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This paper presents a closed-form method to average Modified Rodrigues Parameters.  This method is 

compared to quaternion averaging through Monte Carlo simulations.  Although both approaches exhibit good 

performance for small attitude errors the Modified Rodrigues Parameter averaging method shows considerable 

better performance characteristics for larger angle errors. 
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1.  Introduction 

 

Computing the weighted mean of an attitude parameterization 

has many applications, including determining the attitude 

estimate in a particle filters
1
 or in multiple-model adaptive 

estimatiors,
2
 and decentralized filtering approaches.

3
  Many 

parameterizations for the attitude exist, such as the attitude 

matrix, Euler angles, quaternions, Gibbs vector, and others.
4
  

Here Modified Rodrigues Parameters (MRPs) are used for an 

implementation that avoids making a small angle 

approximation for the attitude ambiguity.  The direct 

averaging of MRPs is inaccurate because the distance metric 

between two MRPs is nonlinear to second order.  However, 

the distance metric between two quaternions can be shown to 

be linear with the addition of a unit norm constraint on the 

quaternion’s magnitude.  The unit norm constraint present in 

quaternions forces quaternion parameter dependence, thereby 

violating fundamental assumptions used to represent 

associated ambiguity (e.g. covariance). 

 

The MRP representation avoids the use of a unit norm 

constraint.  As a consequence, MRPs exhibit nonlinearities in 

their distance metric.  Typically it has been assumed that 

these nonlinearities are minimal for small attitude errors, 

making estimation strategies that linearize the error about a 

reference orientation well suited.
5
 However, in some attitude 

estimation scenarios this small angle assumption may be 

invalid.  When errors are large, MRPs do not allow for direct 

averaging because of the nonlinearities attributed to their 

magnitude.  This motivates an approach based on dividing 

the computation of the weighted mean MRP into two parts; 

one in the rotational angle space of the norm of the MRP and 

the second in the eigen-axis space of the direction of the MRP. 

In doing so, the challenges of having to minimize the 

nonlinear distance metric are avoided, while still exploiting 

the unconstrained nature of  MRPs. 

 

Simulation results are provided for the MRP weighted mean 

computation.  These results are compared and contrasted 

against weighted mean computations for quaternions with that 

obtained from the proposed approach. The weighted mean 

MRP shows comparable results in accuracy to that from 

weighted quaternion while requiring less computation. 

 

2.  Problem Statement  

 

The goal is to obtain an average attitude from a sample set of 

attitudes rather than an average attitude parameter vector.  

Following this observation, the average attitude should 

minimize a weighted sum of the squared Frobenius norms of 

attitude matrix differences: 
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where   denotes the parameter space for  .  For the 

quaternion representation the space is    the unit 3-sphere, 

whereas for the MRP representation this is the unconstrained 
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3.  Quaternion 

 

The quaternion is defined as   [      ]
  with  

[        ]
   ̂    (   )  and       (   ), where  ̂ and 

  are the Euler axis of rotation and rotation angle, 

respectively.  This vector must satisfy the constraint 

       .  The attitude matrix can be written as a function 

of the quaternion: 
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and 
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for any general 3×1 vector  . 

 

4.  Modified Rodrigues Parameters 

 

The modified Rodrigues parameters (MRPs) have been used 

for spacecraft estimation and control because the unique 

properties.  Schaub and Junkins
6
 have shown that MRPs, 

along with the classic Rodrigues parameters, belong to a more 

general group called stereographic parameters.  These 

parameters are the result of a stereographic projection of the 

quaternion onto a three-dimensional hyperplane.  In 

particular, the Rodrigues and MRPs are part of a subset of 

stereographic parameters which are referred to as symmetric.  

The MRP representations have the benefit of providing a 

minimal attitude representation by using 3 parameters.  The 

general form of the symmetric stereographic parameters are 

defined in terms of the quaternion components as 
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where       (   )  is the projection point which is 

determined by the singular rotation,   . Choosing the 

singularity to lay at   , we have that       and we recover 

the classic Rodrigues parameters.  The MRPs,  , are 

singular at     which corresponds to       .  In 

particular, MRPs are given by 
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The inverse transformation from MRPs to quaternion 

components are given by 
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The MRPs can also be written in terms of the Euler axis and 

angle: 
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While MRPs are an unconstrained parameter set, they do not 

obey a strictly additive error representation.  An error 

representation for MRPs is derived by considering a rotation 

of    about    

         (11) 

 

where the MRP composition operator is given by 
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where |  |  expresses the    norm of the argument, i.e. 

| |     .  Assuming that    is small allows for the 

following approximation 
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The error MRP can then be expressed as 
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From Eq. (12) it can be seen that using the MRP composition 

will lead to a nonlinear expression for the terms in Eq. (1) and 

therefore requires a nonlinear optimization approach to solve 

for the optimal averaged MRP vector. This motivates the 

development of a simplified approximation to obtain the 

average MRP vector.  

 

5.  The Average Quaternion  

 

The goal is to determine an average quaternion given a set of 

  quaternions    with associated scalar weights   .  When 

considering the average quaternion, the simple normalized 

weighted sum does not provide an average that retains the 

properties of a quaternion and therefore introduces undesirable 

error.  As Ref. 7 notes, the simple procedure of determining 

the average quaternion via 
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where      ∑   
 
    presents two notable issues.  First, 

the average quaternion is not necessarily unit norm.  Second, 

since    and     represent the same attitude, an averaging 

algorithm should not be susceptible to sign changes in   .  

Therefore, an averaging algorithm for quaternions that 

preserves the unit norm property of the quaternion is required.  

Reference 7 solves this problem for the quaternion 

representation and determines a proper average quaternion.  

To determine the average quaternion, first compute a matrix 

       as 
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Then, it can be shown that the average quaternion is given by 

the maximization problem 
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The maximization problem of Eq. (19) can then be cast in 

terms of  
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However, the constraint on the norm of the quaternion must be 

accounted for, which can be accomplished by use of a 

Lagrange multiplier,  .  The augmented performance index 

is given by  
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It is then straightforward to show that the optimality 

conditions lead to an eigenvalue problem of the form  

 

        (21) 

 

and that the performance index of Eq. (19) is given by 
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Therefore to maximize the performance index, the average 

quaternion is select to be the eigenvector of   corresponding 

to the largest eigenvalue of  .  It is noted then that this 

procedure not only leads to an average quaternion which is 

unit norm, but also leads to a process that is not affected by a 

sign change in any of the    terms since the performance 

index is in quadratic form. 

 

6.  Proposed MRP Approach  

 

One cannot simply add the three elements of the MRP vector 

components together and take the average because it will 

destroy the physical representation what the actual averaged 

attitude is.  This is due to the fact that MRPs are scaled by a 

nonlinear function of the rotation angle times the eigenvector.  

An example of how this will fall is in the averaging of two 

parameters, given by 
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Both are the same angle (    ) in terms of what attitude 

they represent, but when averaging the zero MRP is obtained 

which is obviously incorrect.  This way of averaging MRPs 

will fail even when the angles are not positive and negative but 

also when they are large and small.  In simulation section this 

shows an enormous  error using  large angles and 

uncertainties with none of the angles negative.   

 

Now if all negative rotation angles are forced to be positive by 

adding    to them when they are negative, the angles and the 

eigenvectors can be averaged separately to obtain  the 

averaged MRP as 
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The method in Eq. (25) requires renormalization of the 

eigenvector.  This is not an optimal approach.  However, 

because of the highly nonlinear form of the error quaternion in 

Eq. (12), formulating this problem minimizing a cost based off 

the error quaternion will lead to a highly complex expression 

for the optimal solution. In addition, constraints would needed 

to be set on the magnitude of the MRP to avoid asingularity 

further complicating this solution.  

 

6.  Numerical Results 

 

Monte Carlo simulations are run for both cases of quaternion 

averaging and MRP averaging to evaluate and compare both 

approaches.  For each Monte Carlo simulation the true 

attitude is varied by varying the Euler rotation angle about a 

fix Euler rotation axis.  The true attitude can be represented 

by the three angles using to form the true quaternion, denoted 

      [   ] .  The true attitude quaternion can be 

written as  
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where 

 ̂  [
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] (26) 

 

The angle   is varied from 180 deg to 180 deg, while both 

  and   are held constant at     .  Then 500 Monte 

Carlo samples are generated by sampling a vector   
[      ]  from a normal distribution given by  (   ), 

zero mean with a covariance matrix given by 

      ([      ]).  The vector the   is then used to 

generate attitude samples distributed around the true attitude 

given by  

 ̃          (27) 

 

Then Eqs. (26) and (27) are used to generate sample 

quaternions from the  ̃ samples.  Similar sample MRPs are 

generated using Eq. (7) from the quaternion samples.  Then 

for each value for   a mean is calculated from the 500 
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Monte Carlo samples using the quaternion averaging approach 

and the proposed MRP averaging approach.  Then a direction 

cosine matrix (DCM) is determined for both the quaternion 

average and the MRP average.  The error DCM is calculated 

for each using  

    

     (     ) ( )
  

        (     ) ( )
  

(28) 

 

Then from each error DCM the rotation vector is determined, 

denoted by   , and the magnitude is plotted for varying    

and   for quaternion averaging and MRP averaging in Figure 

1 and Figure 2, respectively.   

 

The results for MRP averaging in Figure 1 show comparable 

performance to those for quaternion averaging in Figure 2 and 

for small angles.  The MRP averaging performs better for 

larger standard deviations in the distributions of the 

eigen-axes shown by the difference between the error of 

Figures 1 and 2 in Figure 3.   

 

Fig. 1. Error using quaternion averaging (isometric view). 

 

Fig. 2. Error from difference in quaternion averaging 

from direct MRP Averaging (isometric view). 

 

There is lower error sensitivity in the eigen-angle as 

uncertainty is increased among all choices of rotation angle 

for the MRP averaging versus quaternion averaging, as shown 

in Figure 3 and Figure 4.  This may be due to the fact that the 

optimization solved for the quaternion average is over the cost 

functions of L2 norm distance from DCMs in Eq. (1). The 

error between DCMs is not additive and thus with larger 

standard deviations, the cost function in Eq. (1) violates the 

error between attitudes.  In addition, the increase in the error 

in quaternion averaging in Figure 2 around the zero rotation 

angle is due to the ambiguity of the quaternion at 0 and   . 

 

 

 

 

 

Fig. 3. Error using quaternion averaging (side view). 

 

 

Fig. 4. Error from difference in quaternion averaging 

from direct MRP Averaging (side view). 

 

 

6.  Conclusion and Future Work 

 

A real-time closed-form method to average MRPs was 

developed and compared to an optimal method of averaging 

quaternions.  In comparison both of these methods had good 

results for small angles, but as the uncertainty was increased 

in the rotation angle and the direction of the eigen-vectors, the 

MRP averaging scheme showed considerable better results.  

 

Future work will consist of applying this averaging scheme to 

the first and second moments of an Unscented Kalman Filter 

and particle filtering for representing large attitude 

ambiguities.  With a proper way to average MRPs and lack 
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of the unit-norm constraint, this method could provide great 

benefits to estimation methods with a large initial uncertainty.   
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