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Abstract – Multiple moving targets in an urban area
are to be tracked simultaneously by unmanned aerial
vehicles. It is assumed that the moving targets try to
avoid the camera field of view of the aircraft by chang-
ing their velocities and/or hiding behind buildings. The
number of aircraft is much smaller than the number of
targets, in general. In order to track as many targets as
possible, firstly the targets are grouped into a number of
subgroups by maximising the modularity, which is solved
efficiently by the power iteration. Secondly, circular op-
timal paths are assigned to maximise the visibility of the
area, given shapes and locations of the ground obstacles,
where the computational complexity is reduced using a
novel random sampling method. Finally, the aircraft
transition paths from the current positions to the de-
sired path are obtained by solving a discrete minimum
weighted path length problem.
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1 Introduction
For the last decade, Unmanned Aerial Vehicles (UAVs)
have been used for various purposes in civilian and mil-
itary operations. Many practical issues in UAV dy-
namics and control have been resolved. However, many
other problems are yet to be solved in order to make
UAVs fully autonomous. In addition, mission demands
in various operations are more complicated now than
before.

Ground moving target searching and tracking using
cameras on UAVs is of great interest, especially for op-
erations over an urban area [4, 5, 12]. A receding-
horizon cooperative search algorithm using the UAV
routes and orientations is presented in [4]. Computa-
tional complexity in the tracking problem in an urban
area is acknowledged in [5] and [12]. A randomisation
based optimisation approach [5] and a genetic algorithm
[12] are used to reduce the computational complexity.
Based on a nonlinear programming approach a direct
collocation method is presented for the path planning

in [3] but unsatisfiable computation speed is noted. In
addition, an optimal separation strategy for assigning
multiple UAVs in a region is presented in [6].

In most of the previous results, tracking has been
demonstrated for only a few targets. However, in reality
it may be necessary to track all moving targets feeding
back from Ground Moving Target Indicator (GMTI)
sensors in order to further classify the targets to de-
termine whether or not they need to be continued to
be tracked or not [10, 11]. The scenario to be con-
sidered is the case that the number of moving targets
to be tracked is much larger than the number of air-
craft. Note that visible targets are yet to be classified
and the objective of the proposed algorithm is a pri-
ory algorithm before the classification. The algorithm
maximises the visibility of all moving objects given by
the GMTI sensor output.

The formal definition of the problem will be pre-
sented next. Three main parts of path planning al-
gorithm will be presented: dividing given targets into
a few subgroups; design of optimal circular paths for
tracking each subgroup; development of an optimal
transition guidance law for the aircraft from the current
location to the desired circular path. Finally, the per-
formance of the algorithms is demonstrated by a ran-
dom scenario Monte-Carlo simulation.

2 Scenario
In an area multiple ground targets, of which the num-

ber, nt, is unknown, are moving within a certain range
of speeds to avoid observation by UAV cameras. Sev-
eral UAVs, where the number of UAVs is na, are to fly
over an area to monitor the targets. The area is densely
populated by urban obstacles, e.g., high-rise buildings
as shown in Figure 1, where nt = 3 and na = 2. The
shape and the location of each building or obstacle,
which may be used for hiding targets, are assumed to
be known.

The main objective is to position UAVs in order
to maximise the visibility of all targets to cameras or



rt1

rt2

rt3

rlos11 rlos12 rlos13
rlos21

rlos22 rlos23

rUAV
1

rUAV
2

Target #1
Target #2

Target #3

UAV #1

UAV #2

Camera

O

Reference
Coordinates

Figure 1: Two UAVs tracking three targets using cameras

equivalently minimise the length of blackout time for
each target. The blackout time is the continuous time
interval length, measured from the target, lost from all
cameras. The corresponding cost function can be for-
mulated as follows:

minimise
rUAV
i

∈X

J
(

rlosij

)

=

∫ tf

t0

nunobv(t)dt (1)

where rUAV
i is the i-th UAV position vector with respect

to the reference coordinates for i = 1, 2, . . . , na, X is an
operation area, rlosij is the line of sight vector from the
i-th UAV to the j-th target for i = 1, 2, . . . , na and
j = 1, 2, . . . , nt, and nunobv(t) is the current number of
unobservable targets, which can be defined by

nunobv(t) =

nt
∑

j=1

Ij(t) (2)

for j = 1, 2, . . . , nt, where Ij(t) is an indicator function
whether a target is blocked or not by any obstacles,
which is defined as follows:

Ij(t) =

{

1, rlosij (t) blocked ∀i ∈ Na

0, otherwise
(3)

where Na = {1, 2, . . . , na}.
The number of targets, nt, is unknown in general.

The cost function to be minimised is as follows:

minimise
rUAV
i

∈X

J
(

rlosij

)

=

∫ tf

t0

n̂unobv(t)dt (4)

where

n̂unobv(t) =

n̂t
∑

j=1

Ij(t) (5)

and n̂t is the number of targets that are identified,
which can be larger or smaller than nt as it may in-
clude false targets.

The cost function, (4), could be minimised by each
UAV independently, i.e. decentralised control, and some
communication laws could be introduced to ensure that
better minimisation would occur, i.e. cooperative con-
trol. However, in order to obtain the best performance
guideline, full information is shared by all UAVs for the
first two steps of the algorithms, i.e. centralised con-
trol: grouping and optimal circular path design. On
the other hand, a centralised optimal path transition
for each UAV will restrict the practical applicability of
the algorithms and it will need to be performed in each
UAV separately.

3 UAV Path Planning

Three main parts of the UAV path planning algorithm,
i.e. grouping, optimal circular paths and optimal tran-
sition to the paths, are derived.

The number of identified targets, n̂t, is greater than
the number of UAVs, na, in general. The targets have
to be grouped into a certain number, which could be
equal to or less than na.
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Figure 2: Three UAVs find 155 targets among 424 tar-
gets inside X . Total number of targets is 1,000.

3.1 Grouping

Figure 2 shows one random scenario, where 1,000
ground targets are present and 424 of them are inside
the operational area, X , which is defined by

X = {(x, y)|0 ≤ x ≤ 500 m and 0 ≤ y ≤ 700 m} (6)

and the three UAVs current locations are approxi-
mately x = 0 m, y = 200 m and the altitude z = 100
m. The visible targets are connected by Delaunay tri-
angulation [9].
Based on the triangulation, the Laplacian matrix, A,

can be constructed whose elements aij are 1 if two tar-
gets, the i-th and j-th targets, are connected to each
other by the triangulation or 0 if they are not directly
connected. This is a bi-directional graph, i.e. no di-
rectionality in the connections and the Laplacian ma-
trix, A, is symmetric matrix whose elements are 1 or
0, for i, j = 1, 2, . . . , n̂t. In order to divide the groups
into subgroups or modules, the following modularity
(Q) definition for graphs is adopted [8]:

Q =
1

4m
sTBs (7)

where m is the total number of edges in the graph,

B = A− 1

2m
kkT , (8)

Each element of the column vector k is the degree of
each target, i.e. the number of edges connected to each
target, and s is a column vector whose dimensions is
equal to n̂t and element is 1 or −1.

To maximise the modularity, Q, s must be chosen
such that its direction is aligned to the eigenvector cor-
responding to the maximum eigenvalue [8]. Although
the power iteration has certain limitations [7], for the
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Figure 3: Visible targets are divided into three sub-
groups.

modularity maximisation problem it gives solutions rea-
sonably fast. The power iteration algorithm is imple-
mented as follows:

1. Choose random vector xk ∈ R
nt

2. Update xk using axk+1 = Bxk

3. Normalise xk+1 as follows: xk+1 = xk+1/‖xk+1‖

4. If ‖xk+1 − xk‖ ≤ ǫ, then stop the iteration, other-
wise go to step 1, where ǫ is a tolerance value.

The above algorithm only splits the given graph into
two. In order to split more than two subgroups, each
group must be split into two until the number of sub-
groups is equal to the desired number, where the sub-
group whose number of targets is the largest is always
chosen to be split further into two smaller subgroups.
However, as it is pointed out in [8], the subgroup ma-
trix Bg, whose dimension is ng ×ng, is not obtained by
just simply removing rows and columns of the original
B, which are not in the same group, but it should be
modified as follows:
[

bgij
]

= [bij ]− diag
[
∑

b1j
∑

b2j . . .
∑

bngj

]

(9)

where bgij and bij are the i-th row and the j-th column
element of Bg and B matrix, respectively, and (i, j)
belongs to the subgroup. More details can be found in
[8].

Using the power iteration, for example, dividing 155
targets into 3 subgroups takes less than 0.8s on an Intel
Core 2 Quad-Core, 2.4GHz, 4GB RAM, ubuntu linux
9.10, MATLAB 7.9. The result is shown in Figure 3.

3.2 Optimal Circular Path

The maximum visibility of a target may be obtained
by minimising the distance between a UAV and the
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target on the x-y plane and maximising the altitude,
i.e. the z-coordinate. Therefore, the altitude can be
fixed to the highest possible altitude, where it can be
determined by the UAV operational altitude, the per-
formance of the camera on UAV, weather conditions,
etc.

The UAV is assumed to be a fixed-wing type and
it does not have any hovering capability, i.e. the mini-
mum speed of the UAV is nonzero. Therefore, keeping
the distance on the x-y plane is not straightforward.
However, one obvious choice would be the minimum
radius turn, where the minimum radius is determined
by the UAV flying capability and/or some operational
reasons. Intuitively, it seems that placing the centre of
the circular path on the target location would minimise
the average distance between the target and the UAV
as shown in Figure 4, which is the circle that #2 UAV
is following. But, the line of sights around the location
of #2 UAV would be blocked by the building on the left
hand side of the UAV. Therefore, it would be better to
move the centre of the circular path to the left as shown
in the figure, where #1 UAV follows. Hence, the prob-
lem to maximise the visibility for a fixed target is not
equivalent to just minimising the distance between the
UAV and the target on the x-y plane. The information
about the ground obstacles must be exploited.

Full optimisation, including shapes and sizes of
ground obstacles, increases the computational time to
be unreasonably large. This is overcome efficiently by
using a novel random sampling method presented in [5].
The main idea is as follows. Firstly, a finite number of
points are sampled on the ground and buildings. Sec-
ondly, whether each line of sight vector from the UAV
to the ground sampling points is blocked by any sam-
pled points on buildings or obstacles is checked. This
point cost value at a certain location of a circular path
is integrated along the circular path. Thirdly, the worst
direction where the line of sight vectors are blocked the
most is found by selecting the direction corresponding
to the maximum value of the point cost. Finally, the
centre of the flight path is moved into the opposite di-
rection of the worst direction until the integration cost
is minimised. More details about the algorithm can be
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found in [5].

Figure 5 shows an example of three circular paths for
a given scenario. The optimal centres of the three cir-
cular paths do not coincide with the centre of the target
centroid, which are indicated in the black crosses. The
calculation time for obtaining the three circular paths
are about 2.14s on the same computer as described in
the previous section.

3.3 Optimal Transition

The last part of the algorithm involves directing each
UAV to arrive at each desired circular flight path. For
a given current location and velocity of the UAV, the
shortest path to the desired circular path, which is de-
signed in the previous step or was received from a com-
manding centre, is to be calculated. The problem can
be formulated as a two-point boundary value problem
as follows:

minimise
u(t)∈U

Js =

∫ tf

t0

ds (10)

subject to the following inequality constraints

0 < vmin ≤
√
v · v ≤ vmax (11a)

uxmin
≤ ux cosφ+ uy sinφ ≤ uxmax

(11b)

uymin
≤ −ux sinφ+ uy cosφ ≤ uxmax

(11c)

|v × u|
(

v2x + v2y
)3/2

≤ 1

rmin
, (11d)

an equality constraint, which is the aircraft dynamics,

ẋ = f(x,u) (12)
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and the final equality constraints

‖∆r‖ = ‖rUAV − rc‖ = rmin (13a)

v ·∆r = 0 (13b)

v ×∆r = γk (13c)

where s is the arc length, U is the control input set,
which is defined by (11b), (11c) and (11d), t0 is the
current time, the final time tf is free, the control input
constraints are in the aircraft body coordinates assum-
ing that the x-axis of aircraft is aligned with the current
velocity, φ = tan−1(vy/vx), vx and vy are the x or y di-
rectional aircraft velocity, respectively, u is the control
input, rc is the centre of the flight path designed in the
previous section. Equation (11d) is the curvature con-
straint for the minimum radius turn, γ is a constant and
k is the unit vector towards the z-axis. Equation (13c)
is the flying direction constraint. The aircraft must fly
along the circular path in the counter clockwise direc-
tion (γ < 0) or the clockwise direction (γ > 0). The
flying direction must be consistent among aircraft when
multiple UAVs are assigned to a same circular path with
some separation angle.
However, solving the optimisation problem may not

be feasible as it should be solved by the on-board com-
puter of the aircraft in realtime. In order to reduce the
computational burden the continuous problem is trans-
formed into a discrete problem. Figure 6 shows a fea-
sible flying zone for an aircraft, where two dotted lines
are circles with each radius equal to the aircraft mini-
mum radius turn. The grey area is the feasible flying
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Figure 7: Discrete path sampling

zone for the current direction of flight during a certain
length of time interval. Then, the feasible flying zone
is sampled as shown in the lower picture in Figure 6.

The closest three dots from the current aircraft loca-
tion are the three possible flights from t0 to t0 + ∆t,
where ∆t is a control variable for the path planning al-
gorithm. The line in the middle is the straight flight
path and the other two correspond to the minimum ra-
dius turn towards up and down, respectively. The num-
ber of points to be sampled at each stage, ns, is also a
control variable, where ns is equal to three in Figure 6.
For each sampled point another ns is sampled in a sim-
ilar way as demonstrated in the figure. This is repeated
until t0+N∆t reaches the desired length of time, where
N is another control variable, whose value is an integer
and T = N∆t is the length of optimisation horizon.

As ns and N increase and ∆t decreases, the solution
will approach the original continuous problem. The to-
tal number of sampling points is equal to

ntotal
s =

N
∑

i=1

nk
s (14)

which increases exponentially with N or T/∆t. Hence,
ns and δt could be large but T must be kept small.
Figure 7 shows an example path for ns = 3, ∆t = 5s
and T = 15s. Therefore, the total number of sampling
points for each optimisation is equal to 36.

To solve the optimisation problem a point cost for
each sampling point is to be assigned. By the defini-
tion of a feasible flying zone, all sampling points satisfy
the inequality constraints given in (11). Therefore, the
point cost could be set to a value proportional to the
final constraint violation, (13). To do this, the point
cost is defined as follows:

Ji = ‖ci‖ (15)
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for i = 1, 2, . . . , ntotal
s , where Ji is the cost for each

sampling point,

ci =





‖∆ri‖/rmin − 1
(vi/‖vi‖) · (∆ri/‖∆ri‖)

gi



 , (16)

g =







0, for γ < 0

α

∥

∥

∥

∥

vi

‖vi‖
× ∆ri

‖∆ri‖

∥

∥

∥

∥

, otherwise
(17)

for the counter clockwise direction constraint, ∆ri =
ri − rc, ri is the coordinate of each sampling point,
vi is the velocity for each sampling point, and α is a
constant to indicate the relative importance of the ro-
tational direction. Note that for some cases if α is too
small, then the path may converge to the one whose
rotational direction is opposite from the desired one,
i.e. it may converge to a local minimum. Therefore, it
is safer to set α at least greater than 2.

4 Simulation
The performance of the algorithm is tested for 100

random maps, where the average number of targets (nt)
inside the operational area is around 200, the number
of UAVs (na) is three, the targets are grouped as 3 sub-
groups, the targets are re-grouped every minute, max-
imum and minimum velocities of the UAVs are 20 m/s
and 30 m/s, respectively, the minimum radius turn of
the UAVs is 200 m, ns, ∆t, N and α in (17) for discrete
sampling are equal to 3, 1 s, 10 and 10, respectively, and
the maximum altitude of aircraft is 100 m. The size of
the operational area is 500 m in width and 700 m in
length, which is defined in (6), populated by buildings
whose height is between 5 m to 50 m. Finally, the max-
imum target velocity is 20 m/s.

The average proportions of the targets visible from
the aircraft at each instant are shown in Figure 8. The
mean is about 80% and the 3σ lower bound is about
50%. At near the initial time between 0 and 0.5 min-
utes, the mean and the lower bound are worse than
the other intervals. This is mainly caused by the ini-
tial velocity directions of the aircraft, which are chosen
randomly and sometimes the velocity directions are op-
posite from the region where most targets are located.
However, as shown in the figure these are quickly recov-
ered by subsequent manoeuvres in less than a minute.
Finally, note that although the objective flight path is
given by the minimum radius turn circular path, be-
cause of dynamic target relocation and the limitation
from the aircraft manoeuvrability the actual paths for
each aircraft is not always circular path unless all tar-
gets are completely stationary for long time interval.

5 Conclusions

A mission planning algorithm for a group of UAVs
to track multiple moving ground targets in an urban
area is presented. By employing an optimal grouping
of targets, based on maximising modularity, each UAV
is assigned to each subgroup. The centre of the circular
flight paths are optimised by minimising the worst case
scenario. UAV path transition from one path to another
is formulated as a nonlinear optimisation problem and
approximated as a finite horizon discrete optimisation
problem. The algorithm is tested on random scenarios
and it shows that over 160 targets among 200 targets
are tracked simultaneously most of the operation time
by only using three UAVs.

Collision avoidance, optimal communication schedul-
ing among UAVs and commanding centres, designing
a low-level controller for path following, and theoret-
ical convergence properties of the algorithm are yet
to be studied. Extending the current algorithm to a
3-dimensional problem including altitude optimisation
would be straightforward. For assigning multiple UAVs
on the same circular path, each UAV has to either com-
municate to the other UAVs in order to receive the posi-
tion information or estimate it using a vision navigation
approach as shown in [1, 2].
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