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INFORMATION THEORETIC SPACE OBJECT DATA ASSOCIATION
METHODS USING AN ADAPTIVE GAUSSIAN SUM FILTER

Richard Linares∗, Vishwajeet Kumar†, Puneet Singla‡, and John L. Crassidis§

This paper shows an approach to improve the statistical validity of orbital estimates
and uncertainties as well as a method of associating measurements with the correct
space objects. The approach involves using an adaptive Gaussian mixture solution
to the Fokker-Planck-Kolmogorov equation for its applicability to the space object
tracking problem. The Fokker-Planck-Kolmogorov equation describes the time-
evolution of the probability density function for nonlinear stochastic systems with
Gaussian inputs, which often results in non-Gaussian outputs. The adaptive Gaus-
sian sum filter provides a computationally efficient and accurate solution for this
equation, which captures the non-Gaussian behavior associated with these nonlin-
ear stochastic systems. This adaptive filter is designed to be scalable, relatively
efficient for solutions of this type, and thus is able to handle the nonlinear effects
which are common in the estimation of resident space object orbital states. The
main purpose of this paper is to develop a technique for data association based on
information theoretic approaches that are compatible with the adaptive Gaussian
sum filter. The adaptive filter and corresponding measurement association meth-
ods are evaluated using simulated data in realistic scenarios to determine their
performance and feasibility.

INTRODUCTION

Commercial and military analyst routinely use both observation data and forward orbit propaga-
tion models to assist space surveillance. The U.S. Air Force collects the information for the purpose
of space surveillance through a global network of radars and optical sensors to maintain a map of
over 20,000 RSOs, both active and inactive. The information on the RSOs is stored in a catalog.
However, because of the large number of resident space objects (RSOs) and the limited number of
sensors available to track these objects, it is impossible to maintain persistent surveillance on all
objects, and, therefore there is inherent uncertainty and latency in the catalog. Basically, the ob-
servational data is limited in terms of the kind and frequency of observations that can be taken and
may only provide access to limited information about the RSO orbit. The recent IRIDIUM satellite
collision clearly illustrates this fact.

On other hand, forward orbit propagation models are based upon equations of motion and in-
volve modeling of space weather effects that produce disturbances on RSO motion. Examples of
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such disturbances include solar radiation “wind,” atmospheric drag from air molecules, and higher-
order gravity potentials due to a non-spherical Earth. The orbit of a RSO leads to different effects.
For example, low-Earth orbiting (LEO) objects are more prone to atmospheric drag effects while
higher-orbiting objects, such as geosynchronous-Earth orbiting (GEO) ones, are more prone to solar
wind effects. Higher-order gravity effects produce a drift of nodes, such as the right ascension of the
ascending node. Generally, a nominal model for orbit dynamics, including various space weather
effects, is considered which involves errors due to truncation of the non-spherical gravity model
and errors in model parameters such as incorrect values for RSO geometry, inertia properties, atmo-
spheric drag or solar radiation pressure coefficient. These factors cause overall accuracy to degrade
as the orbit model states evolve.

Nevertheless, commercial and military analysts need to make important decisions daily with this
limited information with large uncertainties due to model and sensor observation errors. The rapid
estimation of the orbit and identity of an RSO and the accurate assessment of confidence in that
estimate can be critically important to the space situational awareness community and the warfighter.
The fusion of observational data with orbit state models promises to provide greater understanding
of physical phenomenon than either approach alone can achieve. However, one needs to associate
the observation data with a particular RSO before fusing the orbit state model with observational
data. Data association (DA) involves the matching of sensor measurements to specific tracks or
targets. If measurement-to-target matching fails, then proper state estimation will not be possible.
For large propagation and large initial errors the orbital uncertainty will likely be non-Gaussian, so
non-Gaussian DA-based methods are required.

A critical step for successful DA involves the accurate characterization of orbit state probability
density function (pdf). For stochastic continuous dynamic systems the exact evolution of the state
pdf is given by the Fokker-Planck-Kolmogorov Equation (FPKE).1 Park et al.2 have discussed the
use of the FPKE to analyze spacecraft trajectory statistics by incorporating higher-order Taylor se-
ries terms in the spacecraft dynamics. Analytical solutions for the FPKE exist only for a stationary
pdf and are restricted to a limited class of dynamical systems.1, 3 Recently Terejanu et al. have de-
veloped an Adaptive Gaussian Sum Filter (AGSF) approach4, 5 for accurate uncertainty propagation
through nonlinear dynamical systems while incorporating the solution to the FPKE. This approach
has been successfully applied to propagate initial orbit uncertainty through a low-Earth orbit with
nonconservative atmospheric drag6 and has also been applied to the spacecraft attitude estimation
problem.7, 8

Particle filter-based methods are highly useful for DA involving non-Gaussian problems, which
are typical for RSO tracking, but they have the significant disadvantage of being computational
expensive. This is because particle filters are based on Monte Carlo sampling approaches. Even
though methods have been proposed to reduce the computational load, such as replacing the stan-
dard importance sampling with a Markov Chain Monte Carlo (MCMC) method,9 they generally
are still not viable for actual RSO tracking applications. As illustrated in References 4, 5, 6, 8, the
AGSF algorithm can produce the entire non-Gaussian pdf with much less computations than what
is typically required in particle filters. To develop a successively refining pdf representation, it is
important to define a metric for the data association error, so that improvement due to refinements
can be assessed.

In this paper the metric for modeling error will be in terms of information geometry, and different
information theoretic methods will be applied to the orbital data association problem. The combina-
tion of the AGSF with information theoretic approaches for data association is well suited for orbit
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problems where the errors may be highly non-Gaussian. In References 10, 11, 12 an information
theoretic divergence measure has been proposed to measure the confidence for fusion and tracking
that has been lacking earlier in the literature. In Reference 6, a new approach is presented for data
association for resident space object tracking which combines an adaptive Gaussian sum filter with
the Kullback-Leibler (KL) divergence measure for effective data association. However, the efficient
computation of the KL divergence poses significant computational challenges.

In this paper, we first investigate many information theoretic measures for DA and assess their
relative performance and ease of computation of the measure. Once a computationally attractive
divergence measure is found, a key question is how to compute the data association error. Two
different approaches are proposed to quantify the data association error while making use of infor-
mation theoretic measures. The first approach corresponds to computing the distance between the
estimated likelihood distribution and the actual sensor distribution, derived from the known sen-
sor statistics while the second approach involves the computation of mutual information content
between the measurement data and the state vector.

The organization of this paper is as follows. First a review of the FPKE is provided. Then the
AGSF is summarized followed by a review of information theoretic data association measures. Then
two approaches for information theoretic data association are discussed. Finally, simulation results
are presented to show the effectiveness of the proposed concepts.

THE FOKKER-PLANCK-KOLMOGOROV EQUATION

In the standard orbit dynamic model, the orbit state variables (e.g. position and orientation of the
RSO) are assumed to be deterministic quantities. Instead of solving for the point position and orien-
tation of the RSO, we are interested in the probability distribution for their values due to uncertainty
in input parameters, initial conditions and space weather effects. Thus, the position and orientation
of the RSO are assumed to be a random vector, x(t), whose time evolution is given by the following
stochastic differential equation:

ẋ = f(t,x) + g(t,x)Γ(t), x(t0) = x̄0 (1)

The random function Γ(t) represents stochastic forcing terms that might be added to account for
any modeling errors. These random functions may be modeled as a Gaussian process with specified
correlation function Q(t). Finally, the nominal initial position and orientation is given by x̄0, which
may also be uncertain. The total uncertainty associated with the state vector x(t) is characterized by
the pdf p(x(t). A key idea is to replace the time evolution of state vector x(t) by the time evolution
of the pdf p(x(t). By computing full probability density functions, we can better monitor the space-
time evolution of the uncertainty, represent multi-modal distributions, incorporate complex prior
models, and exploit Bayesian belief propagation.

The exact time evolution of the state pdf is given by the Fokker-Planck-Kolmogorov equation
(FPKE):1

∂

∂t
p(t,x) = LFP p(t,x) =

∂fT (t,x)p(t,x)

∂x
+

1

2
Tr

(
g(t,x(t))QgT (t,x(t))

∂2p

∂x∂xT

)
(2)

The FPKE is a formidable equation to solve because of the following issues: 1) positivity of the pdf,
2) normalization constraint of the pdf:

∫
Rn p(t,x)dx = 1, and 3) no fixed solution domain: how to

impose boundary conditions in a finite region and restrict numerical computation to regions where
p >∼ 10−9.
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Analytical solutions for the FPKE exist only for a stationary pdf and are restricted to a limited
class of dynamical systems.1, 3 Numerical approximations to solve the FPKE,13, 14, 15, 16, 17 generally
using the variational formulation of the problem, suffer from the “curse of dimensionality.” Re-
cently, an Adaptive Gaussian Sum Filter (AGSF) method4 has been developed to accurately solve
the FPKE. The key idea of the AGSF is to approximate the state pdf by a finite sum of Gaussian
density functions whose mean and covariance are propagated from one time-step to the next using
linear theory. The weights of the Gaussian kernels are updated at every time-step by minimizing the
two-norm of FPKE error.4 This methodology effectively decouples a large uncertainty propagation
problem into many small problems. As a consequence, the solution algorithm can be parallelized
on most high performance computing systems. Finally, a Bayesian framework can be used on the
AGSF structure to assimilate (noisy) observational data with model forecasts.5

Adaptive Gaussian Sum Filter

This subsection briefly summarizes the AGSF approach; details can be found in Reference 18, 4,
19. The Gaussian mixture model approximation (denoted by the caret ˆ) of the forecast pdf can be
written as

p̂(t,x(t)) =
N∑
i=1

wi(t)N (x(t) | µi(t),Pi(t)) (3)

In this equation, µi(t) and Pi(t) represent the mean and covariance of the ith component of the
Gaussian pdf, N (x(t) | µi(t),Pi(t)), respectively, and wi denotes the amplitude of the ith Gaus-
sian in the mixture. The positivity and normalization constraint on p̂(t,x) lead to the following
conditions at every time-step:

N∑
i=1

wi(t) = 1 and wi(t) ≥ 0, ∀i (4)

In Reference 20, it is shown that because all the components of the mixture pdf in Eq. (3) are
Gaussian, only estimates of their mean and covariance need to be maintained. These estimates can
be propagated using linear system propagation methods such as the propagation part of the extended
Kalman filter (EKF) or unscented Kalman filter (UKF):

µ̇i(t) = f(t,µi(t)) (5a)

Ṗi(t) = Ai(t)Pi(t) + Pi(t)A
T
i (t) + g(t,µi(t))Q(t)gT (t,µi(t)) (5b)

where Ai(t) = ∂f(t,xk)
∂x |x=µi . The propagation equations for the mean and covariance using an

UKF are given as

Xi = [µi . . . µi] +
√
c [0 A −A] , c = α2(n+ κ) (6a)

µ̇i = f(Xi)wm (6b)

Ṗi = XiWfT (Xi) + f(Xi)WXi
T + g(t,µi)QgT (t,µi) (6c)
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where Xi is the n× 2n+ 1 matrix of sigma-points and the weight vector, wm, and weight matrix,
W , are given by

λ = α2(n+ κ)− n (7a)

W
(mean)
0 =

λ

n+ λ
(7b)

W
(cov)
0 =

λ

(n+ λ) + (1− α2 + β)
(7c)

W
(mean)
j =

1

(2(n+ λ))
, j = 1, . . . , 2n (7d)

W
(cov)
j =

1

(2(n+ λ))
, j = 1, . . . , 2n (7e)

wm =
[
W

(mean)
0 . . . W

(mean)
2n

]T
(7f)

W = (I− [wm . . . wm])× diag
(
W

(cov)
0 . . . W

(cov)
2n

)
× (I− [wm . . . wm])T (7g)

The constants α, β, and κ in the above equations are constant parameters of the method. The spread
of sigma points is determined by α and is typically a small positive value, i.e. 1 × 10−4 ≤ α ≤ 1.
The parameter β is used to incorporate prior knowledge of the distribution, and is optimally chosen
as 2 for a normal distribution. The parameter κ can be used to exploit knowledge of the distributions
higher moments, and for higher order systems choosing κ = 3 − n minimizes the mean-squared-
error up to the fourth order. The use of the UKF in the mixture model is especially advantageous
since it does not require the computation of the Jacobian matrix Ak.

Notice that the weights wi of the Gaussian components are not known at time t and must be
computed as part of the solution process. To determine the unknown weights, the two-norm of
FPKE error is minimized subject to positivity and normality constraints of Eq. (4). This leads to the
following convex optimization problem:21

min
wi(t′)

J =
1

2
w(t′)TMcw(t′) + w(t′)TNcw(t), s.t. 1TN×1w(t′) = 1, w(t′) ≥ 0N×1 (8)

Here w(t′) represents a vector of unknown weights at time t′ = t + ∆t while w(t) represents the
vector of known initial weights at time t, 1N×1 ∈ RN×1 is a vector of ones, 0N×1 ∈ RN×1 is a
vector of zeros, and the matrices Mc ∈ RN×N and Nc ∈ RN×N are given as:

Mcij =
1

∆t2
|2π(Pi + Pj)|−1/2 exp

[
−1

2
(µi − µj)T × (Pi + Pj)

−1(µi − µj)
]

(9a)

Ncij =
1

∆t
pgi

∫
V

(
∂pTgj
∂µj

µ̇j + Tr

[
∂pgj
∂Pj

Ṗj

]
− 1

∆t
pgj +

∂pTgj
∂x

f(t,x) + pgjTr

[
∂f(t,x)

∂x

]

− 1

2
Tr

[
g(t,x)QgT (t,x)

∂2pgj
∂x∂xT

])
dx, pgj = N (x(t) | µj(t),Pj(t)) (9b)

In Reference 4, it is shown that the matrix Mc is positive semi-definite and the cost function J is
lower bounded. As a consequence of this, the aforementioned optimization problem can be posed
as a convex optimization problem which is guaranteed to have a unique solution.22
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Furthermore, Bayesian tools are employed to incorporate observational data. Given a predic-
tion of the state variable xk, standard Bayesian algorithms assume a sensor model h to obtain the
measurement

yk = h(tk,xk) + vk, xk ≡ x(tk) (10)

Here vk is the measurement noise with prescribed likelihood function p(yk|xk). Using the dynamic
state evolution sketched above as a forecasting tool, the state pdf can be updated using Bayes’ rule
on the arrival of a measurement:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)∫
p(yk|xk)p(xk|Yk−1)dxk

(11)

Here, p(xk|Yk−1) represents the prior pdf (the computed solution of the FPKE), p(yk|xk) is the
likelihood that we observe yk given the state xk, and p(xk|Yk) represents the posterior pdf of xk.
While both the state and the covariance matrix are updated using the EKF or UKF measurement
update equations, the weights are updated using Bayes’ rule:

wik+1|k+1 =
wik+1|kβ

i
k

N∑
i=1

wik+1|kβ
i
k

, βik = p(yk|µik+1|k) (12)

INFORMATION THEORETIC DATA ASSOCIATION

In this section, an information-theoretic basis is developed to quantify the uncertainty metrics for
data association. The central idea is to frame the data association metrics in terms of information
theory. If one agrees that the pdf of a random variable is a representation of uncertainty, then it is
meaningful to quantify the goodness of estimates in terms of the information theoretic metrics. The
idea of using a pdf-based metric is compelling given the fact that both the likelihood and posterior
pdf are generally non-Gaussian in nature.

Shannon’s entropy is the most popular choice for measuring information value contained in a
random variable, x, from its pdf p(x):

H(x) = −
∫
p(x) log p(x)dx = Ep(x) {− log p(x)} (13)

Entropy is a nonnegative function and H(x) = 0 if p(x) = 0. It reaches its maximum value for
a uniform distribution, which is the most unstructured distribution over a given domain, and its
minimum value for a Dirac delta distribution, which is the most structured distribution (the random
variable x is completely known in this case). Therefore, entropy can be interpreted as the degree of
diversity for a realization of an outcome of a random variable. Fundamentally, entropy depends on
the pdf of a random variable, not the values taken by the random variable and it can be evaluated
within a probabilistic framework. Also, if p(x) is assumed to be Gaussian with covariance matrix
Σ, then the entropy can be analytically computed as:

∞∫
−∞

p(x) ln p(x)dx = ln
(√
|2πeΣ|

)
(14)

6



It is well-known that Shannon’s entropy is not a true metric because it is non-symmetric and it
does not satisfy the triangle inequality. Kullback23 and Kolmogorov24, 25 extended the notion of
Shannon’s entropy to measure the distance between two density functions by computing the rel-
ative entropy. The Kullback-Leibler (KL) divergence measure, or relative entropy, describes the
information geometry for the space of density functions and allows one to measure the degree of
deviation of one distribution from another. Considering two probability distributions p(x) and q(x),
the Kullback-Leibler divergence measure DKL(p, q) is defined as

DKL(p, q) =

∞∫
−∞

p(x) ln
p(x)

q(x)
dx =

∞∫
−∞

p(x) ln p(x)dx−
∞∫
−∞

p(x) ln q(x)dx (15)

The first term in the aforementioned expression for the KL-divergence is simply the Shannon en-
tropy associated with true pdf p and is the measure of uncertainty in p while the second term is the
measure of uncertainty in q relative to the true pdf p. The divergence measure is non-symmetric,
i.e, DKL(p, q) 6= DKL(q, p). If both p(x) and q(x) are assumed to be Gaussian with distributions
N (µp,Σp) andN (µq,Σq), respectively, then the KL-divergence has a closed-form expression given
as:

DKL(p, q) =
1

2

[
log(
‖Σq‖
‖Σp‖

) + Trace(Σ−1
q Σp)− d+ (µp − µq)T Σ−1

q (µp − µq)
]

(16)

The KL divergence measure is non-negative and like the Shannon entropy, it does not satisfy the
triangle inequality. Another important measure of distance between two pdf is provided by the
Bhattacharyya divergence measure, denoted by DB:26

DB(p(x), q(x)) = −2 ln

(∫ √
p(x)q(x)dx

)
(17)

Notice that unlike the KL divergence, DB(p(x), q(x)) is symmetric and satisfies the triangle in-
equality which makes it a proper metric. DB(p(x), q(x)) vanishes if and only if p(x) = q(x)
almost everywhere. If both p(x) and q(x) are assumed to be Gaussian with distributionsN (µp,Σp)
and N (µq,Σq) respectively, the Bhattacharyya-divergence has a closed-form expression given as

DB(p(x), q(x)) =

[
1

2
ln(

‖Σ‖
‖ΣpΣq‖

) +
1

8
(µp − µq)T Σ−1 (µp − µq)

]
(18)

where Σ ≡ Σp+Σq

2 . Furthermore, the Bhattacharyya coefficient, ρ = exp{−DB}, is a very popular
statistical measure which provides upper and lower bounds on the probability of classification er-
ror.27 The optimal Bayes classification error between the two classes is bounded by the following
expression:

ε ≤ 1

2
exp{−DB(p(x), q(x))} (19)

This is an important property for the Bhattacharyya coefficient since such a bound is not available
for other information theoretic measures.

In 1955, Alfred Renyi introduced a generalized form of Shannon’s entropy which leads to a
generalized divergence measure known as the Renyi-divergence measure,28 is given as

DR(p(x), q(x)) =
1

1− α
ln

(∫
[p(x)]α [q(x)]1−α dx

)
α 6= 1 0 < α < 1 (20)
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This divergence measure defines a spectral of divergence measures that are parameterized by α.
One can notice that the Bhattacharya distance corresponds to α = 1

2 and it can be shown that the
KL distance corresponds to α = 1. An interesting measure is Renyi’s quadratic entropy, where
α = 2, given by

Dα=2(p(x), q(x)) = −1

2
ln

(∫
p(x)2

q(x)
dx

)
(21)

A number of researchers have conducted systematic studies of the effect of Renyi’s entropy order, α,
and have found that although Renyi’s entropy provides similar performance to Shannon’s entropy,
the quadratic entropy (when α = 2) is preferred over Shannon’s entropy because of computational
benefits.29 Renyi’s quadratic entropy provides nearly identical values to Shannons entropy values
with exponentially reduced computational complexity.29 The computational cost of calculating
Renyi’s entropy H(X) and in turn the Renyi’s divergence measure is now reduced to O(N2). The
Renyi entropy measure between a gaussian mixture and one gaussian component can be written in
closed form. To illustrate this lets consider a gaussian mixture pdf given by

p(x) =

N∑
i=1

wiN (ai,Ci) (22)

where ai and Ci are the ith mean and covariance, respectively. Then assuming that q(x) =
N (bi,M), we can write the second term in Renyi’s quadratic entropy expression as

q(x)−1 = |2πM|N (b,−M) (23)

The distance between the Gaussian mixture pdf p(x) and the Gaussian pdf is given by

Dα=2(p(x), q(x)) = −1

2
ln

(∫
p(x)2

q(x)
dx

)
(24)

Multiplying this expression out gives

Dα=2(p(x), q(x)) =

− 1

2
ln

∫ N∑
i=1

N∑
j=1

wiwj |2πM|N (x− ai,Ci)N (x− aj ,Cj)N (x− b,−M)dx

 (25)

For two Gaussian pdfs the following property is seen:∫ ∞
−∞
N (y − ai,Ci)N (y − aj ,Cj)dy = N (ai − aj ,Ci + Cj) (26)

Using this property Renyi’s quadratic entropy can be written in closed form as

Dα=2(p(x), q(x)) = −1

2
ln

 N∑
i=1

N∑
j=1

wiwj

(
|2πW |1/2|2πM|1/2∏

l |2πCl|1/2
ΩijΩiMΩjM

) (27)
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where

Ωij = exp{−1

2
(ai − aj)T Bij (ai − aj)} (28a)

ΩiM = exp{−1

2
(b− ai)T BiM (b− ai)} (28b)

Bij = C−1
i WC−1

j (28c)

BiM = C−1
i WM−1 (28d)

W = (
N∑
i

C−1
i )−1 (28e)

Divergence Based Measures in Data Association

To understand the role of the divergence-based measures in data association, consider the problem
of associating a measurement y to one of the possible M targets. The variable xk denotes the state
vector corresponding to the kth target and p(xk) denotes the prior density function for the state
vector xk corresponding to the kth target before the measurement y arrives. According to the AGSF
structure, p(xk) is parameterized by a Gaussian mixture model as described in the previous section:

p(xk) =

N∑
i=1

wki (t)N (xk | µki (t),Pk
i (t)) (29)

Further, let us assume that L = p(y|x) represents the known likelihood function representing our
confidence in the accuracy of the measurement data. Now, by propagating the prior state pdf p(xk)
for each target through the measurement model of Eq. (10), we can obtain the estimated likelihood
function, L̂k, representing our confidence in the estimated measurement data assuming it belongs to
the kth target:

L̂k = p(ŷ|xk) =
N∑
i=1

wki (t)N (y | h(µki (t)),H
k
iP

k
i (t))H

kT

i + R) (30)

Now, any information theoretic divergence metric such as the KL divergence, the Bhattacharyya
metric or Renyi measure, can be used to discriminate between different targets. Basically, if the pdf
L̂k is very unlikely, then the information theoretic measure D(L, L̂k) should be large. The main
steps of such an algorithm can be enumerated as follows:

1. Using a nonlinear filtering approach, such as the AGSF, obtain the prior target position distri-
bution p(xk) at time tk.

2. Use the sensor model to calculate the conditional distribution of the estimated observation ŷk
under the hypothesis that the target position is xk, i.e. p(ŷk/xk).

3. Compute the information theoretic divergence measure for each hypothesis by comparing the
assumed distribution p(ŷk/xk) with the actual sensor distribution p(yk/xk), i.e., by comput-
ing D(p(yk/xk), p(ŷk/xk)).

4. Associate the measurement with the tracking hypothesis which leads to the minimum value
of divergence measure, D(p(yk/xk), p(ŷk/xk)).
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Ideally, any of the information theoretic divergence measures can be used to associate measurement
data to a particular target state. However, the main challenge lies in computing these measures effi-
ciently and accurately when the involved pdfs are parameterized by a mixture of Gaussian kernels.
Notice that if the likelihood pdfs L and L̂k) are parameterized by a mixture of Gaussians then the
ratio or product of these pdfs can also be written as a mixture of Gaussians by making use of the fact
that product of two Gaussian kernels also results in a Gaussian kernel. Hence, the multi-dimensional
integral involved in the expression of the Renyi measure can be decomposed into a summation of
many integrals involving only Gaussian kernels, particularly for α = 0.5 and α = 2. This leads to
an analytical expression for D(L, L̂k), for α = 0.5 and α = 2. However, the computation of the
KL divergence poses a special challenge for the Gaussian mixture approximation due to the pres-
ence of the natural log function inside the integral expression. For other values of α, one can make
use of numerical integration schemes, such as Gauss-quadrature rules, to compute these integrals
efficiently.

Mutual Information in Data Association

In this section, an alternate method is discussed for associating the measurement data to a specific
target state vector. The main idea is to compute the joint distribution of the target state vector and
estimated measurement, i.e., J1 = p(ŷk,x

k) by assuming that measurement y belongs to the kth

target and comparing it to joint distribution J2 = p(yk)p(x
k), which is obtained by assuming that

the measurement y is completely independent of the kth target state vector xk. This represents the
reduction in uncertainty in the target state due to knowledge of the measurement.

The joint distribution J1 can be computed easily by using the UKF structure for each Gaussian
component. By making use of the sigma points for each Gaussian component, one can compute
covariance matrices Pxx, Pxy and Pyy corresponding to each Gaussian component. By making use
of the joint distribution for each component and the weights from the AGSF solution, the following
Gaussian mixture model for the joint pdf can be written:

p(y,xk) =
N∑
i=1

wki (t)N ([µki h(t,µki )]
T , P̄k

i (t)) (31)

where

P̄k
i (t) =

[
Pxx

k
i (t) Pxy

k
i (t)

PT
xy
k

i
(t) Pyy

k
i (t)

]
(32)

The actual sensor distribution is given by the measurement noise distribution:

p(y) = N (ỹ,R(t)) (33)

The state distribution is given by the AGSF solution:

p(xk) =
N∑
i=1

wki (t)N (µki ,P
k
i (t)) (34)

Then the mutual information measure can be written in terms of these distributions and a divergence
measure, given by

I(x,y) = D(p(xk,y), p(xk)p(y)) (35)
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It should be mentioned that the mutual information can be defined in terms of any divergence mea-
sure. The choice of the measure will not change the results, but as discussed in the previous section
some measures are easier to calculate than others and some measures have probability bounds asso-
ciated with them that provide more theoretical justification.

NUMERICAL RESULTS

In this section, numerical results are presented validating the key ideas presented in this paper. To
show the effectiveness of the proposed ideas, we consider the problem of tracking a high area-to-
mass ratio (HAMR) object in a low-Earth orbit subject to nonconservative atmospheric drag. The
planar equations of motion for a LEO object affected by nonconservative atmospheric drag forces
are given by30

ẍ+
µx

r3
= aDx(t, x, y, ẋ, ẏ), aD = −1

2

CdA

m
ρv2
rel

vrel
|vrel|

ÿ +
µy

r3
= aDy(t, x, y, ẋ, ẏ), ρ = ρ0e

−
(r−R⊕)

h

where Cd is the coefficient of drag, A is the cross-sectional area, m is the mass of the object, and ρ
is the atmospheric density at a given altitude. The atmospheric density model is assumed to be an
exponential model with reference density ρ0. It is also worth noting that the vrel is not the velocity
state vector, but rather the velocity relative to the Earth’s atmosphere.

For simulation purposes, the value of the ballistic coefficient,B = CdA
m , is chosen to be 1.4 which

is consistent with a HAMR object.31 Perfect knowledge of system dynamics is assumed, i.e., there
is no process noise in the system. The initial state pdf is assumed to be Gaussian with the following
mean and covariance:

µ0 =


6.6032× 106

0
0

7.7695× 103

 P0 =


1.78× 106 0 0 0

0 2.50× 105 0 0
0 0 6.25 0
0 0 0 25


The mean of the initial pdf corresponds to a starting altitude of 225 km. The covariance matrix
reflects a larger uncertainty in the radial position and the tangential velocity than in the in-track
position and the radial velocity, respectively.

In this work it is assumed that range and angle observations are of an RSO and are denoted by
||ρ|| and Θ, respectively. The observation equations are given by

||ρ|| =
(
x2 + y2

)1/2 (36a)

Θ = tan−1
(y
x

)
(36b)

It is assumed the observation are corrupted with zero-mean white noise process with covariance
matrix denoted by R = diag

(
[100 m2 0.0085 deg2]

)
.

The initial state pdf is propagated through the orbit dynamics for a full orbit using the AGSF, as
well as an UKF and the sequential Monte Carlo (SMC) method with 50, 000 runs. In addition to the
initial Gaussian pdf, 15 mixture components with zero weights are introduced along the principal
axes of the the initial covariance matrix. Figure 1 shows the contour plots corresponding to 1% of
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(a) Initial PDF Contours (b) 0.25 Orbits

(c) 0.5 Orbits (d) 0.75 Orbits

(e) 1 Orbit

Figure 1. State pdfs Propagation for a HAMR object in a LEO Orbit with Atmo-
spheric Drag. The blue line represents the Gaussian approximation, red line rep-
resents the Gaussian mixture approximation while black dots represent the Monte
Carlo particles.

the state pdf’s peak value during various times of the orbit. As expected the effects of nonlinearities
and atmospheric drag skew the state pdf, which is accurately captured by the AGSF approximation
and SMC runs. It is clear that the UKF and the AGSF pdfs are initially identical and remain similar
for some time, however, the UKF no longer accurately represents the area of uncertainty given by
the SMC samples contour at the end of one orbit. These plots clearly shows the effectiveness of the
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Figure 2. Density Contours After One Orbit and Simulated Measurements for Dif-
ferent Monte Carlo Runs

AGSF method in capturing the non-Gaussian behavior of the state pdf.

To show the effectiveness of the divergence measures for data association, sensor measurements
are simulated at the end of an orbit. A total of 700 Monte Carlo runs are performed to generate
different measurement data, as shown in Figure 2. The blue and red contour lines in Figure 2 corre-
spond to contours for the state pdf propagated through the measurement model using the UKF and
the AGSF approximations, respectively. To show the efficacy of capturing the non-Gaussian behav-
ior, the simulated measurements are divided into four different regions (Regions 1–4) of varying
degree of nonlinearity. Furthermore, measurements corresponding to false targets are also gener-
ated, denoted by Regions 5 and 6. The rest of the Monte Carlo runs correspond to the high probable
region of the actual state pdf.

Renyi’s entropy divergence for α = 0 and α = 2, KL-divergence (Renyi α = 1), and Bhat-
tacharya distance (Renyi α = 0.5) are computed for both the AGSF and UKF approximated pdf by
using 10, 000 Gaussian quadrature points and assuming the true measurement pdf (likelihood func-
tion) to be Gaussian with standard deviation of 100 m. For notational sake, the divergence measure
computed by using the AGSF approximation is represented byDAGSF while the one using the UKF
approximation is represented by DUKF .

Figure 3 shows plots for both DAGSF and DUKF for different Monte Carlo runs of simulated
measurements and for the different divergence measures. As expected the value of DAGSF is con-
sistently less than the value for DUKF for measurements belonging to Regions 1–4 and 5. The
divergences return similar results, as see in Figure 3 where it is seen that all measures have similar
values but DKL, Dα=0.5, and Dα=2 are very close. This is a very useful since DKL is much harder
to evaluate than Renyi’s entropy divergence for α = 2.

The results using the closed-form expression given in Eq. (27) for Renyi’s quadratic entropy
divergence using the AGSF solution is given in Figure 4. The numerically calculated values plotted
in Figure 3 are also shown in Figure 4. It is clearly that the numerical values are in good agreement
with the closed-form results. This is beneficial because the closed-formed expression offers a large
reduction in computational cost for calculating the distance measure.

Furthermore, both the UKF- and AGSF-based measures correctly identify the false measurements
corresponding to Region 5 by a sudden increase in the value of the divergence measure, although
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Figure 3. Data Association Results
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Figure 4. Comparison Between Renyi’s Entropy Divergence for α = 2 Determined
Numerically and Determined Using the Closed-Form Expression

the increase is much larger for the AGSF-based measures. However, the UKF-based measure fails
to identify the false measurements corresponding to Region 6 due to the skewness of the actual
pdf which is not captured by the UKF-based measure. This once again illustrates the benefit of
capturing the actual non-Gaussian pdf. These plots clearly illustrate the effectiveness of the AGSF
and divergence-based measures in correctly identifying targets under large uncertainty.

CONCLUSION

In this paper an approach for data association of resident space object tracking was developed.
The approach combines an adaptive Gaussian sum filter with information theoretic divergence mea-
sures to associate measurement data to a particular space object. This approach has several advan-
tages over existing approaches, including: it is able to approximate the pdf associated with nonlinear
systems well and it is computationally efficient so that it can be executed in realtime using modern-
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day computers. Four different measures were considered: Renyi’s entropy divergence for α = 0 and
α = 2, KL-divergence (Renyi α = 1), and Bhattacharya distance (Renyi α = 0.5). The numerical
results presented in this paper show that all measures correspond to very similar results; however,
the KL-divergence is much more computationally expensive to compute than the other measures.
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