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NONLINEAR SEQUENTIAL METHODS FOR IMPACT
PROBABILITY ESTIMATION

Richard Linares∗, Puneet Singla†, and John L. Crassidis‡

Orbit determination in application to the estimation of impact probability has the
goal of determining the evolution of the state probability density function (pdf)
and determining a measure of the probability of collision. Nonlinear gravitational
interaction and non-conservative forces can make the pdf far from Gaussian. This
work implements three nonlinear sequential estimators: the Extended Kalman Fil-
ter (EKF), the Unscented Kalman Filter (UKF) and the Particle Filter (PF) to es-
timate the impact probability. Both the EKF and the UKF make the Gaussian as-
sumption and this work investigates the effect of this approximation on the impact
probability calculation, while the PF can work for non-Gaussian systems.

INTRODUCTION

After the formation of the early solar system some material failed to coalesce into planets, this
mass became what is known as comets and asteroids. Most of this mass is held within the Kuiper
belt and the Oort cloud and was believed to present no danger to Earth until a large scale computer
simulation was performed to determine the time evolution ofthe these objects. Through their natural
evolution a few of these objects may have their orbits altered into trajectories that allow them to
enter the Earth’s neighborhood. Researchers found that asteroids in the main-belt in stable orbits
are possible sources for Earth crossing asteroids.1 These results indicated that an asteroid impacting
with the Earth possesses a real threat to the planet and this threat must be anticipated and mitigated.
Astronomers increase their searches for near-Earth objects (NEOs) and as a result the estimated
numbers of NEOs dramatically expanded by about 1,000 times.2 Although these objects are mostly
composed of water ice with embedded dust particles and porous rocky cores, they can still possess
a great danger to the Earth, having the potential of releasing large amount of energy upon impact.

The detection of asteroid 1989FC on March 23, 1989 made this threat real and brought NEOs to
the public’s attention. This asteriod was discovered only after it had a close approach to within
691,870 kilometers of the Earth, and this was determined only after backwards calculating the
asteroid’s orbit. This asteroid had kinetic energy of over 1,000 megaton hydrogen bombs.2 Asteriod
tracking and impact assessment then received federal funding and many more possible impactors
have been detected, including 1997XF11, 1999AN10 and 1998 OX4, all of which had a finite
probability of close-approach before being ruled out as impactors after tracking their path from
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sensor observations. The 99942 Apophis (2004 MN4) asteroidhas received much attention after
its initial discovery and is predicted to have a very close-approach in April 2029, where it will pass
under some of our communication satellites. Although 2004 MN4 was initially predicted to have
a nonzero probability of impact in 2029, later it was found tohave little collision risk after further
observation and analysis. In subsequent years 2004 MN4 is predicted to make close-approaches in
2034 and 2036. The impact probability associated with theseapproaches is difficult to compute due
to the 2029 close encounter.

The calculation of an encounter probability involves threesteps: determining an accurate orbit
for the asteroid, confidence bounds for that orbit, and finally calculating the probability that at some
time the confidence volume of the orbital position will intersect the planet of interest. Orbit determi-
nation is usually accomplished using a batch least squares approach which linearizes the dynamical
system with respect to a nominal trajectory under the assumption that the true trajectory variation
from the nominal one is small.3 This assumption may be valid for some orbit determination appli-
cations but for anticipating possible NEOs this is not the case. In many cases an asteroid may be
newly discovered or only observable for small portions of its orbit, therefore making the initial esti-
mates of the orbit bad. Also since the orbital period of NEOs are on the order of several years there
current track and any previous tracks may be widely separated. Close-approach times are usually
years from the current measurement set. The nonlinear effect becomes even more apparent when
propagating the orbit for long times into the future due to nonlinear gravitational interaction and
non-conservative forces. This propagation is done by propagating the nominal orbit along with the
covariance of the estimate error using a linearized variational equation (a first order state transition
matrix).4 Then the pdf at close approach is approximated by a Gaussian distribution which is com-
pletely described with the first order, “the mean,” and second order moments, “the covariance,” of
the pdf. The pdf may be far from Gaussian due to nonlinear effects and the covariance propagation
may also be far from linear, making this pdf a bad approximation.

The final task can be very complicated due to the time evolvingnature of the relative orbits. We
have some help here because we know that theN body effects during the time that the asteroid is
in the sphere of influence of the Earth are very small, therefore we can consider the asteroid to be
under pure two body Keplerian motion in this region. In Keplerian motion there are two quantities
that are conserved, energy and specific angular momentum, and by applying these conservation
equations to solve for the epoch state that results in an apogee distance less then the Earth’s radius
approximate solution can be found. A transformation can be derived that maps from the state on
the sphere of influence to the apogee space named the target plane.5 The pdf is then integrated over
a disk on the target plane representing apogee distances less than the effective radius of the Earth.
This transformation is nonlinear and for large variation ininitial condition the linearization can be
invalid. The most accurate nonlinear approaches implementMonte Carlo sampling to space the pdf
over a volume containing most of the probability mass. This can be very computationally expensive
because the volume that contains most of the probability mass may be very large and the samples
must fill the six dimensional state space.

The initial application of linear theory for close approachuncertainty and impact probability
was to calculate Shoemaker-Levy 9 close-approaches to Jupiter by Chodas and Yeomans.6 Linear
methods were inadequate to analyze the collision probability of 1997XF close-approaches using
initial observations due to strong nonlinearities introduced by a 2028 close-approach. Although
later observation of 1997XF in 1990 ruled out any future impact, the hypothetical case of 1997XF
before the 1990 observations was studied by two groups. Chodas and Yeoman applied a Monte
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Carlo approach to estimate the impact probability,7 where they sampled the initial distribution and
integrated these samples up to close approach to calculate an impact probability. Milani developed
a method called the Line of Variation (LOV) search,8 where he sample the line of weakness in
the initial condition and integrated this for the time span of interest. Both studies achieved similar
results in calculating an impact probability of10−5 for the year 2040.

In many orbit determination applications the goal may be to determine an estimate for the or-
bit that is statistically consistent with all the availablemeasurements, and therefore the estimator
must provide an estimate and error bounds for that estimate.Orbit determination in application to
estimating the impact probability on the other hand has a very different goal. The goal here is to
determine the evolution of the pdf of the asteroid’s state and determine a measure of the probability
of collision. Therefore modeling the entire distribution is important. For this purpose, we compare
three well-known filtering techniques: the Extended KalmanFilter (EKF), the Unscented Kalman
Filter (UKF) and the Particle Filter (PF). The goal is to analyze the benefit that UKF and PF can
provide over linear methods (EKF). Although the EKF and UKF assume the state pdf to be Gaus-
sian, the UKF uses the full nonlinear model to compute the mean and state error covariance whereas
the EKF uses a linearized dynamical model.

The organization of this paper is as follows. First, the system model for orbital dynamics and
the target plane transformation are both discussed. Then, adescription of the uncertainty modeling
problem is given. Next, a review of the three filter solutionsis provided. Finally, simulation results
are shown for an impactor scenario where orbital initial uncertainty is considered to be the same
for all three filters. Then the uncertainty is propagated andused to calculate the impact probability
using the three filtering approaches.

SYSTEM MODEL

Orbital Dynamics

In this paper we will use the heliocentric positionr and velocityv to represent the asteroid’s state.
The NewtonianN body gravitational equations of motion in heliocentric coordinates is given as:

r̈s |a = − µs

‖rs |a‖3
rs |a −

Np
∑

i=1

µi

(

rs |a − ri |a

‖rs |a − ri |a‖3
− rs |a

‖rs |a‖3

)

+ aD (1)

wherers |a is the asteroid’s position relative to the Sun,ri |a is the asteroid’s position with respect
to theith perturbating body andaD represents the perturbative accelerations. The termsµs andµi

represent the gravitational parameters of the Sun and theith perturbating body, respectively. The
termNp represents the number of perturbating bodies, which include perturbations from the eight
planets, Pluto and the three largest asteroids, Ceres, Pallas, and Vesta. An analytic solution to
Eq. (1) including all the perturbations is not possible and therefore a numerical solution are used.
For simplicity letρi = rs |a − ri |a, whereρi = [ρxi

, ρyi , ρzi ]
T .

Target Plane Analysis

Consider a nominal orbit with initial conditionsxo, where this initial condition has a close-
approach with a planet at some timet∗. In practice, for planetary encounters, this close-approach
distance is assumed to be between 0.03 and 0.1 AU.8 Given that a close-approach can be identified,
the initial conditions can be propagated to within the close-approach distance where the trajectory
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can be well approximated by two body dynamics. At the point ofclosest-approach we define the
close-approach distance asaCA, where the subscriptAC denotes close-approach. At this point the
asteroid has a velocityvAC . Note that if there is to be an encounteraAC > Re whereRe is the
Earth radius. Near the Earth the trajectory interaction with all other body besides the Earth is small
and therefore we approximate the dynamics to be two body nearthe Earth. Then the trajectory can
be divided into two regions, theN body trajectory outside the Earth sphere of influence governed
by Eq. (1) and a two body trajectory inside the Earth sphere of influence governed by two body
dynamics. Our goal is to relate the apogee distance, for the two body trajectory (i.e. closest approach
distance), to an impact parameter given any initial velocity and position within the Earth sphere of
influence. Under pure two body dynamics there exists simple momentum and energy relations that
can allow us to accomplished this. We begin by defining the relative-Earth state vectorsxi =
[rTi vT

i ]
T , wherexi = xs |a − xe |a using the notation defined in Eq. (1). This vector is considered

to be the state of an asteroid when it enters the Earth’s sphere of influence with respect to the Sun.

Once in the sphere of influence, the orbit of an asteroid can bevery well approximated by two
body dynamics (assuming high relative velocity). We can definexAC = [rTAC vT

AC ]
T , the relative-

Earth state vector, at the point of close approach as predicted by two body dynamics. Then by
conservation of angular momentum we have

ri × vi = rAC × vAC (2)

Since the velocity at closet approach is perpendicular to the position vector, Eq. (2) can be written
in terms of perpendicular distances resulting in the following:

δ × vi = aAC × vAC (3)

whereδ is the perpendicular vector associated withri andaAC is the perpendicular vector asso-
ciated withrAC . The escape velocity,vE, of the asteroid fromaAC to ri can be written using
conservation of energy and is given by

v2E = 2GM

(

1

aAC
− 1

D

)

(4)

whereD = ‖ri‖ is the magnitude ofri. From conservation of energy, the initial velocity can be
related tov2AC by v2AC = v2E + vii

2
, wherevi = ‖vi‖. Then by substituting this into Eq. (3), the

perpendicular distance can be written as

δ = aAC

√

1 +
v2i
v2E

(5)

whereδ = ‖δ‖ is the magnitude ofδ. The critical distance on the target plane where an encounter
will occur is whereaAC > Re, so thereforeaAC = Re solves for theb plane or impact parameter
be:

be = Re

√

1 +
v2i
v2E

(6)

wherev2E = 2GM
(

1
ap
− 1

D

)

≈ 2GM(1/Re) whenRe ≪ D. The termbe represents the min-

imum distance in the target plane where an encounter will occur. By integrating the probability
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density function represented on the target plane over a diskwith radiusbe centered at the Earth, the
encounter probability can be calculated.

The choice of the target plane coordinate system is arbitrary, we label this coordinate system
(ê1, ê2, ê3). The ê3-axis is orientated in the direction of the geocentric velocity of the asteroid,
and a convenient choice of the(ê1, ê2) directions is such that thêe1-axis is aligned with the nom-
inal target plane coordinate and theê2-axis is selected such that coordinate system is positively
orientated.

 

 

 

 

 

 ri

vi

ê1

ê3

ê2

Figure 1. Target Plane Geometry

Using this coordinate system, there exists an orthogonal transformation matrixC that maps the
original coordinate system into this new set of unit vectorssuch that







ê1
ê2
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
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

=





C11 C12 C13

C21 C22 C23

C13 C23 C33










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









(7)

The coordinate systems can be aligned by two rotation matrices given by the following expression







ê1
ê2
ê3







=





cos(λ) 0 sin(λ)
0 −1 0

− sin(λ) 0 cos(λ)









cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 −1















î

ĵ

k̂











(8)

whereθ andλ are the angles giving the orientation of thevi vector. The vectors{̂i, ĵ, k̂} are
the coordinate axis of the inertial frame. The target plane coordinates areδ = [δ1, δ2]

T ; then a
transformation that maps from the inertial to the target plane can be written as

T (θ, λ) =

[

0 1 0
0 0 1

]





cos(λ) 0 sin(λ)
0 −1 0

− sin(λ) 0 cos(λ)









cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 −1



 (9)

Carrying out the matrix multiplication we can write the finalform of the target plane transformation
as

T (θ, λ) =

[

− sin(θ) cos(θ) 0
− cos(θ) sin(λ) sin(θ) sin(λ) cos(λ)

]

(10)

5



Using the definition of the target plane coordinate vectorδ, andv = [vx, vy vz]
T we can write the

target plane vector in terms of initial conditionx = [rT vT ]T :

δ = T (θ, λ)r (11a)

λ = tan−1

(

vz
||v||

)

(11b)

θ = sin−1





vy
√

v2x + v2y



 (11c)

The following notation will be used for the target plane transformation henceforth:

δ = B(x) = T (θ, λ)r (12)

Once the target plane transformation has been defined given an initial condition of a possible im-
pactor, one propagates the heliocentric state vector untilclose approach distance (within the Earth’s
sphere of influence) and then applies the target plane transformation. The target plane coordinate is
then used to determine whether or not there will be an impact,if the coordinateδ is within a disk
of radiusbe there will be an impact with the earth. This approach gives a yes-no answer to whether
there will be an impact; but what if we have not one initial condition but a distribution of initial
conditions? This would be a distribution representing the knowledge about the state of the asteroid.
In the following sections three methods for modeling this distribution and applying the target plane
transformation are discussed.

UNCERTAINTY

A mechanism to represent the uncertainty is necessary before the model data and the sensor
data can be integrated in an efficient and consistent manner.Probabilistic means of representing
uncertainties have been explored extensively and provide the greatest wealth of knowledge which
can be exploited in this work. In the following section we will review uncertainty modeling using a
probabilistic approach.

Uncertainty Representation

In conventional deterministic systems, the system state assumes a fixed value at any given instant
of time. However, in stochastic dynamics it is a random variable and its time evolution is given by
a stochastic differential equation:

ẋ = f(x, t) + g(t,x)Γ(t) (13)

whereΓ(t) represents a Wiener process with the correlation matrixQ. The uncertainty associ-
ated with the state vectorx is usually characterized by time parameterized state pdfp(t,x). In
essence, the study of stochastic systems reduces to finding the nature of such time-evolution of the
system-state pdf described by the following pde, known as the Fokker-Planck-Kolmogorov Equa-
tion (FPKE):

LFP [p(t,x)], LFP =



−
n
∑

i=1

∂

∂xi
D

(1)
i (t,x)[.] +

n
∑

i=1

n
∑

j=1

∂2

∂xi∂xj
D

(2)
ij (t,x)[.]



 (14)
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whereD(1) is known as the Drift Coefficient, whichD(2) is called theDiffusion Coefficientand are
given by the following equations:

D(1)(t,x) = f(t,x) +
1

2

∂g(t,x)

∂x
Qg(t,x), D(2)(t,x) =

1

2
g(t,x)QgT(t,x) (15)

The FPKE is a formidable problem to solve, because of the following issues:1) Positivity of the
pdf, 2) Normalizationconstraint of the pdf:

∫

Rn p(t,x)dx = 1, and3) No fixed Solution Domain:
how to impose boundary conditions in a finite region and restrict numerical computation to regions
wherep >∼ 10−9.

Analytical solutions for the FPKE exist only for a stationary pdf and are restricted to a limited
class of dynamical systems.9 Thus researchers are actively looking at numerical approximations to
solve the FPKE,10,11 generally using the variational formulation of the problem. However, these
methods are severely handicapped for higher dimensions because the discretization of the space
over which pdf lives is computationally impractical. Alternatively many approximate techniques
exist in the literature to approximate the uncertainty evolution, the most popular being Monte Carlo
(MC) methods,12 Gaussian closure,13 Equivalent Linearization,14 and Stochastic Averaging.15 All
of these algorithms, except Monte Carlo methods, are similar in several respects, and are suitable
only for linear or moderately nonlinear systems, because the effect of higher order terms can lead to
significant errors. Monte Carlo methods require extensive computational resources and effort, and
become increasingly infeasible for high-dimensional dynamic systems.

The use of sensor data to correct and refine the dynamical model forecast so as to reduce the
associated uncertainties is a logical improvement over purely model-based prediction. However,
mathematical models for various sensors are generally based upon the “usefulness” rather than the
“truth” and do not provide all the information that one wouldlike to know. This approach had its
birth with the development of the Bayesian estimation.

Between two measurement time instants the procedure discussed in the last section can be used to
propagate the weights, mean and covariance of different Gaussian components through the nonlinear
dynamical system and whenever a measurement is available, Bayes rule can be used to update the
conditional pdf:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|xk)p(xk|Yk−1)dxk
(16)

This equation can be interpreted as follows: Letp(x) represent the prior belief of what values
the random state vectorx might take (prior pdf usually obtained by propagating the initial pdf
through the FPKE). We now observe from a sensor the measurement vectory which is represented
as a conditional pdfp(y|x) which describes the likelihood that we observey givenx. We now
need to determine the new posterior distribution functionp(x|y) of x given the prior pdfp(x) and
the information provided by the observation. The denominator term in Eq. (16) is essentially for
normalizing such that the posterior distribution satisfiesthe constraints of a pdf.

The Bayesian approach has its birth with the development of the Kalman Filter16 (KF). Subse-
quently various researchers have endeavored to exploit knowledge of statistics, dynamic systems
and numerical analysis to develop techniques17,18,19 which cater to the various classes of prob-
lems of interest. For low-order nonlinear systems, Particle filters18,19 have been gaining increasing
attention.
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The goal is to determinedPr{||xt|| ≤ Re} the probability that the statext is within the region
Re. The following integral calculates the probability of collision givenp(xt):

Pr{||xt|| ≤ Re} =
∫ ∫

Ω
p(xt)dxdt (17)

whereΩ is the Earth’s volume and the integral is over all time. The goal of this paper is to investigate
three methods, the Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF) and the
Particle Filter (PF) to evaluate this integral.

APPROXIMATE METHODS: KALMAN FILTER APPROACH

The Kalman filter assumes that the posterior densityp(xk|Y1:k) is Gaussian for anyk, where
Yt is a realization of a sequences of observations{ỹ1, . . . , ỹt} of the state of the system up to
time tk wheret ≥ tk. Also the statex at time tk will be written asxk. This assumption holds
conditioned that the densityp(xk−1|Y1:k−1) is Gaussian and that the observation functionh(x) is
linear. Between observations the Kalman filter approximates the conditional densityp(xk|Y1:k−1)
as a Gaussian distribution. This is valid if the process noise w is Gaussian and the system model
f(x) is linear. Under these assumptions the Kalman filter forms a minimum variance estimator
providing optimal estimates of the state based on the assumed statistical information about the
dynamical and observation model. No unbiased estimator cando better than a Kalman filter in
the very restrictive linear and Gaussian environment. In many situations, the linear assumptions
on these functions may not hold. Therefore an approximate solution for the conditional density is
necessary. The EKF uses a Kalman filter framework by performing a local linearization off(x) and
h(x) about the current estimatex and assumes this describes the nonlinearity.

Predictor

An EKF is now summarized for estimating the state of an asteroid position and velocity given by
x = [rT vT ]T . The standard orbit model in Eq. (1) can be written in the general state equation
which gives us the deterministic part of our stochastic model:

ẋ = f (x, t) + g (x, t)Γ(t) (18)

whereΓ(t) is a gaussian white noise process term with correlation function Qδ(t1 − t2). The
f (x, t) function is a general nonlinear function. To solve the general nonlinear filtering problem the
EKF linearizes the functionf (x, t) about the current nominal state. Then if the initial pdfp(xo)
capturing the initial state uncertainty is given then the time evolution ofp(x, t) can be described by
the FPKE in Eq. (14).

A linear mapping will transform a Gaussian into another Gaussian, where the parameters (mean
and covariance) of the resulting distribution can be easilycomputed. But the outcome of a Gaussian
that undergoes a nonlinear transformation is generally non-Gaussian. Conventionally, a Gaussian
approximation to the forecast density functionp(x, t) is obtained by linearizing the nonlinear trans-
formation and the propagation equations which can be written as

µ̇ = f (µ, t) (19a)

Ṗ = A(µ)P +PAT (µ) + g (µ, t)QgT (µ, t) (19b)
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where

A(µ) =
∂f (x, t)

∂x

∣

∣

∣

∣

x=µ

(20)

Then the final approximated forecast density can be written as

p(x, t) = N (µ ,P) (21)

Given the state equation is a the orbit model in Eq. (1), the Jacobian matrix of the state equation is
given by

A(x) =

[

03×3 I3×3

J3×3 03×3

]

(22)

andJ is a gravity gradient matrix which can be written by

J = G−K (23)

where

G =















− µ̄

‖rs |a‖3
+

3µ̄x2

s |a

‖rs |a‖5
3µ̄xs |ays |a

‖rs |a‖5
3µ̄xs |azs |a

‖rs |a‖5

3µ̄ys |axs |a

‖rs |a‖5
− µ̄

‖rs |a‖3
+

3µ̄y2
s |a

‖rs |a‖5
3µ̄ys |azs |a

‖rs |a‖5

3µ̄zs |axs |a

‖rs |a‖5
3µ̄zs |ays |a

‖rs |a‖5
− µ̄

‖rs |a‖3
+

3µ̄z2
s |a

‖rs |a‖5















(24a)

K =

















∑

(

−µi

‖ρi‖3
+

3µiρ
2
xi

‖ρi‖5

)

∑

µi

(

3ρxi
ρyi

‖ρi‖5
)

∑

µi

(

3ρxi
ρzi

‖ρi‖5
)

∑

µi

(

3ρyi
ρxi

‖ρi‖5
)

∑

(

−µi

‖ρi‖3
+

3µiρ
2
yi

‖ρi‖5

)

∑

µi

(

3ρyi
ρzi

‖ρi‖5
)

∑

µi

(

3ρzi
ρxi

‖ρi‖5
)

∑

µi

(

3ρzi
ρyi

‖ρi‖5
)

∑

(

−µi

‖ρi‖3
+

3µiρ
2
zi

‖ρi‖5

)

















(24b)

whereµ̄ = (µs −
∑

µi) is the sum of the gravitational parameter for each body.

Corrector

Given a system model with initial state and covariance values, the EKF propagates the state
vector and the error covariance matrix recursively. Then, along with imperfect measurements, the
EKF updates the state and covariance matrix. The update is accomplished through the Kalman gain
matrixK, which is obtained by minimizing the weighted sum of the diagonal elements of the error
covariance matrix. Thus, the EKF algorithm has a distinctive predictor corrector structure. The
prediction phase is important for overall filter performance. In general, the discrete measurement
equation can be expressed for the filter as

ỹk = h (xk, t) + vk(t) (25)

where ỹk is a measurement vector andvk(t) is a measurement noise which is assumed to be a
white Gaussian noise process. The noise statistic ofỹk can be described completely byvk(t) ∼
N (0,R(t)) whereE{vk(t)} = 0 andE{[vk(t)−E{vk(t)}][vk(t)−E{vk(t)}]T } = R(t) repre-
sents the covariance ofvk(t). To use a recursive filter, the EKF expresses the state and measurement
equation in the linearized form. Using Bayes’ theorem underthe linear gaussian assumption we can
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determine a relationship to update the mean and covariance of the distribution by minimizing the
error covariance matrix, providing an optimal estimate of the state in a minimum variance sense.
Then the following update equation can be written for the mean of the state distribution

µk|k = µk|k−1 +Kk

[

zk − h(µk|k−1)
]

(26)

where the the notation of superscripts(k|k − 1) denote the estimate at the measurement update
time which is conditioned on the previous measurements and has not been updated; the firstk term
represents the time step the estimate is given for and the second subscript represents the last time
step the estimate was updated with measurements. TheK matrix is a gain at the measurement time
update given by

Kk = Pk|k−1Ĥ(µk|k−1)
T
[

Ĥ(µk|k−1)Pk|k−1Ĥ(µk|k−1)
T +Rk

]−1
(27a)

Pk|k = Pk|k−1 −KkĤ(µk|k−1)Pk|k−1 (27b)

wherePk|k is an covariance matrix atk time step conditioned on the measurements up to thekth

time step and̂H(µk|k−1) is given by:

Ĥ(µk|k−1) =
∂h (x, t)

∂x

∣

∣

∣

∣

x=µ

(28)

The termĤ(µk|k−1)Pk|k−1Ĥ(µk|k−1)
T+Rk is called the innovation covariance and it comes from

the likelihood function, it represents the covariance of predicted state error,e =
{

ỹk − h
(

xk|k−1, t
)}

,
assuming Gaussian distribution forxk|k−1 andỹk. While propagating the orbit if there is a mea-
surement made available, Eq. (27a) and Eq. (27b) can be used to update the pdf of the state vector
condition on all measurements that are available at the current time step. Therefore, given an orbit
that has been determined and the uncertainty quantified using the Gaussian assumption, if further
measurements are made available, Eq. (27a) and Eq. (27b) can be used to update the pdf and recal-
culate the probability of impact given these new measurements.

Target Plane Approximation

The EKF approach to propagating uncertainty can be applied to the target plane transformation
by linearizing the target plane transformation about the nominal state vector. Given the nonlinear
target plan transformation in Eq. (10), the linear model can be written as

µδ = F(µ)x (29)

where

F(µ) =
dB (x)

dx

∣

∣

∣

∣

x=µ

(30)

The quantityµδ is the mean of the state on the target plane, which is an approximation forE{δ}.
The matrixF(µ) is the Jacobian of target plane transformation evaluated atthe mean, which can be
determined by taking the derivative of Eq. (10) with respect to the state vectorx and settingx = µ.
TheF(x) matrix can be written as

F(x) =
[

T (θ, λ) dδ
dΘ

dΘ
dvT

]

(31)
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whereΘ represents a vector of the anglesθ andλ, Θ = [θ, λ]T . Then the expression fordδ
dΘ

can
be shown to be

dδ

dΘ
=

[

rT 01×3

01×3 rT

] [

A

B

]

(32)

where

AT =

[

sin(θ) sin(λ) cos(θ) sin(λ) 0
− cos(θ) − sin(θ) 0

]

(33a)

BT =

[

0 0 0
− cos(θ) cos(λ) sin(θ) cos(λ) − sin(λ)

]

(33b)

Then the expression can be written asdΘ
dvT

dΘ

dvT
=

[

1
1+X 2 0

0 1√
1−Y2

]

[

−(vz‖v‖−3vx) −(vz‖v‖−3vy) (‖v∗‖2‖v‖−3vx)
−(vy‖v∗‖−3vx) (v2x‖v∗‖−3) 0

]

(34)

whereX = vz/‖v‖ andY = vy/‖v∗‖ and these terms are determined from differentiating Eq. (11b)

and Eq. (11c). The quantity‖v∗‖ =
√

v2x + v2y is used to define the magnitude of thex andy

velocity vector. The covariance on the target plane given the linear transformation can be written as

Pδδ = F(µ)PF(µ)T (35)

whereP is the covariance at close approach, andPδδ is the covariance on the target plane. Then
under the linear transformationF(µ), the pdf on the target plane can be written as a Gaussian
distribution in the form

p(δ) = N (B (µ) ,Pδδ) (36)

Then to calculate the probability of impact, the pdf forδ can be integrated over the Earth’s effective
disk on the target plane given by a disk center at the origin with radiusbe. The radiusbe on the
other hand is a function of‖v‖ and‖r‖ as seen in Eq. (4) and Eq. (5) makingbe a function ofp(δ).
The first dependance is resolved by assuming‖r‖ > Re as discussed in previously and the second
dependance is resolved by assuming that‖v‖ = ‖vµ‖ wherevµ is the velocity component of mean
stateµ. The effect of the uncertainty inbe in calculating the impact probability is assumed to be
small, this assumption onbe is made for the rest of this paper. Furthermore, the state uncertainty
is represented as a distribution of possible states the question arises of how to define the close
approach. Under the EKF linear Gaussian assumption we consider the close approach point when
the mean of the distribution makes a close approach, i.eµ is less then the close approach distance.
The effect of this on the numerical results is discussed in the simulation results section.

APPROXIMATE METHODS: UNSCENTED FILTER APPROACH

The basic difference between the EKF and the UKF results fromthe manner in which the state
distribution of the nonlinear models is approximated. The UKF, introduced by Julier and Uhlmann17

uses a nonlinear transformation called the scaled unscented transformation, in which the state prob-
ability distribution is represented by a set of weighted sigma points, which are used to parameterize
the true mean and covariance of the state distribution. Whenthe sigma points are propagated through
the nonlinear system, the posterior mean and covariance is obtained up to the second order for any
nonlinearity. The UKF algorithm is summarized in this section for discrete-time nonlinear models.
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The original state vector is redefined in the UKF approach by augmenting the state vector to
include noise variables, where the augmented state vector is defined byxa

k = [xT
k wT

k vT
k ]

T and the
augmented state vector has dimensionna = n+q+ l. All random variables in the UKF are assumed
to be Gaussian random variables, therefore one can think of ajoint distribution for the random
variables, equivalent to the distribution ofxa

k, defining multivariate Gaussian distribution given by
p(xa

k) = p(xk, wk, vk). The assumed statistics forwk andvk where discussed previously, then the
joint distribution is approximated byp(xk, wk, vk) ∼ N (xa

k, P
a). The mean augmented vector

xa
k can written asµa = [µT 0Tl×1 0Tq×1]

T , whereµ is the state estimate. The covariance matrix,
Pa, for the joint distribution can be written as

Pa =





P Pxw Px v

Pw x Q Pw v

Pv x Pv w R



 (37)

Then the distribution is approximated as a set of symmetric selected scaled sigma points. The sigma
points are selected such that they are zero-mean, but if the distribution has meanµ, then simply
addingµ to each of the points yields a symmetric set of2na points having the same covariance
as the initial Gaussian distribution.17 The sigma points are selected to be along the principle axis
direction of the Gaussian distributionp(xa

k) or along the eigenvector directions ofPa
k. Then the

augmented state vector and covariance matrix is constructed by

σk ← 2Na columns from
√

(na + λ)Pa
k (38a)

χa
k(0) = µk (38b)

χa
k(i) = σk(i) + µk (38c)

Therefore given ana × na covariance matrixPa
k, a set of2na sigma points can be generated from

the columns of the matrices
√

(na + λ)Pa
k, where

√
M is shorthand notation for a matrixZ such

thatM = Z ZT . Using the notation of the augmented state vector the sigma point vector can be
written as

χa
k(i) =





χx(i)
χw(i)
χv(i)



 (39)

Then given that these points are selected to represent the distribution of the augmented state vector,
each sigma point is given a weight that preserves the information contained in the initial distribution:

Wmean
0 =

λ

n+ λ
(40a)

W cov
0 =

λ

n+ λ
+ (1− α2 + β) (40b)

Wmean
i = W cov

i =
λ

2(n+ λ)
(40c)

whereλ = α2na + κ − na includes scaling parameters. The constant parameter controls the size
of the sigma point distribution and should be a small number0 ≤ α ≤ 1, andκ provides an extra
degree of freedom that is used to fine-tune the higher-order moments;κ = 3 − na for a Gaussian
distribution, alsoβ is a third parameter that further incorporates higher-order effects by adding the
weighting of the zeroth sigma point to the calculation of thecovariance; noteβ = 2 is the optimal
value for Gaussian distributions.
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Predictor

The state propagation and state uncertainty propagation isaccomplished using the sigma points.
The transformed set of sigma points are evaluated for each ofthe points by

χ̇x(i, t) = f(χx(i, t), χw(i, t)) (41)

The predicted mean is given by

µ(t) =
2n
∑

i=0

Wmean
i χx(i, t) (42)

The predicted covariance is given by

P(t) =

2n
∑

i=0

W cov
i [χx(i, t)− µ(t)][χx(i, t)− µ(t)]T (43)

whereχx
k(i, t) is a weighted sigma point vector of the firstn elements of theith augmented sigma

point vectorχa andχw is a weighted sigma point vector of the nextq elements ofχa. Also χv is
a weighted sigma point vector of thel elements of theith augmented sigma point vectorχa, and
Wmean

i is the weight for the mean andW cov
i is the weight for the covariance, respectively.

Corrector

Similarly, the predicted observation vectorŷk at time stepk and the innovation covariancePvv
k

are calculated

Yk = hk(χ
x
k , χ

v
k) (44a)

ȳk =
2n
∑

i=0

Wmean
i Yk(i) (44b)

Pvv
k =

2n
∑

i=0

W cov
i [Yk(i)− ȳk][Yk(i)− ȳk]

T (44c)

Now, the filter gain is computed by

Kk = P xy
k (P vv

k )−1 (45)

and the cross-correlation matrix is determined by

P
xy
k =

2n
∑

i=0

W cov
i [χx

k(i)− µk][Yk(i)− ȳk]
T (46)

The estimated state vector at current time step conditionedon the previous measurements up to and
including the last time step is denoted asx̂k|k−1 and similar the covariancePk|k−1 are given by

µk|k = µk|k−1 +Kkvk+1 (47)

Pk|k = Pk|k−1 −KkP
vv
k KT

k (48)
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It is noted that in the formulation of the UKF algorithm the correlated noise sources can be im-
plemented efficiently without any modification of the filter algorithm. For the special case where
both the process and measurement noise terms are purely additive, the computational complexity of
the UKF can be reduced by adjusting the augmented state vector. For computational stability the
matrix square root can be implemented by using a Cholesky factorization method that prevents the
nonnegative covariance matrix.

Target Plane Approximation

The UKF approach to propagating uncertainty can be applied to the target plane transformation
by using the unscented transformation on the Gaussian distribution given by the UKF. Instead of
linearizing about the nominal state vector, the unscented transformation approximates the distribu-
tion to a higher order of accuracy. Given the nonlinear target plane transformation in Eq. (10), the
unscented transformation can be written as

χδ = B(χx) (49)

The mean and covariance on the target plane are given by

δ̄ =
2n
∑

i=0

Wmean
i χδ(i) (50a)

Pδδ =
2n
∑

i=0

W cov
i [χδ(i) − δ̄][χδ(i)− δ̄]T (50b)

Under the unscented transformation, the pdf on the target plane can be written as a Gaussian distri-
bution in the form

p(δ) = N
(

δ̄, Pδδ

)

(51)

where herePδδ is the UKF covariance on the target plane. In contrast to the EKF target plane
approach, for the UKF each sigma point is propagated to its own point of close-approach rather
then the point where the mean of the distribution make its close-approach. Determining the close-
approach time for each sigma point represents a more accurate approximation to the target plane
transformation since the assumption of two body dynamics ismade under the target plane transfor-
mation. If the uncertainty is large when the mean makes a close-approach there may be a region of
non-negligible probability that may lie outside the sphereof influence of the Earth and the two body
approach then becomes invalid. Therefore, each sigma pointis propagated forward in time until
the sigma point makes a close-approach where the target plane transformation is preformed on this
sigma point. All sigma points are propagated onto the targetplane where a mean and covariance are
calculated and the pdf is approximated by Eq. (51).

APPROXIMATE METHODS: PARTICLE FILTER APPROACH

Particle filtering approaches are based on Monte Carlo methods, where a probability distribution
is represented by set of randomly selected particles. Usingthe fact that the system in question can be
solved for an individual set of initial conditions, the solution for a distribution of initial conditions
are approximated by the solutions of a set of particles representing the initial distribution. GivenN
independent and identically distributed random samplesx(i) drawn fromp(x), i = 1, . . . , N the
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distribution can be approximated byp(x) ≈ (1/N)
∑N

i=1 δ(x − x(i)) and an arbitrary integral (or
expectation) with respect top(x) can be approximated by

∫

f(x)p(x)dx ≈ 1

N

N
∑

i=1

f(x(i)) (52)

Perfect Monte Carlo sampling assumes the samples are drawn directly from the distributionp(x)
and that there are enough particles to represent the mass of the distribution. It can be shown that
asNa →∞, the approximation given by Eq. (52) approaches the true density.18 In the case of the
Particle filter each particle is assigned a weight,w(i) ∝ p(x(i)), which represents the probability
of that particle occurring. Then the weights are normalizessuch that

∑N
i w(i) = 1. A particle

filter involves four steps, namely, prediction, update (correction), resampling and regularization
(roughening), all of these steps constitute a filter cycle.

Predictor

The sets of particles and their associated weights representing the pdf attk andtk+1 are denoted

by {x(i)
k , w

(i)
k } and{x(i)

k+1, w
(i)
k+1}, respectively, wherei = 1, . . . , N . The particles at timetk are

propagated through the following equation with their weights unchanged:

ẋ(i) = f(x(i),wi) (53)

Then the particle at timetk+1, {x(i)
k+1, w

(i)
k+1}, represents the forecast pdf, whereN samplesw(i)

of the process noise are drawn according top(w), denoted byw(i)
k ∼ p(wk), i = 1, . . . , N ,

is the normalized weight of the particle. The process noisew and the measurement noisev are
assumed to be zero-mean white noise sequences. Although no Gaussian assumptions are needed,
the distributions of the mutually independentxo, w, andv, denoted byp(xo), p(w) and p(v),
respectively, are assumed to be known and Gaussian for this work. Then, the posterior density atk
can be approximated as

p(x(t)) ≈
i
∑

i=1

wiδ(x(t) − xi(t)) (54)

whereδ(·) represents the direc delta function, which returns one for an argument of zero and zero
otherwise. Equation (54) represents a discrete weighted approximation to the true posterior.

Corrector

When measurements are made available, the pdf is updated by updating the weights of each par-
ticle using the likelihood of the measurement given each particle. At the update step the weight
associated with each particle is updated based on the likelihood functionw(i)

k+1 = w
(i)
k p(ỹk|x(i)

k ):

wherew(i)
k+1 denotes the unnormalized weights. If additive noise is considered the likelihood func-

tion has a simple form:p(ỹk+1|x(i)) = p(ỹk − h(x
(i)
k )). Then weight update for each particle is

based on the likelihood function and given by

w
(i)
k = w

(i)
k−1p(ỹk|x(i)

k−1) (55a)

w
(i)
k =

w
(i)
k

∑N
i=1w

(i)
k

(55b)

where the likelihood functionp(ỹk|x(i)
k ) depends on the noise process of the observation directly.

15



Resampling and Regularization

The variance associated with the weights in sequential importance sampling can only increase
over time and eventually all but one particle will have negligible weight.18 To overcome this de-
generacy problem resampling is used to discard obsolete particles with small weights and multiply
particles with large weights.19 The resampling procedure starts by drawing samplesN times from
{x(i)

k+1, w
(i)
k+1} to obtainN equally weighted particles,{x(i)

k+1, 1/N}.
Since resampling duplicates the particles with large weights, generating many identical particles

may greatly decrease the number of distinct particles, resampling is usually followed by a regular-
ization step. The regularization step adds small noise to the resampled particles to increase particle
diversity.19 A small independent jitter drawn from a Gaussian distribution is added to the identical
particles to increase diversity.

Target Plane

The PF approach to propagating uncertainty can be applied tothe target plane transformation to
represent the uncertainty on the target plane. Given the nonlinear target plane transformation in
Eq. (10) and the asteroid’s initial distributionp(x) represented by a set of weighted particles, the
probability density of the asteroid on the target plane can be written as

p(δ) =

N
∑

i=0

wiδ(B(x) −B(x(i))) (56)

where the weights are unchanged from those of the initial particle set. In a similar manner to the
unscented transformation approach, each particle is propagated to its own point of close-approach
rather then to the point where the mean of the distribution makes its close-approach.

SIMULATION RESULTS
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Figure 2. Target Plane Propagated Densities, Target Plane 3σ to scale on left and
Target Plane 3σ Zoomed in on right.

In this section the performance of the proposed nonlinear filters, the EKF, UKF, and PF, is demon-
strated through simulation examples using a realistic near-Earth asteroid orbit and initial uncer-
tainty. The asteroid under consideration has the orbit parameters given is Table1 for an epoch JD
2453736.5. The initial error covariancePo is theoretically an expectationE{(xo−x̂o)(xo−x̂o)

T },
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Table 1. Initial Uncertainty Used for Simulations for Epoch JD 2453736.5

Initial Estimate Initial Variances

a (AU) 0.922 0.96× 10−8

e 0.191 0.297× 10−7

i (Deg) 3.331 0.7966× 10−6

Ω (Deg) 204.446 0.425720× 10−4

ω (Deg) 126.364 0.422150× 10−4

M (Deg) 151.057 0.10854× 10−5

wherexo is the initial estimate vector given by the values in Table1. The initial error covariance
adopted is a diagonal matrix representing uncertainty in a hypothetical orbit determination per-
formed on asteroid under consideration. The diagonal elements of the initial error covariance are
given by the values listed in Table1. The process noise matrixQ in all three filters is assumed to be
03×3, following a traditional approach for orbit estimation.

The system dynamic equations consist of theN -body motion given by Eq. (1) without process
noise. All dynamic and matrix differential equations are numerically integrated by using a fourth-
order RungeKutta algorithm. For the simulation the position and velocity are used as states and the
initial conditions are converted to cartesian coordinates. The three filter approaches are also applied
in cartesian coordinates. In the simulation studies the initial position and velocity estimates for the
EKF, UKF, and PF are assumed to be given by values in Table1. The initial pdfs are approximated
as Gaussian pdfs for the three filters (in the case of the PF theinitial particles are sampled from this
distribution). The asteroid under consideration has a close-approach at JD 2462237.63963 (or 2029
April 11) and for this approach as the asteroid enters the Earth’s sphere of influence, with respect to
the Sun, the target plane transformation is applied.

The EKF uncertainty is propagated by integrating Eq. (19) using the covariance values from
Table1 as an initial condition until close-approach. Then once themean orbit enters the Earth’s
sphere of influence, Eq. (35) is used to propagate the pdf onto the target plane at close-approach. For
the UKF parameters,β = 3 is set to capture the higher-order terms in the Taylor-series expansion
andα = 10−3 is chosen to make the sample distance independent of the state size. Samples from
the initial Gaussian pdf are taken for the PF approach and these samples are propagated using the
system model Eq. (1) keeping their weights constant considering that no additional measurements
are used. Then as each particle enters the Earth’s sphere of influence the target plane transformation
is applied using Eq. (11a). Simulation results are presented using the 3σ values for the EKF and
UKF plotted along with the PF particles over the times span leading up the close-approach. Four
times are plotted: 2005 (Figure3), 2010 (Figure4), 2015 (Figure5), and just before encounter at
2029 (Figure6).

The initial pdfs for the three filters is presented in Figure3. The PF’s initial pdf is considered to be
20,000 points sampled from the initial Gaussian distribution. The red points in Figure3 represent
the particles from the PF and the red line represents the 3σ bounds for the Gaussian distribution
assumed for the UKF. Similarly the 3σ bounds for the Gaussian distribution assumed for the EKF
is plotted in blue line coinciding with the UKF 3σ bound initially. Then for the EKF the mean is
propagated until it enters the sphere of influences, then thecovariance is propagated linearly onto
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the target plan. For UKF and PF each sigma point and particle is propagated until it enters the
sphere of influences, then the target plane transformation is applied on each point. Figures3-6 show
the three filters plotted progressively through the propagation period.

It can be noted that initially the performance of the three nonlinear filter approaches are very
similar but, as expected, as the propagation time increasesthe EKF over-estimated the covariance
of the distribution in comparison to the PF, especially seenin Figure6. Although the UKF also over-
estimated the covariance of the distribution in comparisonto the PF it consistently outperformed the
EKF throughout the propagation period. After all three approaches are propagated to 2029 the target
plane transformation is applied. The PF particles are shownon the target plane along with the 3σ
bound of the EKF and UKF in Figure2. Here the manner that the EKF approximates the target
plane transformation led to an over-estimate of the covariance on the target plane. Since uncertainty
right before the target approximation is large the linearization is about a large region and the two
body approximation is also about a large region as well. Since in the EKF there exists regions
within the linearization region that is outside the Earth’ssphere of influence the deflection of these
points by the Earth gravity would be small and therefore these regions would lie far from the Earth
on the target plane. This is seen in the fact that the EKF 3σ bound is very large and elongated
in comparison to the PF. The UKF in this case performed very well since the manner that the
covariance is propagated allows for each sigma point to enter the sphere of influence independently,
a more accurate representation of the target plane uncertainty is found with the UKF.

The PF represents the most accurate approach. For detail studies this method is preferred over
all others but the computational cost in very high with this approach. The simulation of the PF
presented here took approximately 5 hours to finish while theEKF and UKF where both an order
of magnitude faster, only taking 45-60 sec. The benefit of theEKF and UKF is that these approach
can give initial estimates of impact probability with low computational cost, and highlight potential
threats that need to be studied in more detail with a PF approach. Since the number of NEOs
that need to classified is very large, a computation inexpensive threat classification approach is
appealing.

Figure 3. Uncertainty in initial position at 2005, uncertainty in the z and y compo-
nents on the right and uncertainty in the z and y components on the left.
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Figure 4. Uncertainty in position at 2010, uncertainty in the z and y components on
the right and uncertainty in the z and y components on the left.

Figure 5. Uncertainty in position at 2015, uncertainty in the z and y components on
the right and uncertainty in the z and y components on the left.

Figure 6. Uncertainty in position at 2029, uncertainty in the z and y components on
the right and uncertainty in the z and y components on the left.
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CONCLUSION

The impact probability estimation problem has been considered for three nonlinear sequential
estimators, the Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF) and the Particle
Filter (PF). All three filters studied where considered for estimating the impact probability of an
asteroid given initial orbit uncertainty. The results showthat initially the performance of the three
nonlinear filter approaches were very similar but, as expected, as the propagation time increases
the linear assumption made by the EKF was incorrect, resulting in a large covariance for the EKF
compare to the PF results. The UKF provides good performanceover most of the time span, and
the UKF covariance captures evolution of uncertainty reasonably well. Finally the three filter ap-
proaches were used to propagate the encounter uncertainty onto the target plane. The pdf on the
target plane was shown and again the linear assumption of theEKF fail due the large state covari-
ance. The UKF pdf very well approximates the PF distribution, but still failed to capture the tail of
the full distribution.
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