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This paper presents a Kalman lIter based adaptive disturban ce accommodating stochastic control scheme for
linear uncertain systems to minimize the adverse e ects of b  oth model uncertainties and external disturbances.
Instead of dealing with system uncertainties and external d isturbances separately, the disturbance accommo-
dating control scheme lumps the overall e ects of these erro rs in a to-be-determined model-error vector, and
then utilizes a Kalman Iter in the feedback loop for simulta  neously estimating the system states and the
model-error vector from noisy measurements. Since the mode I-error dynamics is unknown, the process noise
covariance associated with the model-error dynamics is use d to empirically tune the Kalman lter to yield
accurate estimates. A rigorous stochastic stability analy sis reveals a lower bound requirement on the assumed
system process hoise covariance to ensure the stability of t he controlled system when the nominal control action
on the true plant is unstable. An adaptive law is synthesized for the selection of stabilizing system process
noise covariance. Simulation results are presented where t he proposed control scheme is implemented on a two
degree-of-freedom helicopter.

Keywords: Disturbance accommodating control; Stochastic adaptive ¢ ontrol; Kalman Iter; Stochastic
stability

1 Introduction

Uncertainty in dynamic systems may take numerous forms, butamong them the most signi cant
are noise/disturbance uncertainty and model/parameter uncertainty. External disturbances and
system uncertainties can obscure the development of a viablcontrol law. This paper presents
the formulation and analysis of a stochastic robust controlscheme known as the Disturbance
Accommodating Control. The main objective of Disturbance Accommodating Control (DAC) is
to make necessary corrections to the nominal control input b accommodate for external distur-
bances and system uncertainties. Instead of dealing with stem uncertainties and disturbances
separately, DAC lumps the overall e ects of these errors in a b-be-determined term that is used
to directly update a nominal control input.

Disturbance accommodating control was rst proposed by Jomson in 1971 (Johnson 1971).
Though the traditional DAC approach only considers disturbance functions which exhibit wave-
form patterns over short intervals of time (Johnson and Kelly 1981), a more general formulation
of DAC can accommodate the simultaneous presence of both \nige" type disturbances and
\waveform structured" disturbances (Johnson 1984, 1985).The disturbance accommodating
observer approach has shown to be extremely e ective for distrbance attenuation (Biglari and
Mobasher 2000, Profeta et al. 1990, Kim and Oh 1998); howevgethe performance of the observer
can signi cantly vary for di erent types of exogenous distur bances, which is due to observer gain
sensitivity.
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This paper presents a robust control approach based on a sigoant extension of the con-
ventional observer-based DAC concept, which compensatesif both unknown model parameter
uncertainties and external disturbances by estimating a malel-error vector (throughout this
paper the phrase \disturbance term" will be used to refer to this quantity) in real time. The
estimated model-error vector is further used as a signal sythesis adaptive correction to the nom-
inal control input to achieve maximum performance. This cortrol approach utilizes a Kalman
Iter in the feedback loop for simultaneously estimating the system states and the disturbance
term from measurements (Sorrells 1982, 1989, Davari and Cimaramohan 2003). The estimated
states are then used to develop a nominal control law while te estimated disturbance term is
used to make necessary corrections to the nominal control wut to minimize the e ects of both
system uncertainties and the external disturbance. There ee several advantages of implementing
the Kalman lter in the DAC approach: i) tuning of the estimat or parameters, such as the process
noise matrix, can be done easily unlike conventional DAC apmaches in which the adaptation
involves the entire feedback gain, ii) the estimated distubance term is a natural byproduct of
state estimation, and iii) the Kalman Iter can be used to It er noisy measurements.

It is a well-known fact that the closed-loop performance andthe stability of the Kalman
Iter-based DAC approach depends on the accuracy of the esthated disturbance term. Since
the dynamics of the disturbance term is unknown, the processioise covariance associated with
the disturbance term is used to empirically tune the Kalman Iter to yield accurate estimates.
Although the Kalman Iter-based DAC approach has been succssfully utilized for practical
applications, there has not been any rigorous stochastic ability analysis to reveal the interde-
pendency between the estimator process noise covariance dagontrolled system stability. The
rst main contribution of this paper is a detailed stability analysis, which examines the explicit
dependency of the controlled system's closed-loop stabiyi on the disturbance term process
noise covariance and the measurement noise covariance. 8ithe system under consideration is
stochastic in nature, the notion of stability is depicted in two separate fashions. The rst method
deals with moment stability and the second technique considrs stability in a probabilistic sense.

Stochastic stability analysis on the Kalman Iter-based DAC approach indicates that the
e ectiveness of the proposed control scheme depends on thetiesator parameters such as the
process noise covariance matrix. The stability analysis &o indicates that the DAC scheme is
most e ective when the assumed process noise covariance sas a lower bound requirement
which depends on the system uncertainties. In general, it igli cult to select a stabilizing process
noise covariance for the broad type of uncertain systems caidered here. One could always try
to select an extremely large value of process noise covariem that might stabilize the system
or even monotonically increase the process noise covariamenatrix in an ad-hoc manner until
the system stabilizes. However, it is important to keep in mnd that selecting a large process
noise covariance matrix would result in noisy control signawhich could lead to problems such as
chattering. The second main contribution of this paper is the formulation of a stochastic adaptive
scheme for selecting the appropriate process noise covanige that would guarantee closed-loop
stability of the controlled system.

The structure of this paper is as follows. A detailed formulaion of the stochastic DAC approach
for multi-input multi-output (MIMO) systems, followed by a stochastic stability analysis, is rst
given. Next, an adaptive scheme is developed for the seleoti of stabilizing the disturbance
term process noise covariance. Simulation results are thepresented where the proposed control
scheme is implemented on a two degree-of-freedom helicopte

2 Disturbance Accommodating Controller Formulation

Let ( ;F;P) denote a probability space, where is the sample spaceF isa -eld, and Pisa
probability measure on the measurable space (; F). Additionally, the elements of are denoted
by ! and the members ofF are called events. Now consider a linear time-invariant stohastic
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system of the following form:

Xa(t) = ArXa(t) + AxXa(t); Xa(te) = Xy,
Xo(t) = AsXa(t) + AgXo(t)+ Bu(t) + W(t); Xa(to) = Xz

(1)

Here, the stochastic state vector, X ] (t) X1 (t) T=X@), X&) [to:ts] 7!'<" is an
n-dimensional random variable for xed t. The state vectors, X 1(t) and X »(t) are of dimensions
Xa(t) , Xa(t;!) : [to;te] 7V <" Tand Xo(t) , Xot;!) : [to;ts] 7! <", respectively.
The system given in (1) is in the typical kinematics-dynamics form, where the kinematics is
assumed to be fully known, i.e., the state matricesA; 2 < ) (" 1) and A, 2 <™ ) 7 gre
precisely known. Uncertainty is only associated with the dyamics, i.e., the state and control
distribution matrices, Az 2 <" (" N:A, 2<" "B 2<" ' are assumed to be unknown. Also,
the input matrix, B is assumed to be nonsingular. Finally, the stochastic extaral disturbance
W), W(!): [to;ts] 7! <" is modeled as a linear time-invariant system driven by a
Gaussian white noise process, i.e.,

W(H) = LX({);W (D) + V(); W(to)= 0 1 )

where L() is an unknown linear operator andV (t) , V(t;! ) : [to;ts] 7! <", is assumed to
be zero-mean Gaussian white noise process, i.&/(t) N 0;Q () . Itis important to note
that the linear operator L( ) and the covariance of the white noise proces¥ (t), are unknown.
The measurement equation is given as

Y (t) = CX (1) + V() A3)

whereY (1), Y (t;!):[to;ts] 7! <™ is the measurement vector andC 2 <™ " denotes the
known output matrix. The measurement noise,V (t) , V(t;!): [to;ts] 7! <™ is assumed
to be zero-mean Gaussian white noise with known covarianceé.e., V(t) N O;R () .

The assumed (known) system matrices are given a3, , Ag,, and By. Now the external
disturbance and the model uncertainties can be lumped into adisturbance term, D (t) 2 <',
through

D(t)= AXa(t)+ AxXo(t)+ Bu(t)+ W(t) 4

where A;=(Asz Az, ), A2=(As Ag )and B =(B Bp). Using this disturbance term
the true model can be written in terms of the known system matices as follows:

Xa(t) = ArX1(t) + AxXo(1)
Xo(t) = Az, X1(t) + Ag, X2(t) + Buu(t)+ D(t)

()

The control law, u(t), consists of a nominal control and a control correction tem to minimize
the adverse e ect of the disturbance term,D (t), i.e.,

u(t) = u(t) + a(t) (6)
Here u(t) is the nominal control and u(t) is the control correction term. For the purpose of anal-

ysis, the control correction term is selected to ensure theamplete cancelation of the disturbance
term. Thus the disturbance accommodating control law can bewritten as

u(t)=u(t) Bp'D(t) ()
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The disturbance term is not known, but an estimator can be imdemented in the feedback loop
to estimate the disturbance term online. Estimating the disturbance term requires knowledge
of its dynamic model. Since the dynamics of the disturbancedrm is not precisely known, the
disturbance term dynamics is modeled as

Dn(t)=Ap,Dm(t)+ W(t); Dm(to)=0 (8)

where Ap_ is Hurwitz and W (t) , W (t;! ) : [to;ts] 7! <" is zero-mean Gaussian white
noise process, i.eW (t) N 0;Q ( ) . Equation (8) is used solely in the estimator design to
estimate the true disturbance term. After constructing the assumed augmented state vector as

Zn(t) = XTm (1) X}m (t) DL (1) T, the assumed extended model of the system can be written as

2 3 2 32 3 2 3 2 3

x-lm (t) A1 Az O(n ry r le (t) 0(n ry r (nr) 1
Ao, ()2 =4 Az, Az Irr 94Xz, (05+4 Bm Su®+4 01 5 (9)
Dy (t) O nnl r Ap, Dm(t) O r W (t)

The zero elements in the disturbance term dynamics are assued for sake of simplicity, however
the control formulation given here is also valid if nonzero éements are assumed. Equation (9)
can be written in terms of the appended state vector,Z,, as

Zn(t) = FmZm(t) + Dnu(t)+ GW (t);  Zm(to) =[X], X5 07T (10)
where
2 3 2 3
A1 Az O(n ry r O(n ry r 0
I:m=4 Az, Ay, lr v 5; Dm=4 Bm 5; G= Inr
Or (nr) O r ADm O P

Note that the uncertainty is only associated with the dynamics of the disturbance term. Let

Z(t)= XI@)XI()DT(t) TandH =[C On ]. Now the measured output equation can be
written as

Y ()= HZ(t)+ V(1) (11)

Though the disturbance term is unknown, an estimator such asa Kalman lter can be imple-
mented in the feedback loop to estimate tfﬁ: unmeasured sysmi states and the disturbance term
T

from the noisy measurements. Let2(t) = T() kg(t) 6T(t) , how the estimator dynamics
can be written as

2(1) = Fm2(t)+ Dpu()+ KOIY () YO 2(t) = Zm(to) (12)

where K (t) is the Kalman gain and ¥ (t) = HZ2(t). The Kalman gain can be calculated as
K(t) = P(t)HTR 1, where P(t) is obtained by solving the continuous-time matrix di erent ial
Riccati equation (Crassidis and Junkins 2004):

P(t)= FnP({t)+ P(t)Fm' P()HTR HP(t)+ GQG'; P(to) (13)
Let Z(t)= XJ(t) X (t)DT(t) T, now the estimator dynamics can be rewritten as

2(t) = Fm2(t)+ Dpu(t)+ K(OH[Z(t) 2(t)]+ K )V (t) (14)
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The estimator uses the assumed system model given in (10) fahe propagation stage and the
actual measurements for the update stage, i.e2(t) = E[Zm (1)jf Y (to) :::Y (t)g]. Due to system
uncertainties, the estimator in (14) is sub-optimal and the estimates 2 (t) may be biased.

Remark 1:  Accuracy of the estimates depends o1 which indicates how well the disturbance
term dynamics is modeled via (8). A large Q indicates that (8) is a poor model of the true
disturbance term dynamics and a smallQ indicates that (8) is an accurate model of the true
disturbance term dynamics. Note that selecting a smallQ, while having a poor model, would
results in inaccurate estimates.

The total control law, u(t), consists of a nominal control and necessary correctionsotthe
nominal control to compensate for the disturbance term as shwn in (7). The nominal control is
assumed to be a state feedback control, where the feedbackigaK,, , Km, Km, , is selected
so that (A B mKn) is Hurwitz, where

Am = :&1" AA:n and Bm = 0(nBrrn) r

While the nominal controller guarantees the desired perfomance of the assumed model, the
second term, D (t), in (7) ensures the complete cancelation of the disturbane term which
is compensating for the external disturbance and model unatainties. Now the disturbance
accommodating control law can be written in terms of the estimated system states and the
estimated disturbance term as

h i Q
t
u)=  Kmp Byl 68 - s2(1) (15)
h i
where S , Km Bm1 . Notice that By, is assumed to be a nonsingular matrix. A summary of
the proposed control scheme is given in Table 1.
Table 1. Summary of Disturbance Accommodating Control Proc ess
Plant Xa(t) = ArX1(t) + AxX (1)

Xo(t) = Az, Xa(t) + Ag, Xo(t) + Bru(t) + D (1)
Y (t)= CX(t)+ V(1)

Initialize 2(to), P(to)

Estimator Gain | P(t) = FhP(t)+ P(t)Fn' P(t)HTR HP (1) + GQGT

K({t)= PHTR 1

Estimate 2t)= Fn2(t)+ Dpu(t)+ K() Y () Y ()
h i
Control Synthesis ut)=  Km Byt 2(1)

Remark 2: It is important to note thatif Q 0,then D (t) D m(tg) = 0; and the total
control law given in (15) becomes just the nominal control. F the nominal control, u(t), on the
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true plant would result in an unstable system, i.e., the matrix (A B K.,) is unstable, where

A As

A= AL A

— O(n ry r
and B= B

then selecting a smallQ would also result in an unstable system. On the other hand, decting
a large Q value would compel the estimator to completely rely upon themeasurement signal
and therefore the noise associated with the measurement sigl is directly transmitted into
the estimates. This could result in a noisy control signal whch could lead to problems such
as chattering. Also note that as R, the measurement noise covariance, increases, the estinoat
gain decreases and thus the estimator fails to update the pmagated disturbance term based on
measurements. Thus, for a highly uncertain system, if the nminal control action on the true
plant would result in an unstable system, then selecting a srall Q or a large R would also result
in an unstable closed-loop system.

If the estimator in (14) is able to obtain accurate estimates of the system states and the
disturbance term, then the control law in (15) guarantees the desired closed-loop performance.
The accuracy of the estimated system states and the disturbace term depends on the estimator
parameters such as the process noise covariand@, and the measurement noise covarianceR.
Thus the performance of the DAC approach presented here depels on the estimator design
parameters. A schematic representation of the proposed cdmller is given in gure. 1.

W (t) V(1)
Ref. Signal l

Nominal Controller u®), U — Plant @ o
(1)

B (1)

(Bm) *

Estimator

Figure 1. DAC Block Diagram

3 Stochastic Stability Analysis

Without loss of generality, the following assumption can bemade about the external disturbance
model.

Assumption 3.1: The linear operator, L( ), in the external disturbance term model in (2) is
assumed to be

L (X)W (1) = Aw, X1(t) + Aw, X 2(t) + Aw, W (1) (16)

whereAy,, Aw,, and Ay, are unknown matrices.

Based on equation (4), the true disturbance term dynamics ca now be written as

D)= AXa()+ AxXo(t)+ Bu(t)+ L (X(1);W (1) + V() 17)
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Substituting the control law (15) the above equation can be witten as

D(t)= AXa(t)+ AXo(t)+ BSZ(t)+ L(X(1);W (1) + V(1)
n (0]
= A1 AXa(t)+ AXa(t) + Ay Az Xa(t)+ Ag Xo(t)+ BnS2(t)+ D(t) +
n 0
BS [Fm+ DmS K(®)H]2(t)+ K()HZ()+ K (t)V (1) +

Aw, X1(t) + Aw, X2(t) + Aw,W (1) + V(1)
Assume the output matrix can be partitioned asC, C;C,, and H can be written asH ,
C1Co0n ¢ . Thus K(H)HZ(t) = K(t)C1X 1(t) + K (1)CoX 2(t). Also note that W (t) can be

written as W (t) = D (t) A1X (1) AoX o(t) Bu(t). Now the true disturbance term
dynamics can be written as

D_(t) = AlAl + A2A3m + BSK (t)Cl + AW1 AW3 Al X 1(t)+
A1Az+  ARA4 + BSK(H)Ca+ Aw, Aw, Az Xo(t)+
f BS[Fn+DmS K(t)H]+ ABnS Aw, BSg2(t)+
f Azx+ Aw,gD(t)+ BSK(t)V(t)+ V(1)
Let BSK(t)V(t)+ V(1) = W 4(1), thus W 4(t) is also a zero-mean stochastic process with

E W)W i(t+ ) = BSK@{®RK(1)ST BT+Q ()= Qalt) ()

Notice D.(t) is a linear function of the true extended system state,Z(t), the estimated states,

2(t), and the noise term, W 4(t). Thus the system in (1) is rewritten as the following extended
dynamically equivalent system:

2 3 2 32 3 2 3 2 3
Xa(t) A1 Az On oy r Xa(t) On 1) (n+n) Omn 1 1
AXo(1)5 =4 As,  As, I OAXp()S+ 4 BpS S2()+4 0,1 5 (18)
D(t) Ap, (1) Ap,(t) Ap,(t) D (1) Bp(t) W 4(t)
where
Ap,(t)=  A1A1+ AxA3 + BSK(t)Ci+ Aw, Aw, A1
ADz(t) = A1A + A2A4rn + BSK (t)CZ + Aw2 AW3 Az
AD3(t) =f A2+ AW3g
and

Bp(t)=f BS[Fn+DnS K(t)H]+ ABnS Ay, BSg
Equation (18) can be written in concise form as

Z(t) = F()Z(t) + D(2(t) + GW a(t) (19)
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where
2 3 2 3
At Az On o r On 1) (n+n)
Ft)y=4 Az, A I, 2 and D(t)=4 BpS °
Ap, (t) Ap,(t) Ap,(t) Bo(t)

After substituting the control law, the estimator dynamics can be written as
2t)= Fn2(t)+ DnS2(t)+ K()H[Z(t) 2(t)]+ K (t)V (1)
Let Z(t) = Z(t) 2(t) be the estimation error, then the error dynamics can be writen as
Zt)=[Fm K@OH+ FOIZO+[ FO+ DMI2()+ GWa(t) KOV (20

where4 F(t)= F(t) Fnand4D(t) = D(t) DpS. Combining the error dynamics and the
estimator dynamics yields

" #
Zt) _ (Fm KMH+ F@O)( FM+ D®) Z() G K(t) Wa(t)
2—(t) K(tHH (Fm + DmS) 2('[) Omn+ry r K(1) V(1)
(21)
or in a more compact form as
Z(t)=( Hz @+ ( HG(Y) (22)
where
ne (Fm KOH+ FO)( FO+ D®) . . G K
(9= K (t)H (Fn+DmsS) D% 0. K(®)
_ Z(Y) . _ W(t)

Although the Kalman Iter-based DAC approach has been succssfully utilized for practical
applications, there has not been any rigorous stochastic ability analysis to reveal the interde-
pendency between the estimator process noise covariancednontrolled system stability. Since
the system under consideration is stochastic in nature, thenotion of stability is depicted in two
separate fashions. The rst method deals with moment stabiity; for the Gaussian stochastic
processes presented here, the rst two moments are considst. The second technique considers
stability in a probabilistic sense.

3.1 First Moment Stability

In this section a detailed stability analysis which examines the explicit dependency of the con-
trolled system's rst moment stability or the mean stabilit y on the estimator parameters, such
as the disturbance term process noise covariand®@, and the measurement noise covarianci, is

given. First, a few de nitions regarding the closed-loop sytem's mean stability are given. These
de nitions and notations are rst introduced for a system wi thout any parameter uncertainties

and are used throughout the rest of this manuscript.
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3.1.1 System without Uncertainties

Here a system without any parameter uncertainties is considred, i.e.,F(t) = Fny, D(t) =
D,hS, qnd W a(t) = W (t). If there is no model error, then the estimator is unbiased,i.e.,

E Z(1) »(t) = 0. Note that the overline is used to indicate the states of the gstem when
there is no model uncertainties. Now (21) may be written as
2 3 " #
4Z(t)5 - I:m K (t)H O(n+r) (n+r) Z(t) + G K (t) W (t)
2‘(t) K (t)H Fm+DmS 2(t) On+ry r KI(1) V()

where Z(t) and 2(t) denote the hestimation error and estimated states when theg is no model

T
error, respectively. Let Z (t) = zT(t) 2T(t) and G(t) = W () VT(t) T, now the above
equation can be written in a more compact form as

Z(t)= (HZ(t)+ ( HG(Y) (23)
where

( t)= Fm K(t)H 0(n+r) (n+r)
K (t)H Fm+ DmS

Notice that G(t) is a zero-mean Gaussian white noise process with

EBOS T = o2 Hm O= ()

Since the rst moment stability is of concern here, the rst moment dynamics or the mean
dynamics is written as

E[z]= ()= (1) 2(1) (24)
Definition 3.2: GivenM land 2 R, the systemin (23) is said to be M; )-stable in the
mean if
i(tto) 2(t)i Me  9j ,(to)j; 8t to (25)
where ( t;tp) is the evolution operator generated by ( t) and j j indicates the Euclidean norm,
i.e.,
q__
jmj= mZ+ m3+:::

Since most applications involve the case where 0, (M; )-stability guarantees both a
speci ¢ decay rate of the mean response (given by ) and a specic bound on the transient
behavior of the mean (given byM ).

Definition 3.3: If the stochastic system in (23) is M; )-stable in the mean, then the transient
bound of the system mean response for the exponential rate is de ned to be

n (0]
M =inf M 2R;8 tok (ttg)k Me (t 1 (26)
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Here k k indicates the matrix two-norm, i.e.,
kKM k= max(M)

where max() denotes the maximum singular value.

As shown in the Theorem given below, the M; )-stability and the transient bound of the
system's mean response are related to a continuous time Lyapov matrix di erential equation.

Theorem 3.4: Assume there exists a bounded, continuously di erentiablgpositive de nite
matrix function P(t) satisfying the Lyapunov matrix di erential equation

P()= (HPM+ P T+ (1) ") P(to) (27)

then the system in(23) is (M; )-stable in the mean and the transient bound of the system
mean response can be obtained as

M* SUp max(P(0)= min (P (to)) (28)

where min () denotes the minimum singular value.

Proof Since (t) T(t) 08t tg, the (M; )-stability in the mean follows directly from the
existence of bounded positive de nite solution,P (t), satisfying equation (27). Now the solution
to (27) can be written as

Zt
P(t)= (tto)P(to) '(tto)+ s () "t )d
Notice that 8t tg, P(t) ( t;to)P(to) T(t;to) min (P (t0)) ( t;to) T(t;to), i.e.,
max(P(1) k (tto)P(to) T(tto) k mn(P(to) k (tto) K% t to

Now (28) follows from

max (P ()= min (P (t0)) k ( tto) kz; t to

Remark 3: AssumeP((tg) is selected asP (tg) = E[Z (tg)Z T(to)], then the positive de nite
solution, P (t), satisfying equation (27) denotes the correlation matrix i.e.,

P(t)= E[Z ()Z ()]

Thus the transient bound of the system mean response can be tdined in terms of the bounded
correlation matrix.

Note that ( t) T(t) in (27) can be factored as shown below:

() T = GQGT+ KRK T KRK T _ GQGT 0 . KRKT KRKT
- KRK T KRK T 0O O KRKT KRK T

T
=2 Qa0 PPHHT RIHP HP =LQLT+N®R INT()
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where
L= O and N@= Pp(t)HTT
(HH
Thus (27) can be written as
P()= ( P+ P(t) T()+ LQLT + N(HR NT(t) (29)

3.1.2 Uncertain System

In this subsection, the rst moment stability of the perturb ed system given in (22) is consid-
ered, i.e.,

ZMt)y= (HzZz M+ ( HZ @)+ ( HG(t) (30)
where

( 1)= Fo(t)( I:(t)+o D (1))

The correlation matrix P(t) = E Z (t)Z T(t) satis es the following matrix Lyapunov di erential
equation:

PO= (+ () PO+PE (D+ (1) + (1) T (31)

where

() O=EGOSTH = V% ()

Assuming the nominal control action on the true plant would result in an unstable system, sta-
bility of extended uncertain system given in (30) depends orthe disturbance term process noise
covariance, Q, and the measurement noise covariancelR. The Theorem given below indicates
that the stability of the extended uncertain system given in (30) is guaranteed if the selectedQ
and R satis es a lower and an upper bound, respectively.

Theorem 3.5: The uncertain system in (30) is (M; )-stable in the mean if
min(Q+ mn(R DKN@NT(t)k 1 kP(t)k 2> 2k ( t)k% t to (32
where P (t) satis es the matrix di erential equation
P{t)= ( )P(t)+ P(t) T(t)+ KQKI+ kN()R NM®OT kI P() T(t) ( tP() (33)

Proof For the linear time-varying system given in (30), uniform asymptotic stability in the mean
implies (M; )-stability in the mean. In order to show the uniform asymptotic stability of the
mean, consider the mean dynamics of the system in (30):

M=) zO+ 1) z() (34)
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whereE [Z (1)] = z (t). Construct the following Lyapunov candidate function:
VI z(®I= Z(OP (1) z(t) (35)

Note that the solution, P(t), of (33) is required to be a bounded positive de nite matrix as long
as is norm-bounded (Abou-Kandil et al. 2003). Thus P (t) exists and V[ z ()] > O for all
2 (t) 6 0. SinceP(t)P (t) = I, the time derivative of P(t)P 1(t) is O:

h [
2PP 10 = POP A+ POP 1) =0

Solving the above equation forP- 1(t) and substituting (33) gives

Pit)= P YPNP (1)
= P Yt)(v) TP () kQk+ kNM®R IN®)Tk P )P ()

T
Now the time derivative of (35) can be written as
V[ z(®)]=_3P *tz+ Pt z+ JP 15
= z+ zI'P 1 2 JPt o ; Pty
kQk+ kNR INTk Ip 2,4+ 1T T z+ P 2+ 7]

=7 TPl,+ IP' , kQk+kNR INTKk IP 2,

+ 5 T 7
n o]
=7 Tplipl kQk+kNR 'NTk P 2+ T z
Asymptotic stability in the rst moment is guaranteed if
n o]
TP lypt kQk+ kNR INTk P 2+ T <0
Note
h ih it
T P 1 T P 1 0) T + P 2 TP l+ P 1

Thus the above condition for asymptotic stability is satis ed as soon as

n (0]
2 T+ p2? kQk+ kNR INTk P 2?2 <0

or

n 0
2P T P+ kQk+ kNR INTk I <0

Using the inequalities

kPkk K1 P T P min(Q k Qk; and mn(R ) kNNT kk NR INT k
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yields
2kP Kk K< min(Q)+ min(R HKNNTk 1
Hence the uniform asymptotic stability in the rst moment is guaranteed if

2k ( DK< min(Q+ mn(R DKNMONT( Kk 1 kP(Hk % t to

Remark 4: The uncertain system in (30) is (M; )-stable in the mean if the selectedQ and R
satisfy the inequality in (32). Thus for a highly uncertain system, if the nominal control action
on the true plant would result in an unstable system, then sekcting a smallQ or a large R would
also result in an unstable closed-loop system.

3.2 Mean Square Stability

In this subsection the controlled system's stability in the second moment or the mean square
stability is considered. It is shown here that the (M; )-stability in the mean implies mean

square stability. More details on mean square stability canbe found in Kushner (1967) and
Soong (1973).

Definition 3.6: A stochastic system of the following formZ.(t) = ( t)Z (t)+ ( t)G(t) is mean
square stable if

Jim EZT()Z@®)] <M (36)

where M is a constant square matrix whose elements are nite.
Note that E[Z T(t)Z (t)] = Tr fP (t)g, i.e.,

%E[z (OZT 1= RO = ( HPO+ P®) "M+ (D (D (1)

and the solution to the above equation can be written as
z t
P(t) = . ()0 )C) () "t Hd

The (M; )-stable in the mean implies the system matrix, (t) = ( t)+ ( t), generates an
exponentially stable evolution operator, and thereforeP (t) has a bounded solution (Abou-Kandil
et al. 2003). Therefore, for the system given in (30), ¥; )-stability in the mean implies mean
square stability.

3.3 Almost Sure Asymptotic Stability

The solution to the stochastic system given in (30) cannot bebased on the ordinary mean square
calculus because the integral involved in the solution depmds on G(t), which is of unbounded
variation (Soong and Grigoriu 1993). For the treatment of this class of problems, the stochastic
di erential equation may be rewritten in It6 form as

dZ(t)= (DHZ@®+ ( HZ(t) dt+ (t) (t)dB(t)
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or simply as
dz (t)= ( )Z (t)dt+ ( t) 2(t)dB(t) (37)

where dB(t) is an increment of Brownian motion process with zero-meanGaussian distribution
and

E[dB(t)dBT ()] = Idt (38)

The solution Z (t) of (37) is a semimartingale process that is also a Markov proess (Grigoriu
2002). Details on the almost sure &:s:) stability for the stochastic system in (37) is presented
in this section.

Definition 3.7: The linear stochastic system given in (37) is asymptoticaly stable with
probability 1, or almost surely asymptotically stable, if

PZ®)! 0 as t!1 =1 (39)

(M; )-stability in the mean response implies that ( t) generates an asymptotically stable
evolution for the linear system in (37), but it does not imply almost sure asymptotic stability
due to the persistently acting disturbance. In fact, given (t) generates an asymptotically stable
evolution, the necessary and su cent condition for almost sure asymptotic stability is

lim k(1) k? log(t) = 0 (40)

A detailed proof of this argument can be found in Appleby (20@). Equation (40) constitutes the
su cent condition for the almost sure asymptotic stability of a linear stochastic system given
(M; )-stability in the mean.

4 Stabilizing Q and Transient Bound on Uncertain System

The Lyapunov analysis given in Theorem 3.5 indicates a lowebound requirement on the system
process noise covarianceQ, and an upper bound requirement on system measurement noise
covariance, R, in order for the controlled system to be M; )-stable in the mean. Since the
measurement noise covariance can be obtained from sensolibeation, the process noise matrix
Q is usually treated as a tuning parameter. This would compel aoe to select an extremely
large Q so that the stability is always guaranteed. Selecting a larg Q value would force the
estimator to completely rely upon the measurement signal ad therefore the noise associated
with the measurement signal is directly transmitted into th e estimates. This could result in
a noisy control signal which could lead to problems such as dttering. This section shows a
systematic approach to select a stabilizingQ using the overbounding method of Petersen and
Hollot (Petersen and Hollot 1986, Douglas and Athans 1994).
Assume the structure of the uncertainty ( t) is given as

X
( = i) i (41)

i=1

where  is assumed to be a rank-one matrix of the form ; = tieiT. In the above description,
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ri(t) is the i" component of the vectorr(t) 2 R' and is upper bounded by

rsupjri(t)j; 8i2f1,2 :::;1g (42)
t to
De ne matrices T and E as
X X
T= tit] and E= eel (43)
i=1 i=1
Lemma 4.1:  If the uncertain matrix ( t) has the structure given in(41), then the following

matrix inequality is valid for all matrices P (t) of appropriate dimensions:
PT@t)y T+ ( tP (@) r2T+P T@EP (); 8t to (44)

wherer, T, and E are from (42) and (43).

Proof Substituting ;= tjel into (41) yields,
X n 0
( OP M)+ P T@R) T(t)= ritie P 1)+ ri(P T()et]
i=1
Notice
h ih

i
nmt P T(Me nt P T(he | 0
Thus
Pt + P T(Heel P (1)  ri()tiel P () + ri()P T(t)et]

and

X n . o X n . 0
rétity + P T(ee P (1) ritielP 1)+ ri(OP T(Meit!
i=1 i=1
Now substituting for T and E yields

rPT+P TWEP @) ( HP )+ P @) T(1)

A computationally feasible procedure for the calculation d a stabilizing Q is given next.

Theorem 4.2: Assume the uncertain matrix ( t) has the structure given in(41) and the
process noise covariance( , is selected so that the following matrix di erential Riccati equation
has a bounded positive de nite matrix solution,P (t):

PM= (P +P 1) () P ®P (H+R Q;R ! (45)
and

R Q;R!? P ()P (1)+ r2T+P T(H)EP (t); 8t tg (46)
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where is a positive constant andR Q ;R ! denotes a positive de nite matrix function. Then,
the uncertain system in (30) is (M; )-stable in the mean and

M2 tsutp max P () = min P (to) (47)

where M represents the transient bound of the uncertain system's na@ response.

Proof Since ( t) is assumed to generate an exponentially stable evolutionperator, there exists
a bounded positive de nite matrix, P (t), that satis es equation (45). Note that (45) can be
written as

T

PRMO= (+ ( )P @O+P M) (D+ ( 1) P({®P (H+R QR *

( DP (@) P () ()

The solution to above equation is

Z n
P ()= ( tto)P (to) "(tto)+ (t ) R Q;R 1 P ()P ()

to

o

( JP() PC) T() T )d

where (t;tg) is the evolution operator generated by (t)= ( t)+ ( t). Based on Lemma 4.1
and the matrix inequality equation (46)

RQR* P®OP® (HPE® PO (1) O
Thus
P(t) (ttoP (to) "(tto) min P (to) (tto) "(tto)
Now (47) follows from
max P (1) =mn P (to) k (tto)K?

Therefore, (t;tg) generates an exponentially stable evolution.

Assuming the system uncertainties can be written in the formgiven in (41), a stabilizing
process noise covariance , can be calculated. Notice that bounds on the system uncertaties
used here may be highly conservative and therefore it may rest in an extremely large value of
Q. As mentioned earlier, selecting a largeQ results in a noisy control signal and it could lead to
problems such as chattering. Also note that obtaining the uger boundr is rather di cult since
the system uncertainties, F(t) and D/(t), may depend on the estimator gain,K (t). Thus
increasing the process noise covariance would also increathe upper bound on the uncertainty,
i.e., r. Finally, the reader should realize that the dependency of gstem uncertainties on the
estimator gain is eliminated if the control distribution ma trix is precisely known, i.e., B =0.
For more details, please refer to (18).
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5 Adaptive Scheme

After substituting the disturbance accommodating control law, u(t) = SZ2(t), the plant dynamics
in (1) can written as

h [
X(t)= AX(t)+ B S2(t)+ B 1w (t) (48)
and the estimator dynamics in (14) can be written as

2(t)=[Fm + DmS]2(t) + K (1)B (1) (49)

where® (t) =[Y (1) Y (1)]. Let X ext(t) = XTI (t) XT(t) WT(t) T now based on assumption 3.1,
the controlled plant in (48) can be written as

Xext(t) = AextXext(t) + Bextsz(t) + GV (1) (50)
where
3 2 3
Ar Az O(n ry r O(n ry r
Aext = 4 Az Ay Iy S and Bext = 4 B O
Aw, Aw, Aw, O

The following assumptions are now made.

Assumption 5.1: The pair (Aext; Bext) is controllable and the pair (Aex; H) is observable.

Assumption 5.2: There exist anr m matrix such that T Im m, i.e.,, m r. If
m > r , then the r-outputs considered here are selected such that the correspding (Aex:; H) is
observable.

Assumption 5.3: There exists anm m matrix R > 0 such that 8t tg, we have
h i
E $E'(t) R

Based on assumptions 5.1, 5.2, and 5.3, an adaptive scheme $lecting the stabilizing process
noise covariance matrix can be developed as shown next.
Theorem 5.4: Given assumptions 5.1, 5.2, and 5.3, the controlled systemsimean square
stable, E[X (1)] 2 Lo\ L1 and X (t) is asymptotically stable in the rst moment, i.e.,
tI!|1m E[X()]=0

if the process noise covariance is updated online using thedaptive law

n 0
dQ(t) = AQQ()+ QAL+ BMET(t) T dt (51)

whereAq is anr r negative de nite matrix such thatO< 2TrfAgg 1land is the adaptive
gain.
Proof of this theorem is based on the following lemmas.

Lemma 5.5:  Consider the following linear stochastic system

Z(t)= AZ(t)+ U(t)
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If the matrix A generates an exponentially stable evolution operator o(t tg) and U (t) 2 Lo,
i.e.,
Z, 1=2
E ju( )jd <1

to
wherej j represents the Euclidean norm, thenZ(t) 2 Lo\ L1 and
tI!llm E[Z(t)]=0
Proof The solution Z(t) can be written as
z t
Z(t)= A(t to)Z(to)+ At )u()d
to
Since a(t tp) is exponentially stable

k a(t to)k oe &t 1) 0, 8t to

wherek Kk represents any induced matrix norm and o and a are two positive constants. Thus

z t
jZ()j k- alt to) kjZ(to)i+  k a(t ) kju()id
to
YA t
oe At 1)jZ(to)j + oe 2 Dju()jd
to
Z

t
e M Wiz + e @ A g 22 jy( d
to

The last inequality is obtained by expressinge ! ) ase (@ 232t )eg 2=2(t ) whereay < 2a
is a positive constant. Applying the Schwartz inequality yields

Z, 1=2 Z, 1=2
iZM)] e A 0jZ(te)j+ o e (@a @)t g e @ Dju( )j%d
to t0
Thus
Z t 1=2
iZ)j e A ©)jZ(te)j + p—2— e @ ju( )j3d
(2a ag) 1
and
"z ¢ 1207
EGZMi]  oe A ©E [jZ(to)j] + p—2-=F e 2 )ju()j3d
(2a ag) to
Therefore

Jim E[Z(t)] = 0
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Also note that E[jZ(t)]] is bounded by

"z t 122"
EGZ()i]  oe ¥ WE[Z(to)j]+ po—=—=xE ju( )j*d
(2a &) to
SinceU(t) 2 L,
"z 1 1™ Z, 1=2
E ju( )jd E ju( )j%d <1
to t0
Note that Z(t) 2 L, since
z 1 z t z 1 z 1 1 z 1
e 20 Jju()jPd  dt ju()i® e® Jdt d = jU()j*
to to to to ag to

Finally note that

Z(t)2L2) E[Z(]2 L2

Lemma 5.6:  Consider the following linear stochastic system

Z(t) = AZ(t)+ U(t)
Y (t) = CZ(t)

If (A;C) is observable,Y (t) 2 L, and U(t) 2 Lo, then Z(t) 2 Lo\ L; and
tI!llm E[Z(t)]=0

Proof If (A;C) is observable, then there exist a matrixK suchthat A, = A KC is exponentially
stable. Now Z(t) can be written as

Z(t)= AZ(t)+ U(t)+ KY (1)
Thus from Lemma. 5.5 one could conclude thatz(t) 2 Lo\ L; and

Jim E[z(1)] = 0

The stability analysis given in section 3 reveals that seleiing a su ciently large process
noise covariance would guarantee asymptotic stability of he controlled system's mean response.
Thus the adaptive law given in Theorem 5.4 increases the pragss noise covariance to ensure

that E ¥(t) 2 L,. Now based on the above lemmas the proof of Theorem 5.4 can basily
obtained as shown next.
Proof
Let F,f denotes a ltration generated by ¥ (t), i.e.
h i
E B()jFf =¥(s) s t
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Now consider the following nonnegative function:

Zt
V(to;t;2;%;P;Q) = E

to

h [

ir h i h i h
?()iFS E ®O)iFf d +E 20 jFf XE 2(jF¢
+Tr Q  Q(t) +Tr Py P(1)

where Q Q(t) 8t tois a stabilizing process noise covariance anl,,,, is selected such that
Pmax P (1); 8t  to, where P (t) may be obtained by solving the continuous-time matrix
di erential Riccati equation:

P ()= FmP (1)+ P (t)Fn' P (O)H'TR HP (t)+ GQ G'; P (to) = Po
Note that for any Q(t) Q , P(t) Py, WhereP(t) satis es
R(t)= FnP({t)+ P()Fm' P@HTR HP(t)+ GQM)G"; P(tg) = Py (52)

More details on this can be found in thecomparison results given in chapter 4 of Abou-Kandil
et al. (2003). The matrix X is a positive de nite matrix of appropriate dimensions and it is
selected so that it satis es the following matrix inequality

X [Fm+ DmS]+[Fm+ DmS" X + XX +M 0

where M > 0. It is important to note that the expectation given in the ab ove nonnegative
function is conditioned on the Itration at the lower time li mit. For example, consider a time
instant s such thatty s t, now V(s;t; 2;173 ;P; Q) can be written as

Zt
V(s;t;2;8;P;Q = E

S

h h

i i h ir h i
e()iF¥ E e()jFf d +E 20jFF XxE 200)jFf

T Q  Q(t) +Tr Pra  P(1)

Now dV (s;t; 2; ¥ P; Q) can be calculated as

h

h it i h
dV(s;t;2;%;P;Q =E B(t)jFS E B()jFS dt+E

. H .
dz(t)ijlTXE 2(t)jF_fI +

h ir h i
E 200)jFf XE d2()jFf T doit) Tr dP(t)

Note that

h

i h i h
E d2(t)jFY =[Fn+ DnSIE 2(1)jFF dt+E

i
KM®®®)jFS dt
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Thus
h ir h i
dV(s;t;2;®;P;Q = E B(t)jF¥ E f@W)jFf dt Tr dQit)y Tr dP(t) +
h i h i h ir h i
E 200)jFY [Fn+DmSI"XE 2(t)jFf dt+E KM@ jFS XE 2(1)jFF dt+

h

h it |
20)jFF XE K@WeBWM)jFS dt

h i h i
E 20)jF X[Fm+DnSIE 2()jFF dt+E

Notice that for any two vectors a and b of same dimensions, the following inequality holds

a'a+b'™d a'b+bla

h i h h h

E 2()jFF T XXE
h ir h i h ir h i
E KMOEMjFS XE 200jFF +E 200jFF XE KB jFS

i i i
20 jFf +E KR jFS TE KB jFS

Therefore
h it h i
dv(s;t;2;%;P;Q E ®(M)jFY E f@jFF dt T dQtt)y Tr dP(t) +
h i ( ) h i
T
E 20jFF X[Fm+ DmS]+[Fm+DnSI"X+ XX E 2(t)jFF dt+
h i- h

i
E KMWEM)jFS "E Kt jFS dt

Now employing the Cauchy-Schwarz's inequality gives

h i h i
dV(s;t;2;®;P;Q) E BTMBMjFS di+E BTOKTOKMBW®)jFS dt Tr dQ(t)

( )

h i i
+E 2()jFS  X[Fm+ DmS]+[Fm+DmS]" X + XX E 2(1)jFf dt T dP(t)

Substituting (51) and (52) yields

h i h i
dV(s;t;2;8;P;Q) E BT jFS dt+E BTOKTOKMEWM)jFS dt
h i h i n 0
E 2()jFF "ME 2 jFS dt T AQQ()+ QAL+  BMET(t) T dt

T FnP@)+ P(t)Fn' P@{HTR HP (1) + GQ(t)G' dt
Note that
Tr AgQ(t) + Q(t)Ag = 2TrfAgQQ(t)g 2TrfAQgTr fQ(t)g Tr fQ(t)g

The rst inequality is valid because Ag is positive de nite and the process noise covariance
Q(t) is positive semi-de nite (Yang 2000). The last inequality holds since 0< 2TrfAqg 1.
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Also note that due to the nature of matrix G, we have
Tr GQ()GT =Tr fQ(t)g

Thus

h 0] h o]

n i n i
dV(s;t;2;®;P;Q) Tr E BWE'()jFF dt+Tr E KTOKMEMET(M)jFF dt
h IT h i n 0
E20)jFf ME 200)jFf ot T e@weT) T dt
+Tr P(HTR HP(t) dt 2TrfF,P(t)gdt
h n 0 i h ir h i
E 1+kKMOK Mk Tr ML) jFSf dt E 2()jFF ME 2(0)jFF dt
n (0]
T BMRT() dt+Tr P@OH'R HP(t) dt 2TrfFy,P(t)gdt
The second inequality holds since

PO+ KO 1+ KKOKT () k [

h i
ThereforeE dV(s;t;2;%;P;Q)jFF can be written as
h i h i
E dV(s;t;2;%;P;Q jFf E 1+kK®KT M)k jBMZjFF dt
h i h i h i
E20)jFf ME 2()jFf dt E je®PjFS dt

h i
+E Tr POHTR HP(t) 2F,P(t) jFF dt

Combining the similar terms yields

h i h i
E dV(s;t;2;%;P;Q jFf E 1+kKMKTMk jEMPZjFTS dt
h it h i h i
E20)jFF ME 20)jFF dt+E T POOHTR HP(t) 2FnP(t) jFJ dt
Let = 1+ 5 where ;is selected such that
1 1+ kK @OKT() k (53)
Thus
h i n h io
E dV(s;t;2;%;P;Q)jFf ;T E BB ()jFS  dt

h i h i h i
E20)jFf ME 20)jFf dt+E T POHTR HP(t) 2F,P(t) jFS dt

Now based on assumption 5.3, we have
h i h it h i
E dv(s;t;2;®;P;Q) jFJ E20)jFf ME 2)jFF dt+
h i
E Tr POOH'R HP(t) 2F,P(t) ,Tr R jFY dt
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h i
Finally note that E dV(s;t;2;%;P;Q)jFf o0if

, Tr POHTR HP(t) 2F,P(t) Tr R * (54)
Assuming ¥ (to) is precisely known yields,
h [ h [
EPWjFF =E B@)
Thus selecting 1 and 5 according to Eqgs. (53) and (54) yields
h i Zy h i
E V(to;t; 2;%;P;Q)  V(toite;2;%;P;Q) = E dV(tg; ; 2,:P;Q 0
to
Therefore
h i

E V(to;t;2;8;P;Q)  2T(to)X2(to)+Tr Q  Q(to) +Tr Ppax  P(to)

Also note
h i “
E V(st2,%;P,QjFS V(tgsiZ;¥;P,Q= E

S

h i
dv(s; ; 2;8:P;QjFf o0

Thus

h i
E V(st2;8;P;Q) jFS  V(tes2;%;P;Q

Now the properties of V (to; t; 2; ¥ ;P; Q) may be summarized as
(i) Vot 2, 8:P;Q) 0

(ii) EhV(to;t;2;¢;P;Q) <1

(i) E V(toit; 2;%;P;Q jFS  V(tgsi2,8;P;Q); s
(iv) V(to;t; 2;®;P;Q) is adapted to F,f

These properties imply that V (to; t; 2,¢;P; Q)is a nonnegativer‘2 -supermartingale (Kushner
1967, Liptser and Shiryayev 1989) and the nonnegative superartingale probability inequality
yields (Doob 1953)

2T(t)X2(te) +Tr Q  Q(to) +Tr Ppa  P(to)

P supV(to;t; 2;%;P; Q)

t to

where > 0 is any positive constant. Thus selecting su ciently large yields

P supV(to;t; 2;%;P;Q) <1 =1
t to
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That is, V(to;t; 2; ¥ P; Q) is almost surely bounded. NoteV (to;t; 2; ¥ ; P; Q) is de ned as
Zy h  ir h o h it h i
V(to;t; 2;8;P;Q = E ©() E ¥()d +E 2(t) XE 2(t)

to

+Tr Q  Q(t) +Tr Ppax P(1)

Therefore
h i
V(tot;2;8;P;Q) 2L, as: =) E B(t) 2Ly Qt)2L; and P(t)2L; as:

SinceP(t) is a:s: bounded, the estimator gain,K (t) = P(t)HTR 1, is alsoa:s: bounded. Thus
there exist ak such that

P supkK(t)k>k =0
t to

The estimator dynamics is given as
2(t) =[Fm + DmSI2(t) + K (1) ¥ (1)

Since Fm + D S] generates an exponentially stable evolution operator, at sinceE[¥ (t)] 2 Lo,
based on Lemma 5.5, it can be shown thak [2(t)] 2L\ L;,and

h i
Jim E 2(t) =0
SinceE[¥ (1)] 2 L,
E[2()]2L2=) E[Y(1)]2L;

Now given the observability assumption, based on Lemma 5.6t can be shown that E[X (t)] 2
L2\ L, and

Jim E[X ()] = 0

Finally note that the controlled closed-loop system can be witten as
" #
X—ext (t) - Aext Bexts X ext (t) GV (t) (55)
2(1) K({t)H fFn+ DS K()Hg  2(1) K ()V (t)

Note that the closed-loop state matrix

E (t)z Aext BEXIS
cL K(tH fFm+ DnS K (t)Hg

is bounded. Also, the asymptotic stability of E[X ex ()] and E[2(t)] implies that the matrix,
Fco (1), generates an asymptotically stable evolution operator, ¢ (t;to), i.e.,

t|!I1m k CL(t;to)k =0



December 23, 2010 11:32 International Journal of Control I3 C_ADAC_MainFile

International Journal of Control 25

Equation (55) can be written in It6 form as

dX L (t) = FeL ()X (t)dt+ ¢ (t)dBey (t) (56)
where
c(t) = (SK(()t) and E dBcL(t)dBE, (1) = (83 dt = Qcpdt

Remark 5: It is important to note that if one wishes to express (55) in Stratonovich form, the
results given here holds since we are considering linear stimastic di erential equations with state
free di usion term and the solution obtained from the Straton ovich integral equation converges
a:s: and uniformly to that obtained from the 1t6 integral equati on. For more details please refer
to the Wong-Zakai theorem (Grigoriu 2002).

Now using It6 formula d X ()X £ (t) can be written as

d XcL (t)X 1(-2L (t)

Xe(d(Xer ()T + d(XeL () XL )+ cL()QcL c(t)dt
n 0
Xt X EL@FL () + For (X el X E )+ cL(t)QcL cL(t) dt

+ cL(ABeL ()X EL (1) + XL (DABEL (1) &L (1)

Thus
Zth Ti T

XeL (XL ()= cLtto)X el (to)X &y (to) &L(tito) + Xce( ) cu()dBer()
to

Z, Z
+ t Xci() e )dBer() '+ t et ) c()QcL &() &t )d
Therefore
h i h
E Xct(XEL () = E  co(tto)Xe(to)X & (to) & (tto)

z, i
+ et ) e )QeL &() &t )d

to

Since | (t;tp) is an asymptotically stable evolution operator and ¢ (t) is bounded, it can be
easily shown that the closed-loop system is mean square stigh i.e.,

lim EX el (XL 0] < M

where M is a constant square matrix whose elements are nite $oong 1973).

Even though the initial process noise covarianceQ(tg), may not be the stabilizing Q, the
adaptive law given in (51) can be used to update the process Iige covariance online so that the
controlled system is asymptotically stable. A schematic r@resentation of the proposed adaptive
controller is given in gure 2.

6 Simulation Results

For simulation purposes, consider a two degree-of-freedoimelicopter that pivots about the pitch
axis by angle and about the yaw axis by angle . As shown in gure 3, pitch is de ned positive
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Figure 2. Adaptive DAC Block Diagram

when the nose of the helicopter goes up and yaw is de ned posie for a counterclockwise
rotation. Also in gure 3, there is a thrust force F, acting on the pitch axis that is normal to the
plane of the front propeller and a thrust force Fy acting on the yaw axis that is normal to the
rear propeller. Therefore a pitch torque is being applied ata distancer from the pitch axis and
a yaw torque is applied at a distancery from the yaw axis. The gravitational force, Fg, generates
a torgue at the helicopter center of mass that pulls down on tle helicopter nose. As shown in
gure 3, the center of mass is a distance of.y from the pitch axis along the helicopter body
length.

Figure 3. Two Degree of Freedom Helicopter

After linearizing about (tg) = (tg) = Ltg) = tg) = 0, the helicopter equations of motion
can be written as

(Jeqipt Mheii |§m) *(t) = KppVmp(t) + KpyVimy ()  BpLt) + Wq(t) (57a)
(Jeqiy * Mheii |§m) *(t) = KyyVimy (1) + KypVmp(t) By (t) + Wa(1) (57b)
A detailed description of system parameters and assumed vags are given in Table 2. The system

states are the pitch and yaw angles and their correspondingates, i.e., (t), (t), «t), and (t).
The control input to the system are the input voltages of the pitch and yaw motors, Vp,,, and
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Vmy. respectively. The external disturbances are denoted asVi(t) and Wy(t). Let X4(t) =

Table 2. Two Degree-of-Freedom Helicopter Model Parameter s
System Assumed| True
Parameter | Description Values | Values | Unit
Bp Equivalent viscous damping about pitch axis| 0.8000 1 N=V
By Equivalent viscous damping about yaw axis 0.3180 | -0.3021| nN=v
Jeq:p Total moment of inertia about yaw pivot 0.0384 | 0.0288 | Kg m?
Jeqy Total moment of inertia about pitch pivot 0.0432 | 0.0496 | Kg m?
K pp Trust torque constant acting on pitch axis
from pitch motor/propeller 0.2041 | 0.2552 | N m=v
Kpy Trust torque constant acting on pitch axis
from yaw motor/propeller 0.0068 | 0.0051 | N m=v
Kyp Trust torque constant acting on yaw axis
from pitch motor/propeller 0.0219 | 0.0252 | N m=v
Kyy Trust torque constant acting on yaw axis
from yaw motor/propeller 0.0720 | 0.0684 | N m=v
Mheli Total mass of the helicopter 1.3872 | 1.3872 Kg
lem Location of center-of-mass 0.1857 | 0.1764 m

® ® L Xa)= L) ) " u®t)= Vinp(t) Vimy () T, and W (£) = Wa(t) Wa(t) T. For
simulation purposes, the external disturbanceW (t) is selected to be

Wi (t) =2:43(t) L1:3_(t) Wa(t)+2Ws(t)+ V(1)
Wo(t) =  0:34(t) +1:92 _(t) + Wq(t) 3Wy(t) + Vo(t)

(58)

and

Vi(t) _ .
V;(t) =V(@H) N 0;1 1025 5 ()

Now the state-space representation of the plant can be writtn as

X (t) = Xat)
Xo(t) = AgXo(t) + Bu(t) + W (1) (59)
W(E) = Aw, X2(t) + Aw,W (1) + V(1)

where

_ 243 13 | 1
Aw, = 0:34 192 Aws =
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and the system parameters are given as

B B
a1 = i 5 a = ! >
(Jeq;p+ Mheli Icm) (Jeq;y + Mpgli Icm)
K K
bl - Pp bz - py
(Jeq;p+ Mhpeli I(g,m) (Jeq;p"' Mhpeli |§m)
K K
bg, yp b4 yy

(Jeqiy + Mheli1Zm) (Jeqy * Mheiil2m)

The state-space representation of the assumed system modael

X1, (t) = Xz, (1)
X (1) = Ay, X, (t)+ Bru(t)

where

_ a, 0
A4m_ 0 az, !

m m

b b
B = s by,

The measured output equations are given as

Y (t) = CX (1) + V(1)

where X (t) = X1 (t) X1 (t) T and C = l> 202 2 . Note that the disturbance term, D (t) =
[D (t) D (1)]", can be written as

D (t) = 4 a; {t) + 4 byug(t) + 4 bpup(t) + Wa(t)
D (t)= 4 ay (t)+ 4 bauy(t) + 4 baup(t) + Wo(t)

The assumed disturbance term dynamics is modeled as

D ()= D _()+ Wi(t)
D ()= 3D _ (t)+ Wx(t)

h it
Let the extended assumed state vector b& , (t) = XL(t) DW (t) D B () . Now the assumed
extended state-space equation can be written as

Zn(t) = FmZm(t)+ Dnu(t)+ GW (t)

where

2 3
022|22022 O22 0
Fmn=4%0, A4 12 25, Dn=4Bn5 and G-= |42
02 202 2AD, 02 2 22
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The estimator dynamics can be written as

21t)= Fm2(t)+ Dmu(t) + K(OICX(t) H2(t)]+ KV (1) (60)

whereH =[C 0, »]. The nominal controller is a linear quadratic regulator which minimizes
the cost function

Z
J=%E ' Xm(®)  Xa)"Qx(Xm(t) xq)+ uT(HRyu(t) dt (61)
0

wherexg =[ 4 4 0 0], gand 4 are some desired nal values of and , respectively, and
Qx and Ry are two symmetric positive de nite matrices. The nominal control that minimizes
the above cost function is

ut)y= Km(Xm(t) xq)

whereK , is the feedback gain. Now the disturbance accommodating cdrol law can be written
in terms of the estimated states and the estimated disturbame term as

3
h i >’¢(t) X
W= Kn B '3 B &=S20+ Knxe
D (1)

After substituting the above control law, the true extended system dynamics can be written as
2 3 2 32 2 3 2 3 2 3
X1 (t) 022 l22 022 Xl(t) 02 6 02 02 1
AX,1)5=4 0, 2 As, 1o 294X, (1)5+4 B,LS52(t)+ 4Bn K mOXg+4 0, 1 5
D—(t) ADl(t) ADz(t) AD3(t) D (t) BDl(t) BDz a(t)

(62)

WheI'EADl(t) = BSK (t), ADz(t) = A2A4m + AW2 AW3 Ao, AD3(t) = Ay+ AW3,
Bp, ()= f BS[Fm+ DmS K()H]+ ABmS A,, BSg;

and Bp,(t)= A2BmKm Aw, BKm.Here B=B Bpand A=Az Ag,.

Table 3. Nominal Controller  =Estimator Matrices
LQR Weighting Matrices Covariance Matrices
_ _ @ 3 )
=10 | = :R=10 | X
2 2 Q q3q14 2 2
500 1,5 O ) 10 l2 202 022
QX - 02 2 100 |2 2 P(tO) - 02 2 |2 2 02 2
0 > 0 2107 1

Table 3 shows the nominal controller and estimator matrices Since the measurement noise
covariance, R, can be obtained from sensor calibration, the process noismatrix, Q, is treated
as a tuning parameter. Based on the weighting matrices givenn Table 3, the feedback gain is
calculated to be

7:0229 08239 16691 Q3310

Km = 0:8239 70229 0:0830 24486
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For simulation purposes the initial states are selected to B [o o - -o]' =
[ 45 0 0 O and the desired states 4 and 4 are selected to be 4% and 3, respectively.

100~

Desired States

10

4 6
Time(sec)

Figure 4. Desired System Response

The desired response given in gure 4 is the system response the nominal control when
there is no model error and external disturbance. For illustative purposes, simulations are
conducted using the traditional disturbance accommodatirg control as well as the proposed
adaptive disturbance accommodating control. Results obtined using the traditional DAC is
given rst.

6.1 DAC Results

Figure 5(a) shows the unstable system response obtained fdhe rst simulation where the
disturbance term process noise covariance is selected to ge= 10° |, ,. Figure 5(b) shows the
input corresponding to the rst simulation scenario. Figures 6(a) and 6(b) contain the estimated
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Figure 5. Actual States and Input: Q=103 I, »

disturbance term and the error between the desired states ahthe true states corresponding to
the rst simulation. Note that the rst simulation results g iven in gures 5 and 6 are unstable
due to the low value of Q selected.

A second simulation is conducted usingQ = 10° I, ,. The system response obtained for
the second simulation is given in gure 7. Figure 8 shows the s&timated disturbance term and
state error obtained for the second simulation. Note that the estimated system rates, estimated
disturbance term and the control input are highly noisy becaise of the largeQ selected.



December 23, 2010 11:32 International Journal of Control I3 C_ADAC_MainFile
International Journal of Control 31
400 : 100
) p—
300+ _-D] [

£ 200t Lo 50 N B
—_ | 1 1 | —=1
QO 100 < \ [ . , N
bt -~ Pl ' ! - 7 ANy )
8 0 =Tt 4\*7* T "‘“\1—4\ o 0 = oS e leL‘\\"r\l“-!"T
C 100 - ) \ vy o ‘ Y
® - [E | — . ! Y
L 200t FRa W 5! R

=] N 1 N v !

+2.300 - : ]

R% '. L
0 -400 1 ] -100 - e

! !

-500 | “:' l\ '
6005 2 4 6 Ilo 150 4 6 ) 10

Time(sec) Time(sec)
@ (b)
Figure 6. Disturbance Term and State Error: Q=103 1, »

1007

a
o

System States

-50
0

Input

T?me(se%)
(@)

Figure 7. Actual States and Input:

10 o

_ Disturbance term

Q =10°

T?me(seec) °
(b)

l2 2

: ‘ : -0.8 : ‘ :
2 4 6 10 0 2 4 6 10
Time(sec) Time(sec)
@ (b)
Figure 8. Disturbance Term and State Error: Q =10% 1, »

The results shown here indicate that for a small value of proess noise covariance, the controlled
system is unstable. Though a large value of process noise @wiance stabilizes the controlled
system, it also results in highly noisy estimates. The diretdependency of the controlled system's
stability on the process noise covariance is more evident ithe simulation results given next.

Combining the plant dynamics in (59) and the estimator dynamics in (60), the closed-loop
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system dynamics can be written as

3 2 32 3 2 3
X1(t) 02 212202 2 02 6 X 1(t) 02 1
Xo()7 _ B0, 5 Ag 12 2 BS z Xz(t)z +§ BK mXg Z
W (1) 0 2 Aw, Aw, 0 6 W (1) V(t)
2(t) K(t)02 20, 2(Fn+ DS K(H)  2(t) DmKmxXg+ K (t)V ()
(63)

Since we are considering a time-invariant system here, the &lman gain K (t) converges to its

15 T T T T

101 Pole 1

Pole 2
+ Pole3
Pole 4
Pole 5

Pole 6
0 $ Pole7 4 ‘ -
<

Pole 8
Pole 9
Sr Pole 10|

Pole 11
Pole 12

X

Imag Axis

o &

-10

-15 I I I I
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Figure 9. System Closed-loop Poles for Q Varying from1 102 to 1 10°

steady-state value fairly quickly. Using the steady-stateKalman gain, the stability of the closed-
loop system can be easily be veri ed. Figure 9 shows the cloddoop poles of the system for
di erent values of Q ranging from1 10° I, »to1 10° |, ». Figure 9 indicates that the
controlled system is unstable for the initial small values ¢ Q and the closed-loop poles migrate
into the stable region asQ increases.

6.2 Adaptive DAC Results

Results obtained by implementing the proposed adaptive disirbance accommodating scheme
is presented in this subsection. Based on the assumed systgmarameters and controller design
matrices given in Tables 2 and 3, the assumed state matrixA ,,, the assumed input matrix, By,
and the DAC matrix, S, can be calculated as

2 3 2 3
00 100 O 0 0
_ 600 0 100 é , _8o0 o0 Z .
Am=200 928 0 5 Bm=4d23700g5: ad
00 0 350 0:24 Q79

7:02 082 167 033 042 004
0:82 7:02 008 245 013 1:28
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As shown in section 6, matrix Ap,, is given as

10
Abn = o 3

Now the matrix [Fy, + D,y S] can be calculated as

3
0 0 100 0 0 0
0 0 0 100 O 0
_ 1656 250 1322 098 O 0
[Fm + DmS] = 1:.04 5756 034 551 O 0
0 0 0 0 1.00 O
0 0 0 0 0 300

Let M =10 1 |g, now the positive de nite symmetric matrix X that satis es the following
matrix inequality

X [Fm+ DmS]+[Fm+ DmS" X + XX +M 0
can be calculated as

2 0:1117 00005 00035 0:0011 0:0000 0:00003
0:0005 01165 0:0008 00102 0:0000 0:000
0:0035 0:0008 00041 0:0005 0:0000 0:000
0:0011 00102 0:0005 00110 Q0000 0:000
0:0000 0:0000 0:0000 Q0000 Q0513 0:000
0:0000 0:0000 0:0000 0:0000 0:0000 Q0167

Since the number of inputs and the number of outputs are the sme here, the matrix is
selected as the identity matrix 1, ». For the implementation of the adaptive law, the following
parameters are selected:

Ag= 025 1, , and = kK()k+Tr P(t)H'R HP(t) 2F,P(t) TrfRg '+10°

Three di erent simulation scenarios are considered here.
6.2.1 Simulation |

For the rst simulation the initial process noise covariance is selected to beQ(tg) = 10 °

I, 2. Figures 10(a) and 10(b) show the system response and the disbance accommodating
control input obtained for the rst simulation. Figures 11( a) and 11(b) contain the estimated
disturbance term and the error between the desired states ahthe true states corresponding to
the rst simulation. Note that the rst simulation results g iven in Figs. 10 and 11 indicate that
the adaptive scheme is able to stabilize and recover the deed performance despite the initial
unstable process noise covariance selected. The time vang process noise covariance obtained
for the rst simulation is given in gure 12.

6.2.2 Simulation I

For the second simulation the initial process noise covariace is selected to beQ(tg) = 12 ».
Figures 13(a) and 13(b) show the system response and the digbbance accommodating control
input obtained for the second simulation. Figures 14(a) and14(b) contain the estimated dis-
turbance term and the error between the desired states and th true states corresponding to the
second simulation. The simulation results given in Figs. 13and 14 indicate that the adaptive
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scheme is able to stabilize and recover the desired performae despite the initial unstable pro-
cess noise covariance selected. The time varying processisecovariance obtained for the second

simulation is given in gure 15.
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6.2.3 Simulation Il

For the third simulation the initial process noise covariance is selected to beQ(tg) = 10°
I, ». Figures 16(a) and 16(b) show the system response and the disbance accommodating
control input obtained for the third simulation. Figures 17 (a) and 17(b) contain the estimated
disturbance term and the error between the desired states ahthe true states corresponding to
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the third simulation. Figure 18 shows the time varying process noise covariance obtained for the
third simulation.
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Figure 18. Adaptive Process Noise Covariance: Q(tp) =10° 1, »

Figure 19 shows the time varying process noise covariance tained for the three simulations.
Figure 19 indicates that, regardless of the initial matrix selected, the process noise covariance
settles down at its steady-state value, which is around 4 5 10 for the present scenario.
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Figure 19. Adaptive Process Noise Covariance Matrices

7 Conclusion

This paper presents the formulation of an observer-based sthastic disturbance accommodating
control approach for linear time-invariant multi-input mu lti-output systems which automatically
detects and minimizes the adverse e ects of both model uncedinties and external disturbances.
Assuming all system uncertainties and external disturbane can be lumped in a disturbance
term, this control approach utilizes a Kalman estimator in the feedback loop for simultaneously
estimating the system states and the disturbance term from neasurements. The estimated states
are then used to develop a nominal control law while the estimated disturbance term is used
to make necessary corrections to the nominal control input © minimize the e ect of system
uncertainties and the external disturbances. The stochast stability analysis conducted on the
controlled system reveals a lower bound requirement on thestimator design parameters, such
as the process noise covariance matrix and the measuremenbise covariance matrix, in order to
ensure the controlled system stability. Since the measureent noise covariance can be obtained
from sensor calibration, the process noise matrix is treaté as a tuning parameter. Based on the
stochastic Lyapunov analysis, an adaptive law is developedor updating the selected process
noise covariance online so that the controlled system is stde. The adaptive scheme introduced
here guarantees asymptotic stability in the mean and the mea square stability of the controlled
system. The simulation results given here explicitly reveathe direct dependency of the proposed
control scheme on the process noise covariance matrix. Sia¢he nominal control action on the
true plant is unstable, selecting a very low process noise wariance resulted in an unstable
system. On the other hand, selecting a large value stabilizkthe system but resulted in a highly
noisy control input. The numerical simulations indicate that the adaptive scheme is able to
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stabilize and recover the desired performance despite seking an initial unstable process noise
covariance. The results also indicate that regardless of t initial matrix selected, the process
noise covariance settles down to its steady-state value.
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