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NONLINEAR SEQUENTIAL METHODS FOR IMPACT
PROBABILITY ESTIMATION

Richard Linares; Puneet Singlal and John L. Crassidis?

Orbit determination in application to the estimation of @mepprobability has the
goal of determining the evolution of the state probabiligndity function (pdf)

and determining a measure of the probability of collisioenhhear gravitational
interaction and non-conservative forces can make the pdifden Gaussian. This
work implements three nonlinear sequential estimatoesEtktended Kalman Fil-
ter (EKF), the Unscented Kalman Filter (UKF) and the Pagtieilter (PF) to es-
timate the impact probability. Both the EKF and the UKF make Gaussian as-
sumption and this work investigates the effect of this agpjpnation on the impact
probability calculation, while the PF can work for non-Gsias systems.

INTRODUCTION

After the formation of the early solar system some mateddéd to coalesce into planets, this
mass became what is known as comets and asteroids. Mossan#ss is held within the Kuiper
belt and the Oort cloud and was believed to present no dandearth until a large scale computer
simulation was performed to determine the time evolutiotnetthese objects. Through their natural
evolution a few of these objects may have their orbits alténto trajectories that allow them to
enter the Earth’s neighborhood. Researchers found thextoads in the main-belt in stable orbits
are possible sources for Earth crossing asterbifisese results indicated that an asteroid impacting
with the Earth possesses a real threat to the planet andhthe imust be anticipated and mitigated.
Astronomers increase their searches for near-Earth gb{difOs) and as a result the estimated
numbers of NEOs dramatically expanded by about 1,000 tivdthough these objects are mostly
composed of water ice with embedded dust particles and pawmky cores, they can still possess
a great danger to the Earth, having the potential of relgdainge amount of energy upon impact.

The detection of asteroid 1989FC on March 23, 1989 madehtéat real and brought NEOs to
the public’s attention. This asteriod was discovered offilgrat had a close approach to within
691,870 kilometers of the Earth, and this was determineg after backwards calculating the
asteroid’s orbit. This asteroid had kinetic energy of ov800 megaton hydrogen bombg#steriod
tracking and impact assessment then received federalnfgradid many more possible impactors
have been detected, including 1997XF11, 1999AN10 and 1998, @ll of which had a finite
probability of close-approach before being ruled out asaotgrs after tracking their path from
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sensor observations. The 99942 Apophis (2004 MN4) astérasdreceived much attention after
its initial discovery and is predicted to have a very cloppraach in April 2029, where it will pass
under some of our communication satellites. Although 200d4Mvas initially predicted to have
a nonzero probability of impact in 2029, later it was foundh&we little collision risk after further
observation and analysis. In subsequent years 2004 MN4£dgbed to make close-approaches in
2034 and 2036. The impact probability associated with tappeoaches is difficult to compute due
to the 2029 close encounter.

The calculation of an encounter probability involves thségps: determining an accurate orbit
for the asteroid, confidence bounds for that orbit, and firadlculating the probability that at some
time the confidence volume of the orbital position will irgect the planet of interest. Orbit determi-
nation is usually accomplished using a batch least squam®ach which linearizes the dynamical
system with respect to a nominal trajectory under the assamfhat the true trajectory variation
from the nominal one is small.This assumption may be valid for some orbit determinatiopliap
cations but for anticipating possible NEOs this is not theecdn many cases an asteroid may be
newly discovered or only observable for small portions gbitbit, therefore making the initial esti-
mates of the orbit bad. Also since the orbital period of NEf@som the order of several years there
current track and any previous tracks may be widely sepdrafdose-approach times are usually
years from the current measurement set. The nonlineart éft@omes even more apparent when
propagating the orbit for long times into the future due tmlimeear gravitational interaction and
non-conservative forces. This propagation is done by gratag the nominal orbit along with the
covariance of the estimate error using a linearized vanati equation (a first order state transition
matrix)* Then the pdf at close approach is approximated by a Gausisigifoation which is com-
pletely described with the first order, “the mean,” and selcorder moments, “the covariance,” of
the pdf. The pdf may be far from Gaussian due to nonlineactsffand the covariance propagation
may also be far from linear, making this pdf a bad approxiomati

The final task can be very complicated due to the time evolwigire of the relative orbits. We
have some help here because we know thatNheody effects during the time that the asteroid is
in the sphere of influence of the Earth are very small, theeefice can consider the asteroid to be
under pure two body Keplerian motion in this region. In Kejgle motion there are two quantities
that are conserved, energy and specific angular momentuinbya@applying these conservation
equations to solve for the epoch state that results in anegpdigtance less then the Earth’s radius
approximate solution can be found. A transformation candr&sed that maps from the state on
the sphere of influence to the apogee space named the taage? dihe pdf is then integrated over
a disk on the target plane representing apogee distancethlasthe effective radius of the Earth.
This transformation is nonlinear and for large variationnitial condition the linearization can be
invalid. The most accurate nonlinear approaches impleiente Carlo sampling to space the pdf
over a volume containing most of the probability mass. Thisloe very computationally expensive
because the volume that contains most of the probabilitysmesy be very large and the samples
must fill the six dimensional state space.

The initial application of linear theory for close approaghcertainty and impact probability
was to calculate Shoemaker-Levy 9 close-approaches ttedinyi Chodas and YeomaPhd.inear
methods were inadequate to analyze the collision prolbalufi 1997XF close-approaches using
initial observations due to strong nonlinearities introgd by a 2028 close-approach. Although
later observation of 1997XF in 1990 ruled out any future iotpthe hypothetical case of 1997XF
before the 1990 observations was studied by two groups. @hedd Yeoman applied a Monte



Carlo approach to estimate the impact probabflityhere they sampled the initial distribution and
integrated these samples up to close approach to calcuatepact probability. Milani developed
a method called the Line of Variation (LOV) seafthyhere he sample the line of weakness in
the initial condition and integrated this for the time spdinterest. Both studies achieved similar
results in calculating an impact probability ti—° for the year 2040.

In many orbit determination applications the goal may bedtednine an estimate for the or-
bit that is statistically consistent with all the availalmeasurements, and therefore the estimator
must provide an estimate and error bounds for that estin@tieit determination in application to
estimating the impact probability on the other hand has ¢ #lgferent goal. The goal here is to
determine the evolution of the pdf of the asteroid’s statkdatermine a measure of the probability
of collision. Therefore modeling the entire distributiaimportant. For this purpose, we compare
three well-known filtering techniques: the Extended Kalrirdter (EKF), the Unscented Kalman
Filter (UKF) and the Particle Filter (PF). The goal is to azal the benefit that UKF and PF can
provide over linear methods (EKF). Although the EKF and UkKsswane the state pdf to be Gaus-
sian, the UKF uses the full nonlinear model to compute themaea state error covariance whereas
the EKF uses a linearized dynamical model.

The organization of this paper is as follows. First, the eysmodel for orbital dynamics and
the target plane transformation are both discussed. Théesaiption of the uncertainty modeling
problem is given. Next, a review of the three filter soluti@mprovided. Finally, simulation results
are shown for an impactor scenario where orbital initialertainty is considered to be the same
for all three filters. Then the uncertainty is propagated @setl to calculate the impact probability
using the three filtering approaches.

SYSTEM MODEL
Orbital Dynamics

In this paper we will use the heliocentric positipand velocityv to represent the asteroid’s state.
The NewtonianV body gravitational equations of motion in heliocentric atinates is given as:

N r.|, —r; r
Fope = —— 3rs|a—2m< slo il 2la >+ap (1)
i=1
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wherer, |, is the asteroid’s position relative to the Sut,, is the asteroid’s position with respect
to thei" perturbating body and, represents the perturbative accelerations. The ternasd 1;
represent the gravitational parameters of the Sun andiperturbating body, respectively. The
term IV, represents the number of perturbating bodies, which iech&tturbations from the eight
planets, Pluto and the three largest asteroids, CeressPalhd Vesta. An analytic solution to
Eq. () including all the perturbations is not possible and themefa numerical solution are used.
For simplicity letp; = ry|, — r;|,, Wherep; = [pz,, py.» p=]"-

Target Plane Analysis

Consider a nominal orbit with initial conditions,, where this initial condition has a close-
approach with a planet at some tirtfe In practice, for planetary encounters, this close-apgroa
distance is assumed to be between 0.03 and 0.8 Given that a close-approach can be identified,
the initial conditions can be propagated to within the clapproach distance where the trajectory



can be well approximated by two body dynamics. At the pointlogest-approach we define the
close-approach distance @s4, where the subscriplC' denotes close-approach. At this point the
asteroid has a velocity4~. Note that if there is to be an encounters > R. whereR, is the
Earth radius. Near the Earth the trajectory interactiorait other body besides the Earth is small
and therefore we approximate the dynamics to be two bodythedtarth. Then the trajectory can
be divided into two regions, th& body trajectory outside the Earth sphere of influence gadrn
by Eq. (1) and a two body trajectory inside the Earth sphere of infleegaverned by two body
dynamics. Our goal is to relate the apogee distance, fomthéody trajectory (i.e. closest approach
distance), to an impact parameter given any initial vejoard position within the Earth sphere of
influence. Under pure two body dynamics there exists simgmeantum and energy relations that
can allow us to accomplished this. We begin by defining thatikel-Earth state vectors; =
] vI", wherex; = x|, — x|, using the notation defined in EdqL)( This vector is considered
to be the state of an asteroid when it enters the Earth’s stiénfluence with respect to the Sun.

Once in the sphere of influence, the orbit of an asteroid cavebewell approximated by two
body dynamics (assuming high relative velocity). We canngefisc = [r%, v ,]7, the relative-
Earth state vector, at the point of close approach as pestlizy two body dynamics. Then by
conservation of angular momentum we have

ri X Vi =TAc X VAC (2

Since the velocity at closet approach is perpendicularagtbsition vector, Eq.2) can be written
in terms of perpendicular distances resulting in the foifay

5XVi:aAC><VAC (3)

whered is the perpendicular vector associated wiftand a 4¢ is the perpendicular vector asso-
ciated withr,-. The escape velocity g, of the asteroid fromu 4 to r; can be written using
conservation of energy and is given by

1 1

2

=2GM | — — = 4

Up ( GAC D) (4)
whereD = ||r;|| is the magnitude of;. From conservation of energy, the initial velocity can be
related tov? ., by 13 = v2 + vi°, wherev; = ||v;]|. Then by substituting this into Eqg), the
perpendicular distance can be written as

0 =aac |1+ (5)

CIES

whered = ||d|| is the magnitude od. The critical distance on the target plane where an encounte
will occur is wherea s > R., so thereforei 4o = R. solves for the plane or impact parameter
be:

2
be = Re |1+ —= (6)
Vg

wherev?, = 2G' M (é — %) ~ 2G M(1/R.) whenR, < D. The termb, represents the min-
imum distance in the target plane where an encounter willlocBy integrating the probability



density function represented on the target plane over avditkradiusb,. centered at the Earth, the
encounter probability can be calculated.

The choice of the target plane coordinate system is aritiae label this coordinate system
(é1, €2, €3). Theés-axis is orientated in the direction of the geocentric viéyoof the asteroid,

and a convenient choice of tfjé;, é;) directions is such that the -axis is aligned with the nom-
inal target plane coordinate and the-axis is selected such that coordinate system is positively

orientated.

é2

Figurel. Target Plane Geometry

Using this coordinate system, there exists an orthogoaaktormation matrixC' that maps the
original coordinate system into this new set of unit vectareh that

e Ci1 Ci2 Ci3 }
€ »=| Co Co (a3 j (7)
é; Ciz Co Cs3 k

The coordinate systems can be aligned by two rotation nestgosen by the following expression

{é1 } { cos(A) 0 sin()\)] { cos(f) sin(fd) 0 ]
& = 0 -1 0 —sin(d) cos(d) 0

S (8)
—sin(A) 0 cos(\) 0 0 -1

R o> o>
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wheref and A are the angles giving the orientation of the vector. The vectors{i, j, f{} are
the coordinate axis of the inertial frame. The target plaberdinates aré = [0y, d2]”; then a
transformation that maps from the inertial to the targetelean be written as

o) { 010 ] { cos(A) 0 sin()) } { cos(?g) sin((g)) 0 ] ©
TO,\) = 0 —1 0 —sin cos 0
001 —sin(A) 0 cos(\) 0 0 -1

Carrying out the matrix multiplication we can write the fifatm of the target plane transformation

as
— sin(6) cos(9) 0 } (10)

T, = { — cos(6) sin(\) sin(f)sin(A) cos(\)



Using the definition of the target plane coordinate veétaandv = [v,, v, v.]T we can write the
target plane vector in terms of initial conditian= [r” v7]7:

6 =T(0,\r (11a)

A = tan~! ( vz ) (11b)
||

§—sin~! | (11c)

The following notation will be used for the target plane stmmation henceforth:
d=B(x)=T(0,\)r (12)

Once the target plane transformation has been defined givamtial condition of a possible im-
pactor, one propagates the heliocentric state vectorclasie approach distance (within the Earth’s
sphere of influence) and then applies the target plane tianafion. The target plane coordinate is
then used to determine whether or not there will be an impiaitie coordinated is within a disk

of radiusb, there will be an impact with the earth. This approach givessnpo answer to whether
there will be an impact; but what if we have not one initial diblon but a distribution of initial
conditions? This would be a distribution representing thevkedge about the state of the asteroid.
In the following sections three methods for modeling thigrithution and applying the target plane
transformation are discussed.

UNCERTAINTY

A mechanism to represent the uncertainty is necessary ebéffier model data and the sensor
data can be integrated in an efficient and consistent marrebabilistic means of representing
uncertainties have been explored extensively and provieeteatest wealth of knowledge which
can be exploited in this work. In the following section welwdview uncertainty modeling using a
probabilistic approach.

Uncertainty Representation

In conventional deterministic systems, the system sta@nass a fixed value at any given instant
of time. However, in stochastic dynamics it is a random V@eiand its time evolution is given by
a stochastic differential equation:

z=f(x,t) +g(t,x)L'(t) (13)

whereTI'(t) represents a Wiener process with the correlation m&ixThe uncertainty associ-
ated with the state vector is usually characterized by time parameterized stateppdix). In
essence, the study of stochastic systems reduces to firgingature of such time-evolution of the
system-state pdf described by the following pde, known adrkker-Planck-Kolmogorov Equa-
tion (FPKE):

ﬁ}‘p[p(t,w)], Lrp = —Z; ((;ZZDE Z;E:lax 8x ]:)(2 t, )[] (14)



whereD(®) is known as the Drift Coefficient, which(?) is called theDiffusion Coefficienand are
given by the following equations:

EMQ{;@@), D@ (t,x) = 1g(t,-'JC)QgT(t,-’E) (15)

(1) —
DY (t,x) f(t,ac)—l—2 e 5

The FPKE is a formidable problem to solve, because of thevatlg issues:1) Positivity of the
pdf, 2) Normalizationconstraint of the pdf:[,,, p(t,z)dz = 1, and3) No fixed Solution Domain
how to impose boundary conditions in a finite region and igstumerical computation to regions
wherep >~ 1079,

Analytical solutions for the FPKE exist only for a statiopgodf and are restricted to a limited
class of dynamical systemsThus researchers are actively looking at numerical apprations to
solve the FPKE? ! generally using the variational formulation of the problektowever, these
methods are severely handicapped for higher dimensiorsubeche discretization of the space
over which pdf lives is computationally impractical. Altetively many approximate techniques
exist in the literature to approximate the uncertainty ettoh, the most popular being Monte Carlo
(MC) methods'? Gaussian closur® Equivalent Linearizatiod* and Stochastic Averagin§. All
of these algorithms, except Monte Carlo methods, are sinmlaeveral respects, and are suitable
only for linear or moderately nonlinear systems, becausetfect of higher order terms can lead to
significant errors. Monte Carlo methods require extensoraputational resources and effort, and
become increasingly infeasible for high-dimensional dgitasystems.

The use of sensor data to correct and refine the dynamicallfaéeast so as to reduce the
associated uncertainties is a logical improvement oveelpunodel-based prediction. However,
mathematical models for various sensors are generallydhgsen the “usefulness” rather than the
“truth” and do not provide all the information that one wolike to know. This approach had its
birth with the development of the Bayesian estimation.

Between two measurement time instants the procedure dstuis the last section can be used to
propagate the weights, mean and covariance of differens&@ucomponents through the nonlinear
dynamical system and whenever a measurement is availabj@sBule can be used to update the
conditional pdf:

p(yxlzr)p(@e|Yi-1)

2L|Yr) =
p(@elYe) p(yilzr)p(xr| Yi—1)dxs

(16)

This equation can be interpreted as follows: ék) represent the prior belief of what values
the random state vectas might take (prior pdf usually obtained by propagating thigiah pdf
through the FPKE). We now observe from a sensor the measuotemetory which is represented
as a conditional pdp(y|x) which describes the likelihood that we obsegveiven x. We now
need to determine the new posterior distribution funcfién|y) of  given the prior pdp(x) and
the information provided by the observation. The denonointgrm in Eq. 16) is essentially for
normalizing such that the posterior distribution satisfiesconstraints of a pdf.

The Bayesian approach has its birth with the developmertteKialman Filtel® (KF). Subse-
guently various researchers have endeavored to explowlkdge of statistics, dynamic systems
and numerical analysis to develop technid?é&'® which cater to the various classes of prob-
lems of interest. For low-order nonlinear systems, Parfitiers® 1° have been gaining increasing
attention.



The goal is to determine®r{||z;|| < R.} the probability that the state; is within the region
R.. The following integral calculates the probability of ésibn givenp(x;):

Pr{||z:|| < Re} = //Qp(mt)da:dt a7

wheref) is the Earth’s volume and the integral is over all time. Thalg@bthis paper is to investigate
three methods, the Extended Kalman Filter (EKF), the UntsceKalman Filter (UKF) and the
Particle Filter (PF) to evaluate this integral.

APPROXIMATE METHODS: KALMAN FILTER APPROACH

The Kalman filter assumes that the posterior density;|Y1.x) is Gaussian for any, where
Y, is a realization of a sequences of observatigs,...,y:} of the state of the system up to
time t;, wheret > t;. Also the stater at timet; will be written asx;. This assumption holds
conditioned that the density(x;_1|Y1.x—1) is Gaussian and that the observation funclidm) is
linear. Between observations the Kalman filter approxis#te conditional density(xx|Y1.5-1)
as a Gaussian distribution. This is valid if the processeaiss Gaussian and the system model
f(x) is linear. Under these assumptions the Kalman filter formsranmum variance estimator
providing optimal estimates of the state based on the asbwtadistical information about the
dynamical and observation model. No unbiased estimatordoabetter than a Kalman filter in
the very restrictive linear and Gaussian environment. Imyrgtuations, the linear assumptions
on these functions may not hold. Therefore an approximdteiso for the conditional density is
necessary. The EKF uses a Kalman filter framework by perfagrailocal linearization of () and
h(x) about the current estimateand assumes this describes the nonlinearity.

Predictor

An EKF is now summarized for estimating the state of an a&tgrosition and velocity given by
x = [rT vT]T. The standard orbit model in Eql)(can be written in the general state equation
which gives us the deterministic part of our stochastic mode

z="f(x,t)+g(x,t)L(t) (18)

whereI'(t) is a gaussian white noise process term with correlationtimdo (¢, — t2). The
f (z,t) function is a general nonlinear function. To solve the geheonlinear filtering problem the
EKF linearizes the functioffi («, t) about the current nominal state. Then if the initial pdk,)
capturing the initial state uncertainty is given then theetievolution ofp(x, t) can be described by
the FPKE in Eq. 14).

A linear mapping will transform a Gaussian into another Gaug where the parameters (mean
and covariance) of the resulting distribution can be easitmputed. But the outcome of a Gaussian
that undergoes a nonlinear transformation is generally@aunssian. Conventionally, a Gaussian
approximation to the forecast density functiefa, ¢) is obtained by linearizing the nonlinear trans-
formation and the propagation equations which can be \urdte

fo=1f(p,t) (19a)
P =A(n)P +PAT(n) + g (1. t) Qg” (11,1 (19b)



where
_of (z,t)

A = 27 20
(n) 5 |, (20)

Then the final approximated forecast density can be writsen a
p(x,t) =N(p,P) (21)

Given the state equation is a the orbit model in Y, the Jacobian matrix of the state equation is
given by

0 I
A(ZE) _ 3x3 3x3 (22)
J3x3 O3xs
andJ is a gravity gradient matrix which can be written by
J=G-K (23)
where
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wherepn = (us — > p;) is the sum of the gravitational parameter for each body.

Corrector

Given a system model with initial state and covariance \glike EKF propagates the state
vector and the error covariance matrix recursively. Thémawith imperfect measurements, the
EKF updates the state and covariance matrix. The updateasrgdished through the Kalman gain
matrix IC, which is obtained by minimizing the weighted sum of the diagl elements of the error
covariance matrix. Thus, the EKF algorithm has a distigciivedictor corrector structure. The
prediction phase is important for overall filter performandn general, the discrete measurement
equation can be expressed for the filter as

jrk =h (:Bk, t) + ’Uk(t) (25)

wherey, is a measurement vector amg(t) is a measurement noise which is assumed to be a
white Gaussian noise process. The noise statistigyafan be described completely ly.(t) ~
N(0,R(t)) where E{vy(t)} = 0 and E{[vy(t) — E{vy(t)}][vr(t) — E{vr()}]7} = R(t) repre-
sents the covariance of;(t). To use arecursive filter, the EKF expresses the state ansLmezaent
equation in the linearized form. Using Bayes’ theorem urtdedinear gaussian assumption we can



determine a relationship to update the mean and covarianite alistribution by minimizing the
error covariance matrix, providing an optimal estimateh#f state in a minimum variance sense.
Then the following update equation can be written for the mafahe state distribution

Bk = Pie—1 + Ki [2r — h(pgp—1)] (26)

where the the notation of superscrigigk — 1) denote the estimate at the measurement update
time which is conditioned on the previous measurements aadbt been updated; the fiksterm
represents the time step the estimate is given for and tlemdesubscript represents the last time
step the estimate was updated with measurementsiCThatrix is a gain at the measurement time
update given by

~ ~ ~ —1
K =P 1 H(pg—1)" [H(Hk\k—l)Pmk—lH(Hk\k—l)T + Ry, (27a)
Pie = Prje—1 — KiH(pgp—1)Prjp—1 (27b)

whereP,;, is an covariance matrix dt time step conditioned on the measurements up tdcthe
time step ancﬂ(uk‘k_l) is given by:

. Oh (z,t)

H(ppp—1) = pp (28)

=W

The termH (g, 1) Pyjx—1 (1 1)7 + Ry is called the innovation covariance and it comes from
the likelihood function, it represents the covariance eflirted state erroe, = {y;, — h (z4_1,t) },
assuming Gaussian distribution fey,;,_, andy,. While propagating the orbit if there is a mea-
surement made available, EG7@ and Eg. 27b) can be used to update the pdf of the state vector
condition on all measurements that are available at theexutime step. Therefore, given an orbit
that has been determined and the uncertainty quantifieg tissnGaussian assumption, if further
measurements are made available, Rda(and Eq. 27b) can be used to update the pdf and recal-
culate the probability of impact given these new measurésnen

Target Plane Approximation

The EKF approach to propagating uncertainty can be apphi¢det target plane transformation
by linearizing the target plane transformation about theinal state vector. Given the nonlinear
target plan transformation in EdL@), the linear model can be written as

ps = F(p)z (29)
where /B (z)
T

Pu= 3| (30)

The quantityu; is the mean of the state on the target plane, which is an ajppation for £{d}.
The matrixF(u) is the Jacobian of target plane transformation evaluatdgeanean, which can be
determined by taking the derivative of EGOj with respect to the state vectorand settinge = p.
TheF(x) matrix can be written as

F(x)=| T(0,\) 4549 (31)
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where® represents a vector of the angkeand )\, ® = [#, \]”. Then the expression f(ﬁ% can
be shown to be

dd — rT 01><3 A
%—{olxg < HB] (32)
where
_ | sin(®)sin(A) cos(9)sin(A) 0
AT — |: — COS(H) — Sin(@) 0 :| (33a)
0 0 0
BT — [ —cos(f) cos(N\) sin(f) cos(A) —sin(A) :| (33b)

Then the expression can be written-43

&0 Sl I 700) @2 ) 0

d@_[ﬁ 0 H—(vzuvu—%x) ) VI ]

whereX’ = v, /|v|| and) = v,/|v*| and these terms are determined from differentiating Etp)(

and Eq. {19. The quantity|[v*| = ,/v2 +v2 is used to define the magnitude of theand y
velocity vector. The covariance on the target plane giverittear transformation can be written as

Ps5 = F(u) PF(p)" (35)

whereP is the covariance at close approach, &hg is the covariance on the target plane. Then
under the linear transformatioR(u), the pdf on the target plane can be written as a Gaussian
distribution in the form

p(8) =N (B (), Pss) (36)

Then to calculate the probability of impact, the pdf focan be integrated over the Earth’s effective
disk on the target plane given by a disk center at the origih vadiusb.. The radiusb. on the
other hand is a function dfv|| and||r|| as seen in Eq4) and Eq. §) makingb. a function ofp(d).
The first dependance is resolved by assuniirlg > R, as discussed in previously and the second
dependance is resolved by assuming fhvat = ||v, || wherev,, is the velocity component of mean
stateu. The effect of the uncertainty ib. in calculating the impact probability is assumed to be
small, this assumption ob,. is made for the rest of this paper. Furthermore, the statertaioty

is represented as a distribution of possible states thetiqnesrises of how to define the close
approach. Under the EKF linear Gaussian assumption wedmmie close approach point when
the mean of the distribution makes a close approachy i€less then the close approach distance.
The effect of this on the numerical results is discussederstmulation results section.

APPROXIMATE METHODS: UNSCENTED FILTER APPROACH

The basic difference between the EKF and the UKF results tf@manner in which the state
distribution of the nonlinear models is approximated. Th&introduced by Julier and Uhimatih
uses a nonlinear transformation called the scaled unstématesformation, in which the state prob-
ability distribution is represented by a set of weightedragpoints, which are used to parameterize
the true mean and covariance of the state distribution. \thesigma points are propagated through
the nonlinear system, the posterior mean and covariandgamed up to the second order for any
nonlinearity. The UKF algorithm is summarized in this sewtfor discrete-time nonlinear models.
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The original state vector is redefined in the UKF approach dmn#enting the state vector to
include noise variables, where the augmented state veatiefined byc = ] w] vI|T and the
augmented state vector has dimensign= n+q-+1{. All random variables in the UKF are assumed
to be Gaussian random variables, therefore one can thinkjaihadistribution for the random
variables, equivalent to the distribution ®f, defining multivariate Gaussian distribution given by
p(x}) = p(x, wy, vi). The assumed statistics far, andv;, where discussed previously, then the
joint distribution is approximated by(xj, wg, vi) ~ N (xf, P*). The mean augmented vector
x¢ can written au® = [p” 0%, 0T ,]7, wherep is the state estimate. The covariance matrix,

gx1
P¢, for the joint distribution can be written as

P PSC w PZ’ v
P'=| Pv* Q Pv (37)
PU x PU w R

Then the distribution is approximated as a set of symmedtacsed scaled sigma points. The sigma
points are selected such that they are zero-mean, but ifistibdtion has meam, then simply
adding i to each of the points yields a symmetric set2ef, points having the same covariance
as the initial Gaussian distributidi. The sigma points are selected to be along the principle axis
direction of the Gaussian distributigi{«{) or along the eigenvector directions Bf.. Then the
augmented state vector and covariance matrix is consttigte

o}, < 2N, columns from,/(n, + A\)P{ (38a)
X (0) = p (38D)
X (1) = o (i) + pk (38¢)

Therefore given &, x n, covariance matrily, a set of2n, sigma points can be generated from
the columns of the matriceg/(n, + A\)P¢, whereyv/M is shorthand notation for a matri& such
that A/ = Z ZT. Using the notation of the augmented state vector the sigyird pector can be
written as

X ()

xi(i) = | x"(t) (39)
X" (i)
Then given that these points are selected to representdtrédiion of the augmented state vector,
each sigma point is given a weight that preserves the infiomaontained in the initial distribution:

mean __ A
Wi = = (40a)
cov __ /\ 2
WE = =+ (1 =0+ ) (40b)
A
mean __ cov _ 40
Wi Wi 2(n+ \) (40c)

where\ = on, + k — n, includes scaling parameters. The constant parameterot®tite size
of the sigma point distribution and should be a small nuntber o < 1, andx provides an extra
degree of freedom that is used to fine-tune the higher-ordenents;x = 3 — n, for a Gaussian
distribution, alsas3 is a third parameter that further incorporates higher+oefects by adding the
weighting of the zeroth sigma point to the calculation of thgariance; not¢ = 2 is the optimal

value for Gaussian distributions.
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Predictor

The state propagation and state uncertainty propagatiaccsmplished using the sigma points.
The transformed set of sigma points are evaluated for eatttegioints by

Xx(i’t) = f(Xm(i’t)a Xw(i7t)) (41)

The predicted mean is given by

2n

p(t) = Wrx (i, t) (42)
=0
The predicted covariance is given by
2n
P(t) =Y W X" (i,t) — ()] [x"(i,t) — ()" (43)
=0

wherexj (i, 1) is a weighted sigma point vector of the firselements of the! augmented sigma
point vectory® andx is a weighted sigma point vector of the nextlements ofy®. Also x" is
a weighted sigma point vector of tiieslements of the!™ augmented sigma point vectgt”, and
wree™ is the weight for the mean ard " is the weight for the covariance, respectively.

Corrector

Similarly, the predicted observation vectpy at time stept and the innovation covariande]”
are calculated

Vi = hy(Xi, X¢) (443)
2n
Ve =Y W Yy(i) (44b)
2n =
P= ) WG — gal V(i) — 9a)" (44c)
=0
Now, the filter gain is computed by
Kp = PY(Pr) (45)

and the cross-correlation matrix is determined by

2n

Py = Wi (i) — gl V(i) — 3i)” (46)
1=0

The estimated state vector at current time step conditiongtie previous measurements up to and
including the last time step is denotedaag;,_; and similar the covarianc®,,;._, are given by

Kk = Bijk—1 + Kevg+1 (47)

P = Py — K PKL (48)
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It is noted that in the formulation of the UKF algorithm thermdated noise sources can be im-
plemented efficiently without any modification of the filtdgarithm. For the special case where
both the process and measurement noise terms are pureliyeditie computational complexity of
the UKF can be reduced by adjusting the augmented statervdéaio computational stability the
matrix square root can be implemented by using a Choleskgrfaation method that prevents the
nonnegative covariance matrix.

Target Plane Approximation

The UKF approach to propagating uncertainty can be apptig¢de target plane transformation
by using the unscented transformation on the Gaussianbdistn given by the UKF. Instead of
linearizing about the nominal state vector, the unscemetsformation approximates the distribu-
tion to a higher order of accuracy. Given the nonlinear tapdgne transformation in Eq10), the
unscented transformation can be written as

x° =B(x") (49)

The mean and covariance on the target plane are given by

2n
S = ZWimeanxts(i) (50a)
1=0
2n
Pss = > Wi Ix® (i) — 8][x° (i) — &]" (50b)
=0

Under the unscented transformation, the pdf on the targeeptan be written as a Gaussian distri-
bution in the form

p(6) =N (8, Pss) (51)

where herePgs is the UKF covariance on the target plane. In contrast to tE Earget plane
approach, for the UKF each sigma point is propagated to its p@amt of close-approach rather
then the point where the mean of the distribution make itseslapproach. Determining the close-
approach time for each sigma point represents a more aecapgroximation to the target plane
transformation since the assumption of two body dynamicsade under the target plane transfor-
mation. If the uncertainty is large when the mean makes &e&pproach there may be a region of
non-negligible probability that may lie outside the sphafrsnfluence of the Earth and the two body
approach then becomes invalid. Therefore, each sigma opropagated forward in time until
the sigma point makes a close-approach where the target ppeamsformation is preformed on this
sigma point. All sigma points are propagated onto the taigete where a mean and covariance are
calculated and the pdf is approximated by Exi)(

APPROXIMATE METHODS: PARTICLE FILTER APPROACH

Particle filtering approaches are based on Monte Carlo rdsthwahere a probability distribution
is represented by set of randomly selected particles. Usmfact that the system in question can be
solved for an individual set of initial conditions, the stdun for a distribution of initial conditions
are approximated by the solutions of a set of particles sgmting the initial distribution. Giveiv
independent and identically distributed random sampl&sdrawn fromp(x), i = 1,..., N the
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distribution can be approximated byz) ~ (1/N) >_~, 6(x — ) and an arbitrary integral (or
expectation) with respect fgx) can be approximated by

1S,
/f(a:)p(a:)da: N Z f(x®) (52)
i=1

Perfect Monte Carlo sampling assumes the samples are diesatlydfrom the distributionp(x)
and that there are enough particles to represent the make dfstribution. It can be shown that
asN, — oo, the approximation given by Eg52) approaches the true denslfyIn the case of the
Particle filter each particle is assigned a weight) o~ p(x("), which represents the probability
of that particle occurring. Then the weights are normaligesh thathV w® = 1. A particle
filter involves four steps, namely, prediction, update (ection), resampling and regularization
(roughening), all of these steps constitute a filter cycle.

Predictor

The sets ‘of particles and their associated weights refdirgehe pdf att;, andt; ., are denoted
by {mlgl),w,il)} and {acg}rl,wg}rl}, respectively, wheré = 1,..., N. The particles at time;, are
propagated through the following equation with their wésglnchanged:

20 = £(z0) w) (53)

Then the particle at timé, 1, {wk+1,wk+1} represents the forecast pdf, whevesamplesw ()

of the process noise are drawn accordingpta), denoted byw(’) ~ plwg), 1 = 1,...,N,

is the normalized weight of the particle. The process naisand the measurement noigseare
assumed to be zero-mean white noise sequences. Althouglaussi@an assumptions are needed,
the distributions of the mutually independen§, w, andv, denoted byp(x,), p(w) and p(v),
respectively, are assumed to be known and Gaussian for tiils When, the posterior density /at
can be approximated as

~ 3 wid(a(t) - 2 (t)) (54)
=1

whered(-) represents the direc delta function, which returns onericargument of zero and zero
otherwise. Equatiorbd) represents a discrete weighted approximation to the wsteor.

Corrector

When measurements are made available, the pdf is updatgodying the weights of each par-
ticle using the likelihood of the measurement given eachighar At the update step the welght

associated with each patrticle is updated based on thehidaai functlonzzj,g,J)rl = w,i)p(y |, )).

(4)

wherew,” , denotes the unnormalized weights. If additive noise is ickemsd the likelihood func-

k+1
tion has a simple formp(3;.1|z) = p(7; — h(z\”)). Then weight update for each particle is
based on the likelihood function and given by

w) = w? pFrlzd) ) (55a)
(4)
(7) wy,
w = "k (55b)
g va 1 wl(;)

where the likelihood functiom(yk|m,(f)) depends on the noise process of the observation directly.
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Resampling and Regularization

The variance associated with the weights in sequential itapoce sampling can only increase
over time and eventually all but one particle will have ngilie weight'® To overcome this de-
generacy problem resampling is used to discard obsoletelparwith small weights and multiply
particles with large weight® The resampling procedure starts by drawing sampldsnes from

{2, w") } to obtainN equally weighted particlegz\") ,, 1/N}.

Since resampling duplicates the particles with large wsigiienerating many identical particles
may greatly decrease the number of distinct particlesympbag is usually followed by a regular-
ization step. The regularization step adds small noisegdadbampled particles to increase particle
diversity!® A small independent jitter drawn from a Gaussian distrifnutis added to the identical
particles to increase diversity.

Target Plane

The PF approach to propagating uncertainty can be applidtettarget plane transformation to
represent the uncertainty on the target plane. Given thénean target plane transformation in
Eqg. (10) and the asteroid’s initial distributiop(x) represented by a set of weighted particles, the
probability density of the asteroid on the target plane Gawhbtten as

p(9) = 3 _wid(B(x) — B(z')) (56)

where the weights are unchanged from those of the initigigheauset. In a similar manner to the
unscented transformation approach, each particle is geded to its own point of close-approach
rather then to the point where the mean of the distributiokesds close-approach.

SIMULATION RESULTS

x10° x 10’

01 (Ikm) xlOl? i ° 511(km§ ’ x10°

Figure 2. Target Plane Propagated Densities, Target Plane 30 to scale on left and
Target Plane 30 Zoomed in on right.

In this section the performance of the proposed nonlindargilthe EKF, UKF, and PF, is demon-
strated through simulation examples using a realistic-Beath asteroid orbit and initial uncer-
tainty. The asteroid under consideration has the orbitrpaters given is Tablé& for an epoch JD
2453736.5. The initial error covarianc®, is theoretically an expectatiai{ (z, — 2, )(z, —&,)" },
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Table 1. Initial Uncertainty Used for Simulationsfor Epoch JD 2453736.5

‘ ‘ ‘ Initial Estimate| Initial Variances

a | (AU) 0.922 0.96 x 108
e 0.191 0.297 x 10~7
i | (Deg) 3.331 0.7966 x 106

Q | (Deg) 204.446 0.425720 x 104
w | (Deg) 126.364 0.422150 x 10~4
(Deg) 151.057 0.10854 x 10~°

wherex, is the initial estimate vector given by the values in TahleThe initial error covariance

adopted is a diagonal matrix representing uncertainty iry@othetical orbit determination per-
formed on asteroid under consideration. The diagonal elesma the initial error covariance are
given by the values listed in Table The process noise matr@ in all three filters is assumed to be
03x3, following a traditional approach for orbit estimation.

The system dynamic equations consist of Méody motion given by Eq.1) without process
noise. All dynamic and matrix differential equations areneuically integrated by using a fourth-
order RungeKutta algorithm. For the simulation the positmd velocity are used as states and the
initial conditions are converted to cartesian coordinaiée three filter approaches are also applied
in cartesian coordinates. In the simulation studies th@lmosition and velocity estimates for the
EKF, UKF, and PF are assumed to be given by values in Tablde initial pdfs are approximated
as Gaussian pdfs for the three filters (in the case of the PiRitia particles are sampled from this
distribution). The asteroid under consideration has aeelggproach at JD 2462237.63963 (or 2029
April 11) and for this approach as the asteroid enters ththiEaphere of influence, with respect to
the Sun, the target plane transformation is applied.

The EKF uncertainty is propagated by integrating ELf) (using the covariance values from
Table 1 as an initial condition until close-approach. Then oncertiean orbit enters the Earth’s
sphere of influence, E¢39) is used to propagate the pdf onto the target plane at clgseach. For
the UKF parameters; = 3 is set to capture the higher-order terms in the Taylor-sezigansion
anda = 103 is chosen to make the sample distance independent of tieesitat Samples from
the initial Gaussian pdf are taken for the PF approach arskthamples are propagated using the
system model Eqg.1j keeping their weights constant considering that no aatthli measurements
are used. Then as each patrticle enters the Earth’s spherftuefice the target plane transformation
is applied using Eq.118. Simulation results are presented using thevalues for the EKF and
UKF plotted along with the PF particles over the times spadiley up the close-approach. Four
times are plotted: 2005 (FiguR, 2010 (Figured), 2015 (Figureb), and just before encounter at
2029 (Figures).

The initial pdfs for the three filters is presented in FigBr& he PF’s initial pdf is considered to be
20,000 points sampled from the initial Gaussian distrdoutiThe red points in Figur® represent
the particles from the PF and the red line represents éhba®inds for the Gaussian distribution
assumed for the UKF. Similarly thez3ounds for the Gaussian distribution assumed for the EKF
is plotted in blue line coinciding with the UKFo3bound initially. Then for the EKF the mean is
propagated until it enters the sphere of influences, thewrdkariance is propagated linearly onto
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the target plan. For UKF and PF each sigma point and particfgapagated until it enters the
sphere of influences, then the target plane transformatiapplied on each point. Figurds show
the three filters plotted progressively through the propagaeriod.

It can be noted that initially the performance of the threelinear filter approaches are very
similar but, as expected, as the propagation time increhgeEKF over-estimated the covariance
of the distribution in comparison to the PF, especially sad¢fngure6. Although the UKF also over-
estimated the covariance of the distribution in compartsdhe PF it consistently outperformed the
EKF throughout the propagation period. After all three apghes are propagated to 2029 the target
plane transformation is applied. The PF particles are shmwihe target plane along with the 3
bound of the EKF and UKF in Figur2. Here the manner that the EKF approximates the target
plane transformation led to an over-estimate of the comagan the target plane. Since uncertainty
right before the target approximation is large the linestion is about a large region and the two
body approximation is also about a large region as well. &incthe EKF there exists regions
within the linearization region that is outside the Eariphere of influence the deflection of these
points by the Earth gravity would be small and thereforeedtregions would lie far from the Earth
on the target plane. This is seen in the fact that the EKFBbBund is very large and elongated
in comparison to the PF. The UKF in this case performed verlf siece the manner that the
covariance is propagated allows for each sigma point ta #mesphere of influence independently,
a more accurate representation of the target plane unugrtaifound with the UKF.

The PF represents the most accurate approach. For detdigsthis method is preferred over
all others but the computational cost in very high with thppeach. The simulation of the PF
presented here took approximately 5 hours to finish whileBK& and UKF where both an order
of magnitude faster, only taking 45-60 sec. The benefit oBKE and UKF is that these approach
can give initial estimates of impact probability with lowrmmputational cost, and highlight potential
threats that need to be studied in more detail with a PF appro&ince the number of NEOs
that need to classified is very large, a computation inexpertbreat classification approach is
appealing.

=8
=4

Figure3. Uncertainty in initial position at 2005, uncertainty in the z and y compo-
nentson the right and uncertainty in the z and y componentson the left.
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Figure4. Uncertainty in position at 2010, uncertainty in the z and y componentson
theright and uncertainty in the z and y componentson the left.
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Figure5. Uncertainty in position at 2015, uncertainty in the z and y componentson
theright and uncertainty in the z and y componentson the left.
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Figure6. Uncertainty in position at 2029, uncertainty in the z and y componentson
theright and uncertainty in the z and y componentson the left.
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CONCLUSION

The impact probability estimation problem has been comedtiéor three nonlinear sequential
estimators, the Extended Kalman Filter (EKF), the UnsakKigiman Filter (UKF) and the Particle
Filter (PF). All three filters studied where considered fstiraating the impact probability of an
asteroid given initial orbit uncertainty. The results shibnat initially the performance of the three
nonlinear filter approaches were very similar but, as exqubcas the propagation time increases
the linear assumption made by the EKF was incorrect, reguiti a large covariance for the EKF
compare to the PF results. The UKF provides good performauee most of the time span, and
the UKF covariance captures evolution of uncertainty reably well. Finally the three filter ap-
proaches were used to propagate the encounter uncertaittythe target plane. The pdf on the
target plane was shown and again the linear assumption &HKlkefail due the large state covari-
ance. The UKF pdf very well approximates the PF distribyttout still failed to capture the tail of
the full distribution.
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