gyro, the GMMAE algorithm
must be provided with initial state estimates and estimated state error covariance. The GMMAE state vector
consists of 15 elements: 3 attitude states, 3 gyro biases, 3 scaling factors and 6 misalignment parameters.
Two initialization techniques shown here. The first is used to estimate for scaler factors and misalignments,
and the second is used to estimate for the gyro biases.

A. Scale Factor/Misalignment Initialization

The scaling factors can be initialized independently of the gyro bias by first substituting Eq. (8b) into
Eq. (8a), resulting in

ω̃k+1 = T ωk+1 + βk +
1

2
σu ∆t1/2Nuk

+

(

σ2
v

∆t
+

1

12
σ2
u ∆t

)1/2

Nvk (28)

where T = (I3×3 + S). Taking this equation one time step forward gives

ω̃k+2 = T ωk+2 + βk+1 +
1

2
σu ∆t1/2Nuk+1

+

(

σ2
v

∆t
+

1

12
σ2
u ∆t

)1/2

Nvk+1
(29)

Subtracting Eq. (28) from Eq. (29) yields the following expression:

∆ω̃k+2,k+1 = T ∆ωk+2,k+1+βk+1−βk+
1

2
σu ∆t1/2(Nuk+1

−Nuk
)+

(

σ2
v

∆t
+

1

12
σ2
u ∆t

)1/2

(Nvk+1
−Nvk) (30)

where ∆ω̃k+2,k+1 = ω̃k+2 − ω̃k+1 and ∆ωk+2,k+1 = ωk+2 − ωk+1. Substituting βk+1 − βk = σu ∆t1/2Nuk

from Eq. (8b) into Eq. (30) results in

∆ω̃k+2,k+1 = T ∆ωk+2,k+1 +
1

2
σu ∆t1/2(Nuk+1

+Nuk
) +

(

σ2
v

∆t
+

1

12
σ2
u ∆t

)1/2

(Nvk+1
−Nvk) (31)

Note that the difference is not a function of the gyro biases. Thus, Eq. (31) can be used to provide a crude
estimate of the scale factors and misalignments, which can be written in the following form:

∆ω̃k+2,k+1 = T ∆ωk+2,k+1 +∆wk+1,k (32)

where ∆wk+1,k is the effective noise term, which has zero mean and covariance given by

R∆w ≡ E{∆wk+1,k∆wT
k+1,k} =

(

1

2
σ2
u ∆t

)

I3×3 + 2

(

σ2
v

∆t
+

1

12
σ2
u ∆t

)

I3×3

= 2

(

σ2
v

∆t
+

1

3
σ2
u ∆t

)

I3×3

(33)

The scale factors and misalignments estimation problem can now be written as a linear least squares problem
with

ỹκ = Hκκ+ vκ (34)
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where ỹκ is the stacked measurement vector, vκ is the stacked measurement noise vector and Hκ is the
observation function matrix:

ỹκ =









∆ω̃2,1

...

∆ω̃k+2,k+1









, vκ =









∆w0,1

...

∆wk+1,k









, Hκ =









∆Ω2,1

...

∆Ωk+2,k+1









(35)

where

∆Ωk+2,k+1 =







∆ωT
k+2,k+1 01×3 01×3

01×3 ∆ωT
k+2,k+1 01×3

01×3 01×3 ∆ωT
k+2,k+1






(36)

Then given all measurements for some value of κ the least square estimate is

κ̂ =
(

HT
κ R−1

∆wHκ

)−1
HT

κ R
−1
∆wỹκ (37)

where κ̂ denotes the estimate for κ. The true angular velocity difference, ∆ωk+2,k+1, is not known in
practice. This is replaced with the estimate given by the star tracker determined angular velocity, i.e. from
Eq. (24). This unfortunately adds noise to the observation function matrix. For this case the optimal solution
is given by total least squares. Since the errors in the estimated star tracker determined angular velocities are
non-stationary, then an iterative approach is required to solve the total least squares problem.20 However,
the simple least squares solution given by Eq. (37) is adequate enough for the initialization of the filters.
The main issue involved with this estimation approach is that noise is enhanced by the classic “root-two”
factor in the velocity differences, plus the extra noise due to star-tracker derived angular velocity.

B. Bias Initialization

Once the scale factors and misalignments are estimated the next step involves estimating for the gyro biases.
Solving Eq. (8b) for βk+1, then substituting the resultant into Eq. (8a) and taking one time-step back leads
to

ωk = ω̃k − βk−1 + zk (38)

where

zk ≡
1

2
σu ∆t1/2Nuk

+

(

σ2
v

∆t
+

1

12
σ2
u ∆t

)1/2

Nvk (39)

Then

Q ≡ E
{

zk z
T
k

}

=

(

1

3
σ2
u ∆t+

1

12
σ2
u

)

I3×3 (40)

Substituting Eq. (38) into Eq. (17) gives

1

∆t
(b̃jk+1

− b̃jk) + [ω̃k×]b̃jk = −[b̃jk×]βk−1 +̟jk+1,k
(41)

where

̟jk+1,k
≡ [(ω̃k − βk−1)×]υjk + [b̃jk×]zk + [zk×]υjk +

1

∆t
(υjk+1

− υjk ) (42)

To compute the covariance of̟jk+1,k
it is required to evaluate E{[zk×]υjkυ

T
jk
[zk×]T }. Consider two random

and uncorrelated vectors a and b with zero mean and covariances given by A and B, respectively. Using the
identities bbT = [b×]2 + (bTb)I3×3 and [a×][b×] = baT − (aTb)I3×3 leads to

[a×]bbT [a×]T = [(bTb)(aT a)− (aTb)2]I3×3 + (aTb)(abT + baT )− (aTa)bbT − (bTb)aaT (43)

The expectations of the various parts of Eq. (43) are given by

E
{

(bTb)(aTa)
}

= Tr(A)Tr(B) (44a)

E
{

(aTb)2
}

= Tr(AB) (44b)

E
{

(aTb)(abT + baT )
}

= AB +BA (44c)

E
{

(aTa)bbT
}

= Tr(A)B (44d)

E
{

(bTb)aaT
}

= Tr(B)A (44e)
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Then
E
{

[a×]bbT [a×]T
}

= [Tr(A)Tr(B)− Tr(AB)]I3×3 +AB +BA− Tr(A)B − Tr(B)A (45)

Therefore the covariance of ̟jk+1,k
is given by

Zjk+1,k
≡ E

{

̟jk+1,k
̟T

jk+1,k

}

= [(ω̃k − βk−1)×]Rjk [(ω̃k − βk−1)×]T

− 1

∆t

{

[(ω̃k − βk−1)×]Rjk +Rjk [(ω̃k − βk−1)×]T
}

+ [b̃jk×]Q [b̃jk×]T

+
1

∆t2
(Rjk+1

+Rjk) + [Tr(Q)Tr(Rjk)− Tr(QRjk)]I3×3

+QRjk +RjkQ− Tr(Q)Rjk − Tr(Rjk)Q

(46)

Using the same derivations provided in Ref. 11, if the sampling frequency is within Nyquist’s limit then the
terms that depend on ω̃k and βk−1 are second-order in nature and can be ignored. Thus, Zjk+1,k

can be
approximated by

Zjk+1,k
≈ [b̃jk×]Q [b̃jk×]T +

1

∆t2
(Rjk+1

+Rjk)

+ [Tr(Q)Tr(Rjk)− Tr(QRjk)]I3×3 +QRjk +RjkQ− Tr(Q)Rjk − Tr(Rjk)Q
(47)

The least squares estimate for βk−1, denoted by β̂k−1, is given by

β̂k−1 = −







nk
∑

j=1

[b̃jk×]TZ−1
jk+1,k

[b̃jk×]







−1
nk
∑

j=1

[b̃jk×]TZ−1
jk+1,k

{

[ω̃k×]b̃jk + b̃jk+1
/∆t

}

(48)

The covariance of β̂k−1 is simply given by

E
{

(β̂k−1 − βk−1)(β̂k−1 − βk−1)
T
}

=







nk
∑

j=1

[b̃jk×]TZ−1
jk+1,k

[b̃jk×]







−1

(49)

Note that, as with Eq. (25), at least two non-collinear body vectors are required for the inverse in Eq. (48)
to exist.

VI. Kalman Filtering for Attitude Estimation

An EKF is now summarized for estimating attitude states and calibration parameters of a spacecraft (see
Ref. 9 for more details). The system model is modeled by

ẋ = f (x, t) +G (t)w(t) (50)

where w(t) is a Gaussian white-noise process term with correlation function Qδ(t1 − t2). The function
f (x, t) is a general nonlinear function. To solve the general nonlinear filtering problem the EKF linearizes
the nonlinear equations to determine the mean and covariance propagation through the function f (x, t).
If the initial pdf p(xo) that describes the associated state uncertainty is given, the solution for the time
evolution of p(x, t) constitutes the nonlinear filtering problem. Given a system model with initial state and
covariance values, the EKF propagates the state vector and the error covariance matrix recursively. At
discrete observation times, the EKF updates the state and covariance matrix conditioned on the information
gained by the measurements. The prediction phase is important for overall filter performance. In general,
the discrete measurement equation can be expressed for the filter as

ỹk = h (xk) + vk (51)

where ỹk is a measurement vector and vk is the measurement noise, which is assumed to be a zero-mean
Gaussian noise process with covariance Rk.
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The 15-state EKF vector is made up of the quaternion, q, gyro biases (drift), β, scale factors, s, and
misalignments, kU and kL. The error dynamics are given by

∆ ˙̃x(t) = F (t)∆x̃(t) +G(t)w(t) (52)

where F (t) is the Jacobian of f (x, t) and

∆x̃(t) ≡
[

δαT (t) ∆βT (t) ∆s(t) ∆kU (t) ∆kL(t)
]T

(53a)

w(t) ≡
[

ηT
v (t) ηT

u (t) ηT
s (t) ηT

U (t) ηT
L (t)

]T

(53b)

The term δα is the vector of small attitude errors8 and the rest of the terms in Eq. (53a) are the errors in
the gyro biases, scale factors and misalignments. The matrices F (t) and G(t) matrices are now derived for
the 15-state filter. A standard multiplicative error quaternion is used to derive the attitude errors:

δq = q⊗ q̂−1 ≈
[

1
2δα

1

]

(54)

where δα is the vector of small attitude (roll, pitch and yaw) attitude errors. The error-kinematics follow

δα̇ = −[ω̂×]δα+ δω (55)

where δω = ω − ω̂. From Eq. (3) we have

ω = (I3×3 − S)ω̃ − (I3×3 − S)β − (I3×3 − S)ηv (56a)

ω̂ = (I3×3 − Ŝ)ω̃ − (I3×3 − Ŝ)β̂ (56b)

Then δω is given by

δω = −∆S ω̃ −∆β +
(

∆S − Ŝ
)(

∆β + β̂
)

− Ŝ β̂ −
(

I3×3 − Ŝ −∆S
)

ηv (57)

where ∆S ≡ S − Ŝ and ∆β ≡ β − β̂. Ignoring second-order terms leads to

δω = −
(

I3×3 − Ŝ
)

∆β − diag
(

ω̃ − β̂
)

∆s− Û∆kU − L̂∆kL −
(

I3×3 − Ŝ
)

ηv (58)

with

Û =







ω̃2 − β̂2 ω̃3 − β̂3 0

0 0 ω̃3 − β̂3

0 0 0






(59a)

L̂ =







0 0 0

ω̃1 − β̂1 0 0

0 ω̃1 − β̂1 ω̃2 − β̂2






(59b)

where diag denotes a diagonal matrix, ∆s is a vector of the diagonal elements of ∆S, and ∆kU and ∆kL

correspond to the upper and lower off-diagonal elements of ∆S, respectively. Hence, the matrices F (t), G(t)
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and Q(t), which is the spectral density of w(t), are given by

F (t) =

















−[ω̂(t)×] −
(

I3×3 − Ŝ
)

−diag
(

ω̃ − β̂
)

−Û −L̂
03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

















(60a)

G(t) =

















−
(

I3×3 − Ŝ
)

03×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

















(60b)

Q(t) = blkdiag
([

σ2
v I3×3 σ2

u I3×3 σ2
s I3×3 σ2

U I3×3 σ2
L I3×3

])

(60c)

where blkdiag denotes a block diagonal matrix of appropriate dimension.
The observation sensitivity matrix Hk(x̂

−

k ) used in the EKF is now derived. Multiple star tracker vector
measurements can be concatenated to form

ỹk =













A(q)r1

A(q)r2
...

A(q)rnk













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

+













ν1

ν2

...

νnk













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

≡ hk(x̂k) + vk (61a)

R = blkdiag
[

σ2
1I3×3 σ2

2I3×3 · · · σ2
nk
I3×3

]

(61b)

where nk is the number of stars available at times tk. It is important to note that for each star measurement
vector b̃j , the associated covariance matrix used in the EKF is given by σ2

j I3×3. Using this covariance model

avoids singularity in the gain calculation17 as discussed previously.
The true attitude matrix, A(q), is related to the a priori attitude, A(q̂−), through

A(q) = A(δq)A(q̂−) (62)

The first-order approximation of the error-attitude matrix, A(δq), is given by

A(δq) ≈ I3×3 − [δα×] (63)

For a single sensor the true and estimated body vectors are given by

b = A(q)r (64a)

b̂− = A(q̂−)r (64b)

Substituting Eqs. (62) and (63) into Eq. (64) yields

∆b = [A(q̂−)r×]δα (65)

where ∆b ≡ b− b̂−. The sensitivity matrix for all measurement sets is therefore given by

Hk(x̂
−

k ) =













[A(q̂−)r1×] 03×12

[A(q̂−)r2×] 03×12

...
...

[A(q̂−)rnk
×] 03×12













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

(66)
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The final part in the EKF involves the quaternion and bias updates. The error-state update follows

∆ˆ̃x+
k = Kk[ỹk − hk(x̂

−

k )] (67)

where ∆ˆ̃x+
k ≡

[

δα̂+T
k ∆β̂+T

k ∆ŝ+T
k ∆k̂+T

Uk
∆k̂+T

Lk

]T

and hk(x̂
−

k ) is the estimate output, given by

hk(x̂
−

k ) =













A(q̂−)r1

A(q̂−)r2
...

A(q̂−)rnk













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

(68)

The gyro bias and other calibration parameters updates are simply given by

β̂+
k = β̂−

k +∆β̂+
k (69a)

ŝ+k = ŝ−k +∆ŝ+k (69b)

k̂+
Uk

= k̂−

Uk
+∆k̂+

Uk
(69c)

k̂+
Lk

= k̂−

Lk
+∆k̂+

Lk
(69d)

To within first-order the quaternion update is given by

q̂+
k =





1

2
δα̂+

k

1



⊗ q̂−

k (70)

Using quaternion multiplication gives8

q̂+
k = q̂−

k +
1

2
Ξ(q̂−

k )δα̂
+
k (71)

where

Ξ(q) ≡
[

q4I3×3 + [̺×]
−̺T

]

(72)

This updated quaternion is a unit vector to within first-order; however, a brute-force normalization should
be performed to insure q̂+T

k q̂+
k = 1.

The attitude estimation algorithm is summarized in Table 1. The filter is first initialized with a known
state (the bias initial condition is usually assumed zero) and error-covariance matrix. The first three diagonal
elements of the error-covariance matrix correspond to attitude errors. Then, the Kalman gain is computed
using the measurement-error covariance R and sensitivity matrix in Eq. (66). The state error-covariance
follows the standard EKF update, while the error-state update is computed using Eq. (67). The gyro bias,
scale factors and misalignments updates are given by Eq. (69) and the quaternion update is given by Eq. (71).
Also, the updated quaternion is re-normalized by brute force. Finally, the estimated angular velocity is used
to propagate the quaternion kinematics model in and standard error-covariance in the EKF. The 6-state and
9-state filters are simply truncated versions of the 15-state filter shown here.

A discrete propagation can be used for the covariance matrix in order to reduce the computational load:

P−

k+1 = ΦkP
+
k ΦT

k +Qk (73)

where Φk is the state transition matrix and Qk is the discrete-time covariance matrix. The first step is to
set up the following 2n by 2n matrix:21

A =

[

−F GQGT

0n×n FT

]

∆t (74)

The matrix exponential is then calculated:

B = eA =

[

B11 B12
0n×n B22

]

=

[

B11 Φ−1
k Qk

0n×n ΦT
k

]

(75)
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Table 1. Extended Kalman Filter for Attitude Estimation

q̂(t0) = q0, β̂(t0) = β0, ŝ(t0) = s0
Initialize

k̂U (t0) = kU0
, k̂L(t0) = kL0

, P (t0) = P0

Kk = P−

k HT
k (x̂

−

k )[Hk(x̂
−

k )P
−

k HT
k (x̂

−

k ) +R]−1

Gain
Hk(x̂

−

k ) =









[A(q̂−)r1×] 03×12

...
...

[A(q̂−)rnk
×] 03×12









∣

∣

∣

∣

∣

∣

∣

∣

tk

P+
k = [I −KkHk(x̂

−

k )]P
−

k

∆ˆ̃x+
k = Kk[ỹk − hk(x̂

−

k )]

∆ˆ̃x+
k ≡

[

δα̂+T
k ∆β̂+T

k ∆ŝ+T
k ∆k̂+T

Uk
∆k̂+T

Lk

]T

hk(x̂
−

k ) =













A(q̂−)r1

A(q̂−)r2
...

A(q̂−)rnk













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

Update q̂+
k = q̂−

k +
1

2
Ξ(q̂−

k )δα̂
+
k , re-normalize quaternion

β̂+
k = β̂−

k +∆β̂+
k

ŝ+k = ŝ−k +∆ŝ+k

k̂+
Uk

= k̂−

Uk
+∆k̂+

Uk

k̂+
Lk

= k̂−

Lk
+∆k̂+

Lk

ω̂(t) = [I3×3 − Ŝ(t)][ω̃(t)− β̂(t)]

Propagation ˙̂q(t) =
1

2
Ξ (q̂(t)) ω̂(t)

Ṗ (t) = F (t)P (t) + P (t)FT (t) +G(t)Q(t)GT (t)

The state transition and covariance matrices are then given as

Φk = BT
22 (76a)

Qk = ΦkB12 (76b)

Note that Eq. (74) is only valid for constant system and covariance matrices. However, for small ∆t it is a
good approximation of the actual discrete-time matrices that are time varying.

VII. Generalized Multiple-Model Adaptive Estimation

In this section a review of GMMAE is shown. More details can be found in Ref. 11. Multiple-model
adaptive estimation is a recursive estimator that uses a bank of M filters that depend on some unknown
parameters, denoted by the vector p, which is assumed to be constant (at least throughout the interval of
adaptation). Note that the case shown in this paper there is no parameter p but rather different models
themselves. Still, the theory shown here is valid in this case. The MMAE process is shown in Figure 2.
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Figure 2. MMAE Process

Note that we do not need to make the stationary assumption for the state and/or output processes though,
i.e. time varying state and output matrices can be used. A set of elements is generated for each of the M
filters from some known pdf of p, denoted by p (p), to give {p(ℓ); ℓ = 1, . . . , M}. The goal of the estimation
process is to determine the conditional pdf of the ℓth element p(ℓ) given all the measurements. Application
of Bayes’ rule yields

p (p(ℓ)|Ỹk) =
p (Ỹk|p(ℓ)) p (p(ℓ))

M
∑

j=1

p (Ỹk|p(j)) p (p(j))

(77)

where Ỹk denotes the sequence {ỹ0, ỹ1, . . . , ỹk}. The a posteriori probabilities can be computed through22

p (p(ℓ)|Ỹk) =
p (ỹk, p

(ℓ)|Ỹk−1)

p (ỹk|Ỹk−1)

=
p (ỹk|x̂−(ℓ)

k ) p (p(ℓ)|Ỹk−1)
M
∑

j=1

[

p (Ỹk|x̂−(j)
k ) p (p(j)|Ỹk−1)

]

(78)

with p (ỹk, |Ỹk−1, p
(ℓ)) given by p (ỹk|x̂−(ℓ)

k ) in the Kalman recursion, which is computed as a probability

density function of the Kalman filter residual e
(ℓ)
k . Suppose that e

(ℓ)
k is a zero-mean Gaussian random vector

with covariance C
(ℓ)
k,0. Then p (ỹk, |Ỹk−1, p

(ℓ)) = 1/
√

det[2π C
(ℓ)
k,0] exp

[

−eTk
(

C
(ℓ)
k,0

)−1

ek/2

]

. Note that the

denominator of (78) is just a normalizing factor to ensure that p (p(ℓ)|Ỹk) is a pdf. The recursion formula
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can now be cast into a set of defined weights ̟
(ℓ)
k , so that

̟
(ℓ)
k = ̟

(ℓ)
k−1p (ỹk|x̂−(ℓ)

k )

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(79)

where ̟
(ℓ)
k ≡ p (p(ℓ)|ỹk). Note that only the current time measurement ỹk is needed to update the weights.

The weights at time t0 are initialized to ̟
(ℓ)
0 = 1/M for ℓ = 1, 2, . . . , M . The convergence properties of

MMAE are shown in Ref. 22, which assumes ergodicity in the proof. The ergodicity assumptions can be
relaxed to asymptotic stationarity and other assumptions are even possible for non-stationary situations.23

The model is assumed to be linear, but time varying which retains the EKF structure, with

xk+1 = Φkxk + Γkuk +Υkwk (80a)

ỹk = Hkxk + vk (80b)

where Υk is the discrete-time process noise distribution matrix. Note that the to-be-estimated parameter
vector p can be function of any unknown model quantity in Eq. (80). The discrete-time residual is given by

ek ≡ ỹk −Hkx̂
−

k

= −Hkx̃
−

k + vk

(81)

where x̃−

k ≡ x̂−

k − xk and x̂−

k = Φk−1(I −Kk−1Hk−1) x̂
−

k−1 +Φk−1Kk−1ỹk−1 with Kk−1 being an arbitrary
gain. Note that Kk−1 is not necessarily the optimal Kalman gain. In the standard MMAE ek is used to
develop the update law. The GMMAE generalizes the MMAE by using a set of residuals going back i steps
in time, given by

ǫk,i ≡













ek

ek−1

...

ek−i













(82)

The likelihood function associated with ǫk,i is given by

Lk,i =
1

[det(2π Ck,i)]1/2
exp

(

−1

2
ǫTk,iC−1

k,i ǫk,i

)

(83)

where Ck,i ≡ E{ǫk,iǫTk,i} is given by

Ck,i =

















Ck, 0 Ck, 1 Ck, 2 · · · Ck, i

CT
k, 1 Ck−1, 0 Ck−1, 1 · · · Ck−1, i−1

CT
k, 2 CT

k−1, 1 Ck−2, 0 · · · Ck−2, i−2

...
...

...
. . .

...

CT
k, i CT

k−1, i−1 CT
k−2, i−2 · · · Ck−i, 0

















(84)

When i = 0 the likelihood function reduces down to

Lk,0 =
1

{

det[2π (HkP
−

k HT
k +Rk)]

}1/2
exp

[

−1

2
eTk (HkP

−

k HT
k + Rk)

−1ek

]

(85)

which is the likelihood used in the standard MMAE.
The GMMAE adaptive law is a modification of the MMAE adaptive law, given by:

̟
(ℓ)
k = ̟

(ℓ)
k−1L

(ℓ)
k,i

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(86)
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with

L
(ℓ)
k,i =

1
[

det
(

2π C(ℓ)k,i

)]1/2
exp

[

−1

2
ǫ
(ℓ)T
i

(

C(ℓ)k,i

)−1

ǫ
(ℓ)
i

]

(87)

where ǫ
(ℓ)
i is defined as ǫ

(ℓ)
i ≡ [e

(ℓ)T
k e

(ℓ)T
k−1 · · · e

(ℓ)T
k−i ]

T .

The estimates for C
(ℓ)
k, i, which are sub-blocks of C(ℓ)k,i , are given by

Ĉ
(ℓ)
k, i =























































Hk(x̂
−(ℓ)
k )P

−(ℓ)
k HT

k (x̂
−(ℓ)
k ) +Rk i = 0

Hk(x̂
−(ℓ)
k )Φk−1(x̂

−(ℓ)
k−1 )

[

P
−(ℓ)
k−1 HT

k−1(x̂
−(ℓ)
k−1 )− K̂k−1C

(ℓ)
k−1, 0

]

i = 1

Hk(x̂
−(ℓ)
k )

{

∏i−1
j=1 Φk−j(x̂

−(ℓ)
k−j )

[

I − K̂k−j Hk−j(x̂
−(ℓ)
k−j )

]}

Φk−i(x̂
−(ℓ)
k−i )

×
[

P
−(ℓ)
k−i HT

k−i(x̂
−(ℓ)
k−1 )− K̂k−iC

(ℓ)
k−i, 0

]

i > 1

(88)

where
C

(ℓ)
k−i, 0 ≡ Hk−i(x̂

−(ℓ)
k−i )P

−(ℓ)
k−i HT

k−i(x̂
−(ℓ)
k−i ) +Rk−i (89)

The covariance matrix P
−(ℓ)
k is computed using

P
−(ℓ)
k+1 = Φk(x̂

−(ℓ)
k )P

+(ℓ)
k ΦT

k (x̂
−(ℓ)
k ) +Q(ℓ) (90a)

P
+(ℓ)
k =

[

I −K
(ℓ)
k Hk(x̂

−(ℓ)
k )

]

P
−(ℓ)
k (90b)

K
(ℓ)
k = P

−(ℓ)
k HT

k

[

Hk(x̂
−(ℓ)
k )P

−(ℓ)
k HT

k (x̂
−(ℓ)
k ) +Rk

]−1

(90c)

The estimate of the optimal gain is computed using

K̂k = P̂−

k HT
k (x̂

−

k )
[

Hk(x̂
−

k )P̂
−

k HT
k (x̂

−

k ) +Rk

]−1

(91)

with

P̂−

k+1 = Φk(x̂
−

k )P̂
+
k ΦT

k (x̂
−

k ) + Q̂k (92a)

P̂+
k =

[

I − K̂kHk(x̂
−

k )
]

P̂−

k (92b)

Using the current measurement, ỹk, along with the ℓth element, p(ℓ), 1 ≤ ℓ ≤ M , a bank of filters is

executed. For each filter the state estimates, x̂
−(ℓ)
k , and measurements are used to form the residual, ǫ

(ℓ)
k,i,

going back i steps. The filter error covariance, P
−(ℓ)
k , and state matrices, Φ

−(ℓ)
k and H

−(ℓ)
k , evaluated at the

current estimates are used to update the estimate of the autocorrelation, denoted by Ĉ(ℓ)k,i . Note that at each

new measurement time, all elements of Ĉ(ℓ)k,i need to be recalculated since a new estimate p̂k is provided,
which is used to compute an estimate of the optimal gain. Unfortunately, this can increase the computational
costs. The diagonal elements do not need to be recomputed though, since they are not a function of the

optimal gain. The residuals and autocorrelations are then used to evaluate the likelihood functions L
(ℓ)
k,i.

These functions are used to update the weights. A proof of convergence of the GMMAE process is given
in Ref. 13, which shows that the GMMAE always provides better convergence properties than the standard
MMAE.

VIII. Persistency of Excitation

The calibration observability is a function of the attitude motion, therefore a requirement is often placed
on the spacecraft calibration maneuver to ensure observability. The exponential convergence rate of κ in
Eq. (6) is proportional to the lower bound of the observability Grammian of the pair [F (t), H ], where F (t)
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for κ is a matrix of zeros and therefore exp[F (t)∆t] = I9×9. Given that κ is constant the observability
Grammian can be written as

W (t) =

T
∫

0

ΩTΩ dt (93)

where T is the period over which data is collected and Ω is given by Eq. (7). The lower bound of the
observability Grammian for [F (t), H ] is proportional to the lower bound of the observability Grammian of the
equivalent system [F (t)−K(t)H, H ] where K(t) is the Kalman gain. Therefore the minimum eigenvalue of
the observability Grammian gives the exponential convergence rate. In other words the larger the eigenvalue
for a given T , the faster the estimate converges over that period. The amplitude and frequency of the desired
angular velocity can be set based on mission or vehicle constraints, such as available torque authority.

IX. Simulation Results

In this section simulation results are shown for both scale factor and misalignment parameters as well
as gyro bias parameter estimates. It is assumed that the first set of data is collected for 10 minutes during
the initialization mode to initialize all calibration parameters. Two examples are considered to show the
proposed calibration process. In the first example, errors exist in all calibration parameters, while in the
second example there are only bias and scale factor errors but no misalignment errors. For the simulation
examples a spacecraft is considered that has both a star tracker and a three-axis gyro onboard. Also it is
assumed that at least two stars always exist in the field-of-view of the star tracker during the entire simulation
time period. The spacecraft angular velocity is given by ω = 0.0087×[sin(0.01t) sin(0.0085t) cos(0.0085t)]T

rad/sec.

A. Initialization

The calibration parameters used in this simulation are:

• Initial gyro bias: 0.1 deg/hr for each axis

• Gyro symmetric scale factors: s1 = 1, 500 µrad, s2 = 1, 000 µrad, s3 = 1, 500 µrad

• Gyro misalignments: kU1 = 1, 000 µrad, kU2 = 1, 500 µrad, kU3 = 2, 000 µrad; kL1 = 500 µrad,
kL2 = 1, 000 µrad, kL3 = 1, 500 µrad

• Star tracker standard derivation: 6 arc-sec

• Gyro noise parameters: σu =
√
10× 10−10 rad/sec3/2, σv =

√
10× 10−7 rad/sec1/2, σs = σU = σL = 0

• Initial quaternion: q0 = [1/
√
2 0 0 1/

√
2]T

First Eq. (24) is used to determine the angular velocity independently of gyro measurements. Then following
this the angular velocity in Eq. (37) is used to determine the scale factors independently of the gyro biases.
Once the scale factors have been determined the gyro biases can be determined from Eq. (48). Although
the solutions for the angular velocity, scale factors and misalignment parameters, as well as the gyro biases
estimates are written in least squares form, the estimates in this simulation are determined recursively
using a sequential least squares process. This is done to show how the estimates converge over time, which
can be used to assess the convergence of the initialization procedure for proper handoff to the operational
mode. Figure 3 shows the results for the initialization of the scale factors and misalignment parameters. All
parameters show good convergence properties. The gyro bias initialization estimates are show in Figure 4
and show a similar convergence rate as the scale factors and misalignment parameters.

B. GMMAE Approach: Example One

In this simulation scenario the GMMAE approach is used to calibrate the gyro sensor given that both
misalignment and scale factor errors exist along with gyro bias errors. The true gyro calibration parameters
are the same as the initialization simulations in the previous scenario.
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Figure 3. Scaling and Misalignment Initialization
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Figure 4. Bias Initialization Errors

The initial covariances given to each filters is the same. The initial attitude error standard deviation is
40/3 µrad. The gyro bias initial standard deviation is 20 deg/hr for each component, and the scale factors
and misalignment initial standard deviation is 2000/3 µrad for each component. The initial estimates are
drawn from a Gaussian distribution centered at the true values for the calibration parameters and attitude
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Figure 5. GMMAE Attitude Estimate Errors – Example 1

states with aforementioned standard deviations. Both the star tracker and gyro measurements are sampled
at 1 Hz. Both the GMMAE and the MMAE (the MMAE is equivalent to GMMAE with one time-step back)
run a combination of three filters to estimate the attitude and gyro calibration parameters for the spacecraft
considered. The initial probabilities for all three filters in both the MMAE and GMMAE are set to 1/3, so
each model is weighted equally at the beginning of the estimation process. For this simulation example the
GMMAE is given 20 time-steps back.

The attitude estimation results for the GMMAE approach are given in Figure 5. It is clear from this
figure that accurate attitude estimates are achieved in the presence of gyro misalignments, scale factor and
bias errors. The calibration parameters estimates are shown in Figure 6 and good convergence is achieved.
The GMMAE approach uses probabilistic weighting of the three filters. Since there are large errors in all
calibration parameters the 15-state filter, which includes all the parameters, performs the best. It can be
seen from Figure 7 that both the MMAE and GMMAE approach give the 15-state filter as the most probable
model. From Figure 7 it is also noted that the GMMAE converges faster then the MMAE. Figure 8 shows the
root-mean-squared (RMS) error for the 6-state, 9-state, and 15-state filters as well as the GMMAE mixture.
From this figure it is seen that the 15-state filter constantly outperforms the other two filters and therefore
is the filter selected by the GMMAE approach.

C. GMMAE Approach: Example Two

In this simulation scenario the GMMAE approach is used to calibrate a gyro sensor which has scale factor
and bias errors but no misalignment errors. Also all simulation parameters are the same as is used in the
previous GMMAE simulation except that the true misalignment errors are zero. The 15-state filter has the
same initial condition as the previous example except that now the misalignment initial estimate is set to
zero.

The RMS errors for each filter are plotted in Figure 9. From this figure it can be seen that initial errors
for all filters are the same but as the 9-state filter converges it becomes the filter with the best performance.
Since the 6-state filter does not include scale factors its performance is far less than the 9-state filter. The
15-state filter includes the scale factor parameters in its state vector but also estimates for the misalignment
parameters which do not exist in the measurements. Therefore the 15-state filter has additional error due to
information dilution which degrades the attitude state estimates. The attitude estimate errors determined
from the GMMMAE approach are given in Figure 10. From Figure 11 it can be seen that the probability
of both the MMAE and GMMAE converge to the 9-state filter but the GMMAE convergence is faster. The
GMMAE takes about fifteen minutes to fully converge to the 9-state filter while the MMAE doesn’t fully
converge until well after that time.
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Figure 6. GMMAE Calibration Estimate Errors – Example 1
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Figure 7. Comparison of GMMAE and MMAE – Example 1

X. Conclusions

Operational responsive space systems require fast and accurate on-orbit calibration procedures. This
paper presented a two-step process for robust calibration of gyros. The initialization procedure provides
deterministic solutions for the gyro biases, scale factors and misalignments so that the issue of filter divergence
due to large errors in the assumed initial parameters is mitigated. These solutions are then passed to a
generalized multiple-model adaptive estimation approach, which combines three filters to overcome the issue
of information dilution. The generalized multiple-model adaptive estimation is useful in that it automatically
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Figure 8. RMS Error for 6-, 9-, 15-State Filters and GMMAE Results – Example 1
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Figure 9. RMS Error for 6-, 9-, 15-State Filters and GMMAE Results – Example 2

chooses the model that produces the best estimates from a probabilistic point of view. The simulation results
showed that the proposed two-step calibration approach effectively provides accurate estimates for the gyro
calibration parameters.
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Figure 10. GMMAE Attitude Estimate Errors – Example 2
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