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Abstract

This paper presents a new method to determine the mass of an inactive space object from photometric
and astrometric data. Typically the effect of solar radiation pressure is used to determine area-to-mass
ratio for space objects from angles observations. The area-to-mass ratio of a space object can greatly affect
its orbital dynamics; therefore angles data are sensitive to this quantity. On the other hand, photometric
data is not sensitive to mass but is a strong function of the albedo-area and the rotational dynamics of the
space object. The albedo-area can be used to determine the amount of energy reflected from solar radiation.
Since these two data types are sensitive to albedo-area and area-to-mass, then by fusing photometric data
with angles data it is possible to determine the area and mass of a space object. This work employs
an unscented Kalman filter to estimate rotational states, translational states, area states and mass of an
inactive space object. Mass is not observerable with only angles data or only photometric data, but it
is shown in this work that with the two combined data types mass can be recovered. Recovering this
characteristic and trajectories with sufficient accuracy is shown in this paper. The performance of the new
method is demonstrated via simulated scenarios.

1 Introduction

In recent years space situational awareness, which is
concerned with collecting and maintaining knowledge
of all objects orbiting the Earth, has gained much at-
tention. The U.S. Air Force collects the necessary
data for space object catalog development and main-
tenance through a global network of radars and op-
tical sensors. Due to the fact that a limited num-
ber of sensors are available to track a large number
of space objects (SOs), sparse data collected must be
exploited to its fullest extent. Various sensors such as

radars and optical sensors exist for SO state estima-
tion, which typically includes position, velocity and
a non-conservative force parameter analogous to a
ballistic coefficient. However, the ballistic coefficient
parameters may not fully describe the SO’s motion.
Hence, more detailed attitude dependent models are
required. In this case more elaborate techniques for
processing observation data that can extract attitude
information are required.

Light curves (the SO temporal brightness as seen
from the observer) have been used to estimate the
shape for an object. In particular, light curve ap-
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proaches have been studied to estimate the shape
and state of asteroids [1, 2]. Reference [3] uses light
curves and thermal emissions to recover the three-
dimensional shape of an object assuming its orien-
tation with respect to the observer is known. The
benefits of using a light curve-based approach over
the aforementioned others is that it is not limited to
larger objects in lower altitudes, and it can be applied
to small and dim objects in higher altitudes, such as
geosynchronous orbits. Here light curve data is con-
sidered for mass estimation, which is also useful since
it provides a mechanism to estimate both position
and attitude, as well as their respective rates [4, 5].

There are several aspects of using light curve data
(temporal photometry) that make it particularly ad-
vantageous for object detection, identification and
tracking. Light curve data includes the time-varying
sensor wavelength-dependent apparent magnitude of
energy (i.e. photons) scattered (reflected) off of an
object along the line-of-sight to an observer. Because
the apparent magnitude of the SO is a function of its
size, orientation and surface material properties, one
or more of these characteristics should be recoverable
from the photometric data. This can aid in the de-
tection and identification of a SO after a catalog of
spacecraft data with material properties is developed,
and may also prove to be powerful for never-seen-
before objects.

There is a coupling between SO attitude and non-
conservative force/torques. This can be exploited to
assist in the estimation of the SO trajectory. The
measurement of the apparent magnitude is a function
of several SO characteristics. These same character-
istics drive certain non-conservative forces, such as
solar radiation pressure (SRP). The acceleration due
to SRP is modeled as function of an object’s Sun-
facing area, surface properties, mass, position, and
attitude. It has a very small magnitude compared
to gravitational accelerations, and typically has an
order of magnitude around 10−7 to 10−9 m/s2, but
is the dominant non-conservative acceleration for ob-
jects above 1,000 km. Below 1,000 km, drag caused
by the atmospheric neutral density is the dominant
non-conservative acceleration.

Deep space optical surveys of near geosynchronous
(GEO) objects have identified a class of high area-
to-mass ratio (HAMR) objects [6]. The exact char-
acteristics of these objects are not well known and
their motion pose a collision hazard with GEO ob-
jects due the SRP induced large variations of incli-
nation and eccentricity. These objects are typically
non-resolved and difficult to track due to dim mag-
nitude and dynamic mismodeling. Therefore, char-
acterizing the large population of HAMR objects in

geostationary orbit is required to allow for a better
understanding of their origins, and the current and
future threats they pose to the active SO population.

Estimating the dynamic characteristics of a HAMR
object using light curve and astrometric data can al-
low for mass parameters to be observable. Estimating
mass for HAMR objects can help in the development
of a detailed understanding of the origin and dynam-
ics of these objects. It has been shown that the SRP
albedo area-to-mass ratio, CrA

m , is observable from
angles data [7] through the dynamic mismodeling of
SRP forces. Reference [7] conducts a study with sim-
ulated and actual data to quantify the error in the
estimates of CrA

m and good performance is found us-
ing data spanning over a number of months. Also
Ref. [8] shows that orbital, attitude and shape pa-
rameters can be recovered with sufficient accuracy
using a multiple-model adaptive estimation approach
coupled with an unscented Kalman filter. This ap-
proach works reasonably well but requires that the
area-to-mass ratio is known a priori. The purpose
of this work is to shown that since CrA

m is observable
from angles data and shape/albedo properties are ob-
servable from photometric data, then by fusing these
data types mass can be extracted with reasonable ac-
curacy.

Filtering algorithms for state estimation, such as
the extended Kalman filter (EKF) [9], the unscented
Kalman filter (UKF) [10] and particle filters [11]
are commonly used to both estimate hidden (indi-
rectly observable) states and filter noisy measure-
ments. The basic difference between the EKF and
the UKF results from the manner in which the state
distribution of the nonlinear models is approximated.
The UKF, introduced by Julier and Uhlmann [10],
uses a nonlinear transformation called the unscented
transform, in which the state probability density
function (pdf) is represented by a set of weighted
sigma points (state vectors deterministically sampled
about a mean). These are used to parameterize the
true mean and covariance of the state distribution.
When the sigma points are propagated through the
nonlinear system, the posterior mean and covariance
are obtained up to the second order for any nonlin-
earity. The EKF and UKF assume that the process
noise terms are represented by zero-mean Gaussian
white-noise processes and the measurement noise is
represented by zero-mean Gaussian random variable.
Furthermore both approaches assume that the a pos-

teriori and a priori pdf is Gaussian in a linear do-
main. This is true given the previous assumptions
but under the effect of nonlinear measurement func-
tions and system dynamics the initial Gaussian state
uncertainty may quickly become non-Gaussian. Both
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filters only provide approximate solutions to the non-
linear filtering problem, since the a posteriori and a

priori pdf are most often non-Gaussian due to nonlin-
ear effects. The EKF typically works well only in the
region where the first-order Taylor-series linearization
adequately approximates the non-Gaussian pdf. The
UKF provides higher-order moments for the compu-
tation of the a posteriori pdf without the need to
calculate Jacobian matrices as required in the EKF.
The light curve measurement model is highly nonlin-
ear, and Jacobian calculations are non-trivial; thus,
the UKF is used to provide a numerical means of es-
timating the states of the SO using light curve mea-
surement models.

Attitude estimation using light curve data has been
demonstrated in Ref. [12]. The main goal of this cur-
rent work is to use light curve data to, autonomously
and in near realtime, determine the mass of a SO
along with its attitude (rotational) and translational
states. In order to accomplish this task, a UKF
is designed for state estimation of these quantities.
The translational dynamics includes both conserva-
tive gravitational and non-conservative SRP. The ro-
tational dynamics includes classic Euler dynamics
coupled with SRP torque. Light curve and angles
data are employed in the UKF structure to estimate
the states.

The organization of this paper is as follows. First,
the methods used to recover mass are discussed.
Then the models used for SO shape, orbital dynamics
and attitude dynamics are discussed. Following this
a description of the measurement models used in this
paper are given. Next, a review of the UKF approach
is provided. Finally, simulation results of the mass
and albedo-area estimation approach are provided.

2 Details of Approaches

Two approaches are considered in this work: the first
approach estimates for albedo-area, Ar, which uses
an assumed value for the albedo, r, to allow for es-
timation of mass, and the second approach uses esti-
mated rotational dynamics to infer information about
the area and therefore allow information about mass
to be gained. As mentioned previously, light curve
data is sensitive to Ar and angles data are sensitive
to CrA

m , where Cr is the albedo coefficient for the SRP
force [7]. The Cr coefficient is a function of the albedo
of the SO; Cr = 1+r the for cannonball model [7], and
therefore, to allow for mass to be separated from area,
an estimate of albedo must be determined. It will be
shown in §2.3 that Cr = 1+ 2

3
Cdiff for a diffuse sphere

assuming Lambert’s cosine law and Cr = 1 + 4
9
Cdiff

for a diffuse flat plate assuming Lambert’s cosine law

with the normal direction aligned with the sun direc-
tion.
Air Force Maui Optical and Supercomputing site

Advance Electro-Optical System (AMOS) researchers
have calibrated for nominal albedo by using observa-
tions of known SOs to determine effective albedos
for different classes of objects [13]. The analysis in-
dicated the best effective albedo and albedo range
that provides a 90% confidence range for each ob-
ject class. NASA and AMOS have jointly determined
that, for payloads and rocket-bodies reflecting sun-
light, an albedo of r ≈ 0.3 best reproduces known
sizes with a 90% confidence range of 0.1 ≤ r ≤ 0.7.
For orbital debris, an effective albedo of r ≈ 0.15 best
reproduces the sizes estimated from radar with a 90%
confidence of roughly 0.05 ≤ r ≤ 0.3. Therefore, as-
suming a value for the albedo that is consistent with
observations of a typical SO can provide a means to
estimate mass with estimates of albedo-area. The
state vector for the joint attitude, position and pa-
rameter estimate problem is given by

xk =
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(1)

where position and velocity of an Earth orbiting SO
are denoted by rI = [x y z]T and vI = [vx vy vz ]

T .
Also, ωB

B/I is the angular velocity of the SO with re-

spect to the inertial frame, and qB
I is the quaternion

that parameterizes the orientation of the SO with re-
spect to the inertial frame. The mass, m, of the SO
is added as a state along with the albedo-area vec-
tor, Ar, containing the albedo-area of each side of
the SO. The benefit of this approach is that since the
albedo-area vector is part of the estimated state vec-
tor the orientation of the SO is not affected by the
uncertainty in the assumed albedo, but rather the as-
sumed albedo is used to compute the SRP force on
the SO and in turn estimate the mass of the SO. The
SRP force discussed in the following section requires
either estimates of area and albedo-area or estimates
of albedo-area and albedo. It is noted that using this
approach will not affect the estimates of rotational
and albedo-area states since the assumed albedo will
only be used in the dynamic equations for the SRP
force. The uncertainty in the assumed albedo will
affect the estimates for mass and translational states
since the assumed albedo will be used in the SRP
force calculation. In this approach no estimate of the
area is directly needed, but the assumed albedo is
used in the dynamic state propagation.

3



B
uu

B
vu

B
nu

obs
I
u

sun
I
u

I
hu

Figure 1: Geometry of Reflection

The second estimation approach used in this work
make uses of the fact that the observation and dy-
namics are both sensitive to the desired quantities but
are not by themselves sensitive to all desired quan-
tities. For example photometric data is sensitive to
attitude, angular velocity and the albedo-area of the
SO, whereas astrometric data is sensitive to the posi-
tion, velocity and area-to-mass ratio. The sensitivity
of area-to-mass ratio is due to dynamic mismodeling
due to the SRP force, but this force is also a func-
tion of orientation and albedo-area. By considering a
state vector that consists of parameters that are ob-
servable from astrometric data and parameters that
are observable from photometric data, then it is pos-
sible separate area from mass.
The state vector for the joint attitude, position and

parameter estimate problem with area states is given
by

xk =
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(2)

where the states of areas, A, are added and con-
tain the areas of each side of the SO. The areas and
albedo-areas are added as separate states due to the
fact that each data type is sensitive to one but not
to both. These states have a dependency since the
albedo-areas are just products of the albedo r for each
side with the respective area for that side.

2.1 Shape Model

The shape model considered in this work consists of
a finite number a flat facets. For curved surfaces this
model becomes more accurate as the number of facets
is increased. Each facet has a set of three basis vec-
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Figure 2: Cuboid Shape Model

tors (uB
n , u

B
u , uB

v ) associated with it as defined in
Figure 1. The unit vector uB

n points in the direction
of the outward normal to the facet, and the vectors
uB
u and uB

v are in the plane of the facet. The notation
superscript B denotes that the vector is expressed in
body coordinates. The SOs are assumed to be rigid
bodies, and the unit vectors uB

n , u
B
u and uB

v therefore
do not change in time since they are expressed in the
body frame.

The light curve and the SRP models discussed in
the next sections require that these vectors be ex-
pressed in inertial coordinates. Since the SO body
is rotating, these vectors will change inertially. The
body vectors can be rotated to the inertial frame by
the standard attitude mapping given by

uB
k = A(qB

I )u
I
k, k = u, v, n (3)

where A(qB
I ) is the attitude matrix mapping the in-

ertial frame to the body frame using the quaternion
parameterization. The superscript I denotes that a
vector is expressed in inertial coordinates. The unit
vector uI

sun points from the SO to the Sun direction,
and the unit vector uI

obs points from the SO to the
observer as shown in Figure 2. The vector uI

h is the
normalized half vector between uI

sun and uI
obs also

shown in Figure 2. This vector is also known as the
Sun-SO-Observer bisector. Each facet has an area
A(i) associated with it. Once the number of facets
has been defined and their basis vectors are known,
the areas A(i) define the size and shape of the SO.

For the development of the measured light curve
data, faceted SO rectangular cuboid shape models as
shown in Figure 2 are used. The rectangular cuboid
model is described by three parameters, l, a, and d,
which are the length, width, and height, respectively.
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2.2 Rotational and Translational

Models

The two-body equations of motion with SRP accel-
erations are given by

r̈I = − µ

r3
rI + aIsrp (4)

where µ is the gravitational parameter of the Earth,
r = ‖rI‖, and aIsrp represents the acceleration pertur-
bation due to SRP, which will be discussed in detail
in the following section.

A number of parameterizations exist to specify
attitude, including Euler angles, quaternions and
Rodriguez parameters [14]. This paper uses the
quaternion, which is based on the Euler angle/axis
parametrization. The quaternion is defined as q ≡
[̺T q4]

T with ̺ = ê sin(ν/2), and q4 = cos(ν/2),
where ê and ν are the Euler axis of rotation and rota-
tion angle, respectively. The quaternion must satisfy
a unit norm constraint, qTq = 1. In terms of the
quaternion, the attitude matrix is given by

A(q) = ΞT (q)Ψ(q) (5)

where

Ξ(q) ≡
[

q4I3×3 + [̺×]
−̺T

]

(6a)

Ψ(q) ≡
[

q4I3×3 − [̺×]
−̺T

]

(6b)

with

[a×] ≡





0 −a3 a2
a3 0 −a1
−a2 a1 0



 (7)

for any general 3 × 1 vector a defined such that
[a×]b = a× b.

The rotational dynamics are given by the coupled
first-order differential equations:

q̇B
I =

1

2
Ξ(qB

I )ω
B
B/I (8a)

ω̇B
B/I = J−1

SO

(

TB
srp −

[

ωB
B/I×

]

JSOω
B
B/I

)

(8b)

where ωB
B/I is the angular velocity of the SO with

respect to the inertial frame, expressed in body co-
ordinates, JSO is the inertia matrix of the SO and
TB

srp is the net torque acting on the SO due to SRP
expressed in body coordinates. The SO is assumed
to be of uniform density, and therefore the principal
components of the inertia tensor for the shape model

discussed in §2.1 and given in Figure 2 are given by

J1 = m
a2 + b2

12
(9a)

J2 = m
a2 + l2

12
(9b)

J3 = m
l2 + b2

12
(9c)

where m is the mass of the SO and a, l, and d are
the shape parameters defined in Figure 2.

2.3 Solar Radiation Force Model

For higher altitude objects (≥ 1,000 km) SRP repre-
sents the primary non-conservative perturbation act-
ing on SOs. Because SRP depends upon the SO’s
position and orientation, the position and attitude
dynamics are thus coupled. The acceleration due to
SRP is computed as a function of the total solar en-
ergy impressed upon exposed SO surfaces that are re-
flected, absorbed and reradiated. The rate at which
radiant energy is incident on an element of area dA
is a function of angle between the normal to dA, un,
and the Sun direction usun. The power of incident
radiant energy is given by

PI =
Φsun,tot

(d/d0)2
(un · usun) dA (10)

where Φsun,tot is the average incident radiant flux
density from the Sun at 1 AU, given by Φsun,tot =
1, 367 W/m2. Therefore the energy flux at any dis-
tance d is given by Φsun,tot/(d/d0)

2 where d0 = 1 AU.
The reflected radiation will have the following diffuse
and specular power:

PD = Cdiff

Φsun,tot

(d/d0)2
(un · usun) dA (11a)

PS = Cspec

Φsun,tot

(d/d0)2
(un · usun) dA (11b)

where the incident solar radiant energy is accounted
for in three terms: the absorbed energy, Cabs, the
specularly reflected energy Cspec, and the diffusely
reflected energy, Cdiff, which yields

Cabs + Cspec + Cdiff = 1 (12)

The elemental force on dA can be written in three
terms: incident force, dFI , specular reflection force,
dFS , and diffuse reflection force, dFD. The incident
force accounts for force due to the three terms Cabs,
Cspec, and Cdiff, since for each term the radiant par-
ticle is at least brought to rest before being absorbed
or reflected. Therefore, dFI accounts for the trans-
fer in momentum to bring a radiated particle to rest.
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The force term for diffuse and specular reflectance ac-
counts for the momentum transfer due to reflection.
The momentum contribution due to incident energy
is in the opposite direction of the incoming energy,
given by

dFI = −PI

c
un (13)

The force exerted by specularly reflected energy is in
the direction of specular reflection which is given by
reflecting the vector usun about an axis defined by
the direction un. Then the force exerted by specular
reflection is given by

dFS =
PS

c
[2 (un · usun)un − usun] (14)

Diffusely reflected energy will reflect equally in all
directions and the resulting force will be in the nor-
mal direction due to symmetric components cancel-
ing out. For surfaces obeying Lambert’s cosine law
of diffuse emission the diffuse term will be [15]

dFD =
2

3

PD

c
un (15)

where the factor 2
3
accounts for the portion of energy

that is reflected in the normal direction. Then the
force on an element of area is given by

dF = dFI + dFS + dFD (16)

The force acting on a body due to solar radiation
pressure can be determined by integrating over the
Sun exposed surface area, given by

F =

∫

sun

(dFI + dFS + dFD) (17)

For a spherical body this integral is calculated over
the Sun exposed area. The result is given by

F = − Φsun,tot

c(d/d0)2
A
[

1 +
2

3
Cdiff

]

usun (18)

This equation can be rewritten in terms of albedo

F = − Φsun,tot

c(d/d0)2
ACrusun (19)

where Cr = 1 + 2
3
Cdiff. Similarly the forces can be

calculated for a flat plate:

F = − Φsun,tot

c(d/d0)2
A (un · usun)

[

(1− Cspec)un

+

(

4

9
Cdiff + 2Cspec (un · usun)

)

usun

] (20)

Under the assumption of a perfectly diffuse flat plate,
Eq. (20) becomes

F = − Φsun,tot

c(d/d0)2
(un · usun)

[

Aun +
4

9
ACdiff usun

]

(21)
We can note that, if un remains aligned with usun, a
similar expression to Eq. (19) can be written for the
flat plate model, where Cr = 1+ 4

9
Cdiff in the case of

the flat plate. To calculate the SRP force for the facet
model discussed in §2.1, the SRP force is calculated
for each facet using the SRP force equation for a flat
plate, Eq. (21), and then summed over all facets to
obtain the total SRP force on the body:

FI
srp =

NF
∑

j=1

FI
srp,j (22)

where NF is the total number of facets. The sum is
performed over all sides of the SO. If for any side the
angle between the surface normal and the Sun’s di-
rection is greater than π/2, then this side is not facing
the Sun and receives no energy from the Sun. There-
fore, the solar radiation pressure for these sides is set
to zero, FI

srp,j = 0 if θinc > π/2. The acceleration

due to SRP is then simply given by aIsrp = FI
srp/m.

The solar radiation pressure moments can be cal-
culated by assuming that the SRP force acts through
the center of each facet. Then the SRP moments can
be written as

TB
srp =

NF
∑

j=1

[

rBi ×
]

AFB
srp,j (23)

where rBi is the location of the geometric center of
each facet with respect to the center of mass of the
SO in body coordinates. The SRP moments are used
with Eq. (8) to simulate the rotational dynamics of
the SO.

2.4 Observation Model

Consider observations made by a optical site which
measures azimuth and elevation to a SO. The geom-
etry and common terminology associated with this
observation is shown in Figure 3, where dI is the
position vector from the observer to the SO, rI is
the position of the SO in inertial coordinates, RI is
the radius vector locating the observer, α and δ are
the right ascension and declination of the SO, respec-
tively, θ is the sidereal time of the observer, λ is the
latitude of the observer, and φ is the East longitude
from the observer to the SO. The fundamental obser-
vation is given by

dI = rI −RI (24)
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2î

3î
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Figure 3: Geometry of Earth Observations of Spacecraft Motion

In non-rotating equatorial (inertial) components the
vector dI is given by

dI =





x− ||RI || cos(θ) cos(λ)
y − ||RI || sin(θ) cos(λ)

z − ||RI || sin(λ)



 (25)

The conversion of dI from the inertial to the observer
coordinate system (Up-East-North) is given by





ρu
ρe
ρn



 =





cos(λ) 0 sin(λ)
0 1 0

− sin(λ) 0 cos(λ)





×





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1



dI

(26)

The angle observations consist of the azimuth, az, and
elevation, el. The observation equations are given by

az = tan−1

(

ρe
ρn

)

(27a)

el = sin−1

(

ρu
‖dI‖

)

(27b)

In addition to the azimuth and elevation, the optical
site also records the magnitude of the brightness of
the SO. The brightness of an object in space can be
modeled using an Phong light diffusion model [15].

This model is based on the bidirectional reflectance
distribution function (BRDF) which models light dis-
tribution scattered from the surface due to the inci-
dent light. The BRDF at any point on the surface is
a function of two directions, the direction from which
the light source originates and the direction from
which the scattered light leaves the observed surface.
The model in Ref. [15] decomposes the BRDF into
a specular component and a diffuse component. The
two terms sum to give the total BRDF:

ρtotal(i) = ρspec(i) + ρdiff(i) (28)

The diffuse component represents light that is scat-
tered equally in all directions (Lambertian) and the
specular component represents light that is concen-
trated about some direction (mirror-like). Reference
[15] develops a model for continuous arbitrary sur-
faces but simplifies for flat surfaces. This simplified
model is employed in this work as shape models that
are considered to consist of a finite number of flat
facets. Therefore the total observed brightness of an
object becomes the sum of the contribution from each
facet.
Under the flat plate assumption the specular term

of the BRDF becomes [15]

ρspec(i) = Cspec

(uobs · uspec)
α

(usun · un)
(29)

where the parameter α defines the width of the specu-

7



lar lobe. The vector uspec is the direction of specular
reflection and is defined as uspec = 2 (un · usun)un −
usun. The diffuse term of the BRDF is

ρdiff(i) =
Cdiff

π
(30)

The apparent magnitude of a SO is the result of sun-
light reflecting off of its surfaces along the line-of-sight
to an observer. First, the fraction of visible sunlight
that strikes an object (and is not absorbed) is com-
puted by

Fsun(i) = Φsun,vis ρtotal(i)
(

uI
n(i) · uI

sun

)

(31)

where Φsun,vis = 455 W/m2 is the power per square
meter impinging on a given object due to visible light
striking the surface. If either the angle between the
surface normal and the observer’s direction or the an-
gle between the surface normal and Sun direction is
greater than π/2, then there is no light reflected to-
ward the observer. If this is the case then the fraction
of visible light is set to Fsun(i) = 0.
Next, the fraction of sunlight that strikes an object

that is reflected must be computed:

Fobs(i) =
Fsun(i)A(i)

(

uI
n(i) · uI

obs

)

‖dI‖2 (32)

The reflected light is now used to compute the ap-
parent brightness magnitude, which is measured by
an observer:

mapp = −26.7− 2.5log10

∣

∣

∣

∣

∣

NF
∑

i=1

Fobs(i)

Φsun,vis

∣

∣

∣

∣

∣

(33)

where −26.7 is the apparent magnitude of the Sun.

3 Unscented Kalman Filter

Formulation

The unscented Kalman filter (UKF) is chosen for
state estimation because it has at least the accu-
racy of a second-order filter [10] without the require-
ment of computing Jacobians like the EKF. The UKF
structure is used for estimating rotational, transla-
tional, and parameter states based on fusing angles
and light curve data along with their associated mod-
els as discussed in §2. The attitude UKF described
in Ref. [16] is used in the same manner as the one
shown in Refs. [4] and [12].
Applying the UKF structure for attitude estima-

tion has some challenges. For instance, although
three parameter sets are attitude minimal representa-
tions, they inherently have singularities. On the other

hand the quaternion representation, which is a four
parameter set with no singularity, has a nonlinear
constraint which results in a singular covariance ma-
trix, and the quaternion is not constitute by directly
adding quaternions but through quaternion multipli-
cation. This does not allow use of quaternions in a
straightforward UKF implementation. Reference [16]
overcomes these challenges by utilizing generalized
Rodrigues parameters (GRPs), a three parameter set,
to define the local error and quaternions to define the
global attitude.

The global parameterization for attitude UKF ap-
proach used for this work is the quaternion while
a minimal parametrization involving the generalized
Rodriguez parameters (GRPs) is used to define the
local error. Quaternions are useful because their kine-
matics are free of singularities. The representation of
the attitude error as a GRP is useful for the propaga-
tion and update stages of the attitude covariance be-
cause the structure of the UKF can be used directly.
Complete explanations of the quaternion and its map-
ping to GRPs is provided in Refs. [14] and [17]. In
the UKF implementation described in Ref. [16], the
covariance matrix is interpreted as the covariance of
the error GRP because for small angle errors, the
error GRP is additive and the UKF structure can
be used directly to compute sigma-points. The er-
ror GRP sigma points are converted to error quater-
nions and then to global quaternions for the propa-
gation stage. To compute the propagated covariance
the global quaternions are converted to error quater-
nions and then back to error GRPs. The process is
then as follows: error GRP→ error quaternion, error
quaternion → global quaternion, global quaternion
→ error quaternion, and finally error quaternion →
error GRP.

3.1 Model and Measurement Uncer-

tainty

A UKF is now summarized for estimating the state
of a SO’s position, velocity, orientation, rotation
rate, mass, albedo-areas and areas given by x =

[qBT

I ωBT

B/I rI
T

vIT

m rA]T for method I and x =

[qBT

I ωBT

B/I rI
T

vIT

m rA A]T for method II . The

dynamic models from Eqs. (4) and (8) can be written
in the general state equation which gives the deter-
ministic part of the stochastic model:

ẋ = f (x, t) +G (x, t)Γ(t) (34)

where Γ(t) is a Gaussian white noise process term
with correlation function Qδ(t1 − t2). The func-
tion f (x, t) is a general nonlinear function. To solve
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the general nonlinear filtering problem the UKF uti-
lizes the unscented transformation to determine the
mean and covariance propagation though the func-
tion f (x, t). The dynamic function used in this
work consists of rotational and translational dynam-
ics given by the sigma points, which are propagated
through the system dynamics:

f ([χ, q̂]) =















1

2
Ξ(q̂)ω̂B

B/I

J−1
SO

(

T̂B
srp −

[

ω̂B
B/I×

]

JSOω̂
B
B/I

)

v̂I

− µ

r3
r̂I + âISRP















(35)
If the initial pdf p(xo) that describes the associated
state uncertainty is given, the solution for the time
evolution of p(x, t) constitutes the nonlinear filtering
problem.

Given a system model with initial state and co-
variance values, the UKF propagates the state vector
and the error-covariance matrix recursively. At dis-
crete observation times, the UKF updates the state
and covariance matrix conditioned on the informa-
tion gained from the measurements. The prediction
phase is important for overall filter performance. In
general, the discrete measurement equation can be
expressed for the filter as

ỹk = h (xk, tk) + vk (36)

where ỹk is a measurement vector and vk is the mea-
surement noise, which is assumed to be a zero-mean
Gaussian process with covariance Rk.

All random variables in the UKF are assumed to be
Gaussian random variables and their distribution are
approximated by the deterministically selected sigma
points. The sigma points are selected to be along the
principal axis directions of the state error-covariance.
Given an L×L error-covariance matrix Pk, the sigma
points are constructed by

σk ← 2L columns from ±
√

(L + λ)Pk (37a)

χk(0) = µk (37b)

χk(i) = σk(i) + µk (37c)

where
√
M is shorthand notation for a matrix Z such

that M = Z ZT . Given that these points are selected
to represent the distribution of the state vector, each
sigma point is given a weight that preserves the in-

formation contained in the initial distribution:

Wmean
0 =

λ

L+ λ
(38a)

W cov
0 =

λ

L+ λ
+ (1 − α2 + β) (38b)

Wmean
i = W cov

i =
1

2(L+ λ)
, i = 1, 2, . . . , 2L

(38c)

where λ = α2(L + κ) − L is a composite scaling pa-
rameter.
The constant α controls the spread of the sigma

point distribution and should be a small number, 0 <
α ≤ 1. κ = 3−L provides an extra degree of freedom
that is used to fine-tune the higher-order moments,
and β is used to incorporate prior knowledge of the
distribution by weighting the mean sigma point in
the covariance calculation.
The reduced state vector, with the error GRP

states and the full state vector, with quaternion state
vector, for the joint attitude and position estimate
problem are given by

x̂
δp

k =

















δp̂

ω̂B
B/I

r̂I

v̂I

m
rA

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

x̂
q

k =

















q̂B
I

ω̂B
B/I

r̂I

v̂I

m
rA

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

(39)

where δp̂ is the error GRP states associated with the
quaternion q̂B

I and ·̂ is used to denote estimate. The
initial estimate x̂0 is the mean sigma point and is
denoted χ0(0). The error GRP state of the initial
estimate is set to zero, while the rest of the states are
initialized by their respective initial estimates.

3.2 Using Quaternions for UKF

The error quaternion, denoted by δq−

k (i), associated
with the ith error GRP sigma point is computed by
[16]

δ̺−

k (i) = f−1
[

a+ δq−4k(i)
]

χ
δp
k (i) (40a)

δq−4k(i) =
−a||χδp

k (i)||2 + f
√

f2 + (1− a2)||χδp
k (i)||2

f2 + ||χδp
k (i)||2

(40b)

δq−

k (i) =

[

δ̺−

k (i)
δq−4k(i)

]

(40c)

where a is a parameter from 0 to 1 and f is a scale
factor, which is often set to f = 2(a + 1). Here it
is noted that the subscript I and superscript B in
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qB
I and its estimates are omitted in this section for

brevity. The representation of the attitude estimate
perturbed by the ith error quaternion is computed
using the quaternion composition:

q̂−

k (i) = δq−

k (i)⊗ q̂−

k (0) (41)

where

q′ ⊗ q =
[

Ψ(q′) q′
]

q (42)

This forms the global quaternion, and the er-
ror quaternions corresponding to each propagated
quaternion sigma point are computed through the
quaternion composition:

δq−

k+1(i) = q̂−

k+1(i)⊗
[

q̂−

k+1(0)
]−1

(43)

where the notation for the inverse quaternion is de-
fined as:

q−1 ≡
[

−̺
q4

]

(44)

Using the result of Eq. (43), the error GRP sigma
points are computed as

δp−

k+1(i) = f
δ ˆ̺−k+1(i)

a+ δq̂−4k+1
(i)

(45)

Angles data can be used to determine the unknown
position and velocity of a SO but if the position is
coupled with the attitude dynamics then angles data
can assist with attitude estimation as well. However
if position is known accurately, then using only light
curve data is sufficient to determine the orientation.

3.3 Constrained UKF

The estimator discussed in this works includes con-
strained states since the area states are constrained
to be positive. To account for these constraints the
method from ref. [18] is used. Reference [18] incorpo-
rates the information of the constraints in the UKF
algorithm by projecting sigma points and estimates
onto the constraint boundary when sigma points or
estimates are found outside the feasible region. Since
r ≥ 0 we have the following constraints

rA ≥ 0 (46a)

A ≥ 0 (46b)

Then if the constraints are violated during, sam-
pling the sigma pointing from covariance matrix, af-
ter propagation, or after the update step, the esti-
mates and or sigma points that violate the constraints
are projected onto the constraint boundary.

3.4 Summary of UKF

The UKF algorithm is described in Table 1. The
process starts by first defining two initial state vec-
tors, one that includes quaternion states and one that
includes error GRP states. The error GRP states
are initially set to zero. The initial covariance ma-
trix is defined as the initial error covariance for the
state vector that includes the GRP states, the trans-
lational, rotational and parametric states. The co-
variance matrix is then used to form the error GRP
sigma points. The error GRP sigma points are con-
verted to quaternion sigma points by creating error
quaternions from each error GRP and then adding
the error quaternion to the initial mean quaternion
using quaternion multiplication. If any area states
sigma points are found outside the feasible region dis-
cussed in §3.3 they are projecting onto the constraint
boundary.
Next the quaternion sigma points are propa-

gated through the system dynamics using equation
Eq. (35). The estimated acceleration and torque due
to SRP are calculated with Eqs. (22) and (23), re-
spectively. After propagating the sigma points, the
error GRP states are computed with the propagated
quaternion sigma points. If any area states sigma
points are found outside the feasible region they are
projecting onto the constraint boundary. The propa-
gated mean sigma point quaternion, q̂−

k+1(0), is com-
puted and stored, and error quaternions correspond-
ing to each propagated quaternion sigma point are
computed. The non-attitude sigma points are the
propagated non-attitude states.
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Figure 4: Mass Error Estimated Using Method I

After setting the error GRP for the mean sigma
point to zero, the propagated sigma points are re-
combined, and the propagated mean and covariance
are calculated as a weighted sum of the sigma points,
where Qk+1 is the discrete-time process noise covari-
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Table 1: UKF for Rotational, Translational, and Parameter States

Initialize with

x̂δp
o = E{xδp

o } x̂q

o = E{xo} Pδp
o = E{

(

xδp
o − x̂δp

o

) (

xδp
o − x̂δp

o

)T }
Calculate GRP Sigma Points

χ
δp

k =
[

x̂
δp

k x̂
δp

k + γ
√

Pk−1 x̂
δp

k − γ
√

Pk−1

]

Calculate Quaternion Sigma Points

χ
q

k =
[

x̂
q

k x̂
q

k + γ
√

Pk−1 x̂
q

k − γ
√

Pk−1

]

Propagate Quaternion Sigma Points
χ

q

k = F
[

χ
q

k−1, t
]

Calculate GRP Sigma Points

χ
δp

k =
[

x̂
δp

k x̂
δp

k + γ
√

Pk−1 x̂
δp

k − γ
√

Pk−1

]

Time update

x̂−

k+1 =
∑2L

i=0 W
mean
i χk+1(i)

P−

k+1 =
∑2L

i=0 W
cov
i [χk+1(i)− x̂−

k+1] [χk+1(i)− x̂−

k+1]
T +Qk+1

Measurement update
γk(i) = h

[

χk(i), q̂
−

k

]

ŷ−

k =
∑2L

i=0 W
mean
i γk(i)

P yy
k =

∑2L
i=0 W

cov
i [γk(i)− ŷ−

k ] [γk(i)− ŷ−

k ]
T

P υυ
k = P yy

k +Rk

P xy
k =

∑2L
i=0 W

cov
i [χk(i)− x̂−

k ] [γk(i)− ŷ−

k ]
T

Kk = P xy
k (P υυ

k )−1

x̂+
k = x̂−

k +Kk [ỹk − ŷk]
P+
k = P−

k −KkP
vvKT

k

Quaternion update
q̂+
k = δq̂+

k ⊗ q̂−

k (0)
Set GRP to zero
δp = [0 0 0]T

ance. As previously discussed, measurements are
available in the form of azimuth, elevation and ap-
parent brightness magnitude, ỹ ≡ [m̃app ãz ẽl]T .
Estimated observations are computed for each sigma
point using the observation models discussed previ-
ously. The mean estimated output are computed,
and the output, innovations, and cross-correlation co-
variance are computed using the sigma points. Fi-
nally, the Kalman gain is calculated from the sigma
point and is used to update the estimated state vector
that contains the error GRPs. If any of the updated
area states are found outside the feasible region they
are projecting onto the constraint boundary. The
quaternion update is performed by converting the
error GRP states of x̂+

k to a quaternion, δq̂+
k , via

Eq. (40), and adding it to the estimated quaternion
using quaternion multiplication.

4 Results

Three simulations are presented: method I is used
to estimate mass using an assumed albedo value;
method II is used to estimate mass and area; and
a study is conducted to determine the effect of area-
to-mass ratio on mass estimation performance. In all
cases the same dynamic configuration is considered,
with same initial attitude, true orbit and true angu-
lar velocity. For the generation of data for the true
model, an equatorial ground station is chosen as the
site of the observer. Also, all scenarios use the same
shape model which contains six sides where the areas
and albedo-areas for these sides are estimated. The
SO is simulated to fly in a near-geosynchronous or-
bit in a trajectory that is continuously lighted. This
is accomplished by inclining the orbit by 30 degrees
and choosing an appropriate time of the year, thereby
avoiding the shadow cast by the Earth.

The initial inertial position and velocity are chosen
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Figure 5: Albedo-Area Estimated Using Method I

as rI = [−7.8931× 102 3.6679× 104 2.1184× 104]T

km and vI = [−3.0669 − 4.9425× 10−2 − 2.8545×
10−2]T km/s. The geographic position of the ground
site is 0◦ North, 172◦ West with 0 km altitude. The
time of the start of the simulation is May 8, 2007 at
5:27.55. The initial true quaternion attitude mapping
from the inertial frame to the body frame is chosen
as qB

I = [1/2 0 0 1/2]T . A constant rotation rate,
defined as the body rate with respect to the inertial
frame, represented in body coordinates, is used given
by ωB

B/I = [0 0.00262 0]T rad/s.

For all simulations scenarios, measurements are
produced using zero-mean white-noise error processes
with standard deviation of 0.1 for magnitude and
standard deviation of 1 arc-seconds for azimuth and
elevation. The initial errors for the states are 5 deg
for all three attitudes, 1, 000 deg/hr for the rotational
rates, and 1 km and 0.001 km/s for the position and
the velocity errors, respectively. The initial condi-
tion error-covariance values are set to 202 deg2 for
all three attitude components, 1, 4002 (deg/hr)2 for
the rotational rates, and 12 km2 and 0.0012 (km/s)2

for the position and the velocity errors, respectively.
The initial condition error-covariance values for the
mass, albedo-area, and area are 3002 kg2, 102 m4, and
102 m4, respectively. The time interval between the
measurements is set to 30 seconds. Data is simulated

for 20 nights (about 20 orbits) where observations of
the SO are made each night for 3 hours. The simula-
tion results are plotted versus number of data samples
since there are large time gaps between each 3 hour
data arc.

For the development of the measured light curve
data a six sided facet SO shape model is used. The
three parameters for the shape model are given, l, a,
and d which are the length, width, and height respec-
tively, as shown in Figure 2. For the truth model a
six-facet rectangular shape model is used with dimen-
sion l = 4 m, a = 2 m, and d = 8 m. The mass for the
true SO is selected to be m = 1, 500 kg, which gives
a maximum area-to-mass ratio of 0.09 for this model.
For the area-to-mass ratio study this ratio is varied
from 0.01 to 10. All facets have reflectance values
of Cspec = 0 and Cdiff = 0.5, under the assumption
that the SO is perfectly diffuse. For method I, the
assumed albedo is set to the true value r = 0.3.

4.1 Angles and Magnitude Fusion:

Method I

The estimation errors, along with their respective 3σ
bounds calculated from the covariance for method I,
for attitude, position, velocity, rotation rate, mass,
albedo-areas, and areas, are shown in Figure 6. The
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Figure 6: SO State Estimation Results for Method I

attitude is estimated to within 0.03◦ of uncertainty,
and attitude rate is found to within 0.05 deg/hr for
the x-axis, 4.5 × 10−4 deg/hr for the y-axis (the y-
axis is the spin axis), and 0.03 deg/hr for the z-axis.
Position and velocity are estimated to within 10 m
and 0.0028 m/s, respectively. The mass is estimated
to within 54.76 kg 3σ, and the albedo-areas are es-
timated to 0.5 m2. For the albedo-area plot the es-
timates are plotted going from +x, −x, +y, −y, +z
and−z. The area states are not estimated for method
I since the albedo is assumed known. Also the albedo-
areas plot shows that the third area component (+y
component) is not observable. This is due to the fact
that this side does not face the observer because the
SO is spinning about the y-axis. Although this side
is not very observable the filter can still observe mass
states. This is due to the fact the SRP disturbance
is a sum of all the cross-sectional errors and overtime
through the rotational dynamics of the space object
all the sides contribute to the translational dynamic
creating observability. Most states show proper fil-
ter convergence behavior in that the residual errors
settle down and are bounded by their computed 3σ
bounds.
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Figure 7: Mass Error Estimated Using Method I

4.2 Angles and Magnitude Fusion:

Method II

The estimation errors, along with their respective 3σ
bounds calculated from the covariance for method II,
for attitude, position, velocity, rotation rate, mass,
albedo-areas and areas are shown in Figure 10. The
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estimated attitude, attitude rate, position and veloc-
ity show similar performance to that of method I. The
albedo-areas also show similar performance to that of
method I and are estimated to 0.5 m2.

The mass estimate for method II has larger error
than that of method I, where the mass is estimated
to within 200.67 kg 3σ. The area state estimates are
shown in Figure 9, and the area state shows small im-
provement in the estimated error. Although the area
uncertainty is still higher, the mass is still observ-
able and the uncertainty in the area is accounted for
in method II. Most states show proper filter conver-
gence behavior in that the residual errors settle down
and are bounded by their computed 3σ bounds.

4.3 Dependence on Area-to-Mass Ra-

tio

To study the convergence rate of the mass estimates
as a function of area-to-mass ratio, a number of sim-
ulations for conducted where A/m is varied over four
orders of magnitude, A/m = [0.01 0.1 1 10]. Figure
11 shows the mass estimate error covariance for the
area-to-mass ratios considered. As expected, as the
area-to-mass ratio increases the convergence rate also
increases. This is due to the fact that for higher area-
to-mass ratio objects the effect of SRP perturbation
is greater; and therefore the mismodeling effect ap-
pears faster in the data making the mass and area
parameters observable earlier.

Also it can be seen from Figure 11 the steady
state error is reduced for objects with higher area-
to-mass ratios. This is due to fact that, for these
class of objects, the disturbance seen from SRP is
much higher than the estimated error in their trans-
lational states; the SRP disturbance is thus shown to
have good signal-to-ratio characteristics. Figure 11
that the converged mass values for A/m of 0.01, 0.1,
1, and 10 are 160.12 kg, 30.45 kg, 2.71 kg, and 0.80
kg respectively.

5 Conclusion

In this paper an unscented Kalman filter estimation
scheme using light curve and angles data was pre-
sented and was used to estimate mass, albedo-areas
and areas of a SO along with its associated rotational
and translational states. This work uses an assumed
shape model of six sides and estimated the area and
albedo-areas for each side. Using an unscented filter
to employ brightness magnitude and angles data, the
estimator was able to determine the mass of a SO to
within 54.76 kg 3σ. Simulations were conducted to

study the dependance of convergence rate and esti-
mate accuracy on the area-to-mass ratio of the SO.
As expected it was shown that for higher area-to-
mass ratios the mass and area states could be es-
timated to higher accuracy with faster convergence
rates. Higher area-to-mass ratios leads to higher ac-
curacy and faster convergence rates.

6 Future Work

Future studies will consider the effect of phase an-
gles on the estimates of areas and mass. Since the
observable area parameters from light curve data are
a projection of the observer facing areas and the ob-
servable parameter from angles data are Sun facing
areas, these two are in better agreement for lower
phase angles. For data gathered at lower phase it is
expected the estimation performance will improve in
accuracy.

Also in this work is was assumed that the shape
model was that of a six sided cuboid, but this as-
sumption can be relaxed by using the approach de-
veloped in Ref. [8], where the shape models are hy-
pothesized using a multiple-model adaptive estima-
tion technique. This will allow this work to be ex-
tended to estimating area and mass parameters for
general shaped model SOs.
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Figure 8: Albedo-Area Estimated Using Method II
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Figure 9: Area Estimated Using Method II
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Figure 10: SO State Estimation Results for Method II
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