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Abstract—This paper continues a previous work, where the
context-aided tracker “ConTracker” was used to detect suspi-
cious behaviors in maritime vehicle trajectories. ConTracker
takes into account map-based contextual information –which
includes water depth, shipping channels and areas/buildings with
a high strategy value– to determine anomalies in ship trajectories.
The different areas act as repellers or attractors that modify the
expected trajectory of the tracked vessel.

In the original scheme, a multiple-model adaptive estimator
(MMAE) is used to estimate the noise parameters of the tracking
system: sudden increases on the output reflect unexpected ma-
neuvers –such as entering a forbidden area– that are translated
as alarms. The work presented here shows the results obtained
by implementing a generalized version of the multiple-model
adaptive estimator (GMMAE). While the former approach uses
information of the last cycle to update the weight/importance of
each model, our proposal calculates a likelihood value based
on the time-domain autocorrelation function of the last few
indicators. GMMAE provides a much faster response, which
ultimately leads to a general performance boost: alarms are
faster and clearer. Compared with previous works, GMMAE
is particularly effective returning back to normal state after
an alarm has been raised: this results in alarms with a better
defined duration. Results are presented over several simulated
trajectories, featuring a variety of realistic anomalies which are
correctly identified. They include direct comparison with the
previous approach, for an objective demonstration of the achieved
improvement.

I. INTRODUCTION

Monitoring maritime traffic can be a complicated task
due to the potentially high number of vessels to be tracked
simultaneously. Thus, it is a matter of critical importance to
develop automated systems that can process such scenarios,
and focus the attention of human operators into situations
where their expertise is required. Many available solutions deal
with this problem observing only the trajectory of the tracked
vessel, either restricting to location information [1], [2] or
incorporating kinematic data [3]. More advanced techniques
[4] take into account the effect of terrain morphology in
vehicle trajectory and offer better results, suggesting that there
is room for further improvements by integrating information
about relevant factors.

Our idea is based on two works which follow this line
of thought: improve tracking quality by incorporating new
types of information about the environment, instead of refining

the use of the common data elements. The first one can be
found in [5], where a convoy of vehicles is tracked using
the auxiliary concept of repelling/attracting areas. The second
one, as explained in [6], consists in combining qualitative and
quantitative features of terrain (slope, vegetation and others)
in order to produce a “trafficability” value that determines the
maximum velocity of a vehicle over it.

The tool used in this work is a maritime context-aware
tracker called ConTracker [7] (from CONtext TRACKER).
ConTracker mix the aforementioned concepts, making it capa-
ble of detecting anomalous maneuvers and inferring the reason
that made that particular piece of trajectory look suspicious.
This piece of software tracks targets (low level fusion, L1
according to JDL model [8]), but also detect anomalous
behaviors and propose hypothesis explaining the underlying
cause (L2/L3, situation assessment).

Current implementation of ConTracker works with a radar
that measures the position of vessels, and incorporates the
context information provided by a map, in order to help
determining the path that a given target is expected to follow.
When a boat shows a suspicious movement pattern, it is red
flagged and an alarm is raised. Additionally, in those –more
frequent– cases when a vessel is following a regular path,
context information can improve the tracking quality.

The definition of “unexpected” maneuver managed by Con-
Tracker is based on the difference between a predicted motion
pattern (using Kalman filters) and the received observations
(radar measures). Using the model/measure errors of the
Kalman filters, it is possible to assign a likelihood to the
observed difference between prediction and measurement –
which will be marginal for large discrepancies.

However, if we assume a sufficiently large error for the
motion model, the situation will be within the bounds of
normality. So, we can consider the real magnitude of error
model as a dynamic value: it is small when movement fol-
lows the assumed model, but is large if the vessel operates
unexpectedly.

ConTracker estimates the optimal value of this error thanks
to a Multiple-Model Adaptive Estimator (MMAE) [9], [10].
ThisThis algorithm maintains a bank of filters with different
configurations of process noise. The filters are evaluated on
each time step to provide a combined estimation of vessel
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trajectory, and also calculate the value that better describes
process noise at that point. The optimal value for process noise
and its change ratio identify unexpected maneuvers and, thus,
behaviors susceptibe to be red-flagged.

In previous works with ConTracker, authors detected and
identified some performance problems related with how
MMAE is applied. This paper replaces this technique with
the more sophisticated Generalized Multiple-Model Adaptive
Estimator (GMMAE)

Next section explains the composition and functioning of
ConTracker. Following, the limitations of MMAE are analized,
after which GMMAE will be introduced. The fifth section
outlines the setup for ConTracker, detailing parameters and
changes over previous versions. The two last sections show
the obtained results and extract some conclusions about the
work.

II. CONTRACKER

This section briefly explains the functioning of ConTracker.
For further details, please review previous work [7], [11].

The following points will review some design and construc-
tion aspects of ConTracker: which/how contextual information
is used, the design of the filter model, a brief introduction to
MMAE algorithm, and a glimpse of the hypothesis generator.

A. Context Information

All the context information used by ConTracker is contained
in a map of the monitored zone. Figure 1 shows the map
corresponding to the tested scenario. This map is divided in
square cells with a side of approximately 500m. Each cell has
a “trafficability” value 0 ≤ ν ≤ 1 that is calculated using four
different features:

1) water depth (low depth represented as brown shading)
2) marked shipping channels (as the one that crosses the

map from cells (12, 4) to (2, 15))
3) Anti-Shipping Reports (ASR) (e.g. cells (4..5, 1..2))
4) presence of High-Value Units (HVU) (as in (1..2, 11))

Trafficability values are specific for the type of vehicle that is
being tracked. For instance, tugboats are supposed to move
inside marked channels, while a skiboat crossing one is
considered an anomaly.

The trafficability value of a cell limits the maximum speed
at which a vessel is able to move over it. Looking at figure
2, when a vessel is in cell 5, its speed will be affected
by trafficability ν5. The trafficability of the 8 neighbor cells
is used to estimate the course Ĝtg , also called “preferred
direction”. The direction previously followed by the vessel
Ĝ− is combined with the preferred direction, to produce the
expected course Ĝ+ (also called “nudged direction”).

The procedure for calculating these directions is fairly
simple. It can be found in [11].

B. Filter Algorithm

ConTracker use Kalman filters to integrate the predicted
state of the vessel with the last radar observation, and perform
the tracking. The features of typical sailing trajectories makes

possible to use a near-constant velocity prediction model,
with a state vector containing longitude (λ), latitude (φ),
longitudinal speed (vλ) and latitudinal speed (vφ):

x =
[
λ φ vλ vφ

]T
(1)

Where vessel speed has module ‖v‖ =
√
v2λ + v2φ, and

direction marked by angle θ (with cos θ = vλ
‖v‖ , sin θ =

vφ
‖v‖ ).

Taking into account the maximum speed due to trafficability
in current cell ν5, we can define the following discrete time
motion model:

xk+1 =


λ+ vλ∆t
φ+ vφ∆t
ν5‖v‖ cos θ
ν5‖v‖ sin θ

+ wk (2)

Where wk ∼ N (0;Qw) represents the zero-mean Gaussian
process noise that accounts for changes in velocity. The
covariance matrix Qw is assumed to be diagonal.

Previous model can be reduced to the following prediction
matrix F , for being used in a Kalman filter:

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (3)

Radar measure model can be described by:

yk = Hxk + vk (4)

Where vk ∼ N (0;Qv) represents the measurement error and
H is the measure matrix:

H =

[
1 0 0 0
0 1 0 0

]
(5)

ConTracker modifies previous model to incorporate the
contextual information: the nudged direction Ĝ+ is used to
recalculate θ. Also, trafficability of current cell is used to
modify the expected speed of the vessel. The resulting model
is similar to a Kalman Filter, but adapting the propagation step
to take into account these factors. For further details, see [11].

C. Multiple Model Adaptive Estimator

Using previous model, a vessel approaching a non-navigable
zone will be “repelled” by the preferred direction vector with
increasing strength. If such a behavior continues, the discrep-
ancy between prediction and observation will be translated as
an increment in the process noise. Multiple Model Adaptive
Estimation (MMAE) is a technique that estimates unknown
model parameters by evaluating several filters in parallel, each
one keeping a particular configuration of the parameters. In our
case, these parameters are the components q =

[
q1 q2

]T
of

the process noise variance –the main diagonal of Qw.
At each time step, MMAE tries to estimate how probable

is for each particular configuration q(`) to describe the real
values of the unknown parameters, by considering the received
observations Yk = {y1, y2, . . . , yk}. This is, p(q(`)|Yk). Put
in simple terms, it is possible to apply Bayes’ rule to the
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Fig. 1: Maritime scenario created from database. Shows the partition in cells, and contains trafficability information
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Fig. 2: Context of a cell –central, number 5– is composed by its
8-neighborhood. Nudged velocity direction Ĝ+ is determined
by previous course Ĝ− and preferred velocity direction Ĝtg

probability distribution p(q|Yk). Further simplifications will
yield a recursive formula that allows to define a set of weights
w(`) for the different configurations of process noise q(`), so
that it describes the probability distribution for the real value
for p(q|Yk). The so called “adaptive law” of MMAE updates
the weight of a filter using the likelihood of the last received

measure with respect to the prior estimate:

w
(`)
k = w

(`)
k−1 · p(yk|x

−
k ) (6)

And normalizing the weights after that to obtain w̄(`) =
w(`)∑
j w

(j) . Finally, ConTracker calculates its estimate for q as
the weighted average of MMAE filters:

q̄ =
∑
j

w̄(j) · q(j) (7)

D. Hypothesis Generator

Once filtering step is over, ConTracker has to decide if
the behavior of the vessel is anomalous. Instead of taking
this decision based on the magnitude of the estimated noise
‖q̂‖, past versions of ConTracker opted to use the difference
between consecutive time steps ∆q̂ = ‖q̂[k]‖ − ‖q̂[k − 1]‖.
The reasons for preferring this delta over the raw value is that
MMAE reacts very slowly after an alarm has been raised, and
keeps a “high noise” profile that makes difficult to discern the
end of the alarm and new events (more details on this subject
can be found in section III, and in figure 3). The proposal
described in this paper solves the problem and makes possible
to use the noise value ‖q̂‖.
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III. LIMITATIONS OF MULTIPLE MODEL ADAPTIVE
ESTIMATOR

The original MMAE-based proposal suffered several prob-
lems that made it less robust and could spoil its performance.
The first and maybe the most important issue is related with
how the MMAE weights its internal filters (see II-C). At first,
weights are initializaed as a uniform distribution. After that,
they are recursively modified using the likelihood of each filter
estimate with respect to the last measure, which at time step
k is calculated for each filter (l) as:

ω
(`)
k = ω

(`)
k−1 · p(yk|x̂

(`)
k ) (8)

ω
(`)
k =

ω
(`)
k∑M

j=1 ω
(j)
k

(9)

This approach has the drawback of keeping memory of every
past likelihood. The weight for each filter can be written as:

ω
(`)
k =

1

M

k∏
t=1

p(yt|x̂−(`)t ) (10)

On the event of a sudden change in procss noise, many
cycles can be required to compensate the difference between
accumulated weights. Since ConTracker is trying to detect
changes in the value of the optimal noise, it would make much
more sense to priorize last likelihoods.

Despite this problem, we can see in previous works that
ConTracker using MMAE reacts very fast to vessels starting to
show an anomalous behavior –although it takes many cycles to
cool down to normal noise levels after the target has returned
to a normal motion pattern.

Apart from the aforementioned reason, this uneven perfor-
mance has an additional cause: the optimal noise covariance
is calculated as the weighted mean of the filters’ values. In
this domain, relevant changes in noise levels are marked by
their difference in orders of magnitude. Suppose a toy example
were we have 2 particles representing different configurations
of noise covariance σ = (σX ;σY ) as following: p(1) =
(10−10; 10−10); p(2) = (10−20; 10−20) with non-normalized
weights w̃(1) = 10−4; w̃(2) = 1. A desirable noise estimate
should be much closer to be small –that of the second filter–
than large. However, MMAE will return the weighted average,
which turns out to be

∑N
l=1 p

(`) · w(`) ≈ 10−14. This is a
million times larger than the most probable value.

This secondary effect is not a bad thing per se: in fact,
the dragging effect of “large noise” particles improves the
reaction time for alarms. However, right after the red-flagged
vessel returns to normal state, the particles representing large
noises will enormously bias the estimation. Figure 3 shows
the problem in the left plots, and the results obtained with
the presented technique in the right. Note that Y axis has
logarithmic scale (the real difference is huge). The advantages
of the presented algorithm include:

1) The solution converges to the residual noise of prediction
model within 200 seconds of simulation, while MMAE
is far from it after 1200 seconds of trajectory,

2) periods of anomalous and normal behavior are clearly
differentiated –right plots make easy to identify two
alarms, one at t = 400s and t = 850s.

The solution to this problem has two parts: first, weights
will be calculated using only the last few likelihoods so that
events far in the past will not affect the prediction. Second,
the likelihoods for adapting the weights will be calculated
using GMMAE –much faster than MMAE–. Next subsection
presents GMMAE algorithm.

IV. GENERALIZED MULTIPLE MODEL ADAPTIVE
ESTIMATOR

Due to space constraints, this section briefly presents GM-
MAE algorithm without providing a real mathematical deriva-
tion nor any proof. Reader is encouraged to review [12], [13],
since they introduce and explain the same formulation used in
this work.

The final goal of GMMAE is to improve the likelihood func-
tion used for updating the weights in MMAE. This likelihood,
when MMAE is composed by Kalman filters, reduces to:

LMMAE = p(yk|x−k ) =
1√

2π det (C0)
·exp

(
−1

2
eTkC

−1
0 ek

)
(11)

Where C0 is the covariance matrix defined as HkP
−
k H

T
k +Rk

and ek = yk −Hkx̂
−
k –as defined in last subsection.

The problem with this formulation is that it only uses
the last observation. GMMAE includes not only residual ek,
but a number i + 1 of them: εi =

[
eTk eTk−1 . . . eTk−i

]
.

Accordingly, it substitutes the covariance matrix C0 with the
autocorrelation matrix Ci, so that:

LGMMAE =
1√

2π det (Ci)
· exp

(
−1

2
εTi C−1i εi

)
(12)

The autocorrelation matrix can be defined by blocks as:

Ci =


Ck,0 Ck,1 Ck,2 . . . Ck,i
CTk,1 Ck−1,1 Ck−1,2 . . . Ck−1,i−1
CTk,2 CTk−1,2 Ck−2,0 . . . Ck−2,i−2

...
...

...
. . .

...
CTk,i CTk−1,i−1 CTk−2,i−2 . . . Ck−i,0

 (13)

Being each block Ck,i the expectation E{ekeTk−i}. Performing
these expectations leads to:

Ck,i =


HkP

−
k H

T
k +Rk i = 0

HkFk−1
(
P−k−1H

T
k−1 −Kk−1Ck−1,0

)
i = 1

Hk

[∏i−1
j=1 Fk−j (I −Kk−jHk−j)

]
×Fk−i

(
P−k−iH

T
k−i −Kk−iCk−i,0

)
i > 1

(14)
An additional advantage of this formulation over other alter-
natives which also use several time steps, is that it exploits
the correlation between measurements at different times.

This correlation matrix has to be calculated for each of
the filters composing the GMMAE estimator. This means
that some matrices must be replaced by their estimates (for
instance, P−k → P̂

−(`)
k for the l-th filter). There is a problem
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Fig. 3: Noise estimate in skiboat 2 trajectory using MMAE (left) and GMMAE proposal (right). The faster convergence avoids

false positives and shows clearly where the second alarm must be raised, around t=850

with above definition: the optimal Kalman gain Hk is not

know, but if we write instead the estimation obtained in the

update state of the Kalman filter, the correlation terms Ck,i

with i > 0 will become zero. Reference [13] recomends an

alternative which solves the problem.

As a final remark, when the number of correlation steps is

1, then Ck, 0 = C0, this is, MMAE likelihood. Because of

this, when section VI show results for a GMMAE featuring 1

correlation step, it is equivalent to using MMAE.

V. SETUP

This section presents important details about how Con-

Tracker has been adjusted for our experiments. Next subsec-

tions describe how the filters are distributed over the process

noise variance space, and the following one describes the

modification made to the weighting of the internal Kalman

filters.

A. Distribution of noise covariance parameters

MMAE estimate the optimal value for some configuration

parameters by creating a set of individual filters, each one

with a fixed value for those parameters. Every instance can be

seen as a point in the multidimensional space of configuration

parameters.

How these these points are distributed is a question of

major importance. In order to fill the search space adecquately,

previous works used a Hammersley sequence that generates

a quasi-random uniform distribution. This method has some

advantages over pure random distribution, such as maximizing

Fig. 4: Previous approach vs. current proposal. Filling perfor-

mance over the search space in logarithmic scale

the coverage and the distance between contiguous points even

when just a few particles are generated.

Hammersley method approximates a uniform distribution,

but the problem requires sampling at different scales –it is

impossible to fill the whole space (e.g. [10−20; 10−10]2) using

the finest granularity (10−20)–. This problem was tackled by

generating several “patches” of samples at the required scales.

For this work, a single patch is transformed so that it resembles

a uniform distribution in the logarithm space. Figure 4 shows

the particles used in one of the tested scenarios, generated

by both methods. Both techniques offer similar performance
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when they are correctly tuned (particles located in the correct
part of the parameter space). Nonetheless, our proposal makes
easier the process of positioning the patch right.

B. Determining the weights of Kalman filters

As mentioned in section III, the long cooldown time of
previous versions of ConTracker was caused by the accumu-
lation of evidences in weight calculation. Our current proposal
includes considering only a window with the last likelihoods
for weighting the Kalman filters. The canonical recursion
derived from Bayes theorem, when taken back in time and
removing intermediate normalization steps, is similar to:

w
(`)
k =

k∏
t=1

w
(`)
0 · p(yt − 1|x̂−(`)t ) (15)

Instead, we take only the last N observations, so that things
happened in the past are not taken into account:

w
(`)
k =

k∏
t=k−N

p(yt − 1|x̂−(`)t ) (16)

A value 3 ≤ N ≤ 6 offers a good tradeoff between a fast
response time and stable behavior (noise can be fatal for the
red-flagging criterion).

VI. RESULTS

The modified version of ConTracker has been tested using
the same dataset employed in previous works: a set of six tra-
jectories of three different types of vehicle –skiboat, sailboat,
tugboat– with different behaviors. This epigraph analyzes how
the different parameters of GMMAE ConTracker affects the
results, and compares them with those obtained in previous
works.

A. General performance

The overall performance of the tracker has been improved.
We can find a great example in the skiboat 2 trajectory. It
appears in the map (figure 1) as the straight line that goes from
cell (15, 1) to (4, 20). Previous works achieved to raise two
alarms: one at t=400s, when the skiboat crosses the marked
channel at (11, 7) and the other at t=850s near the High Value
Unit in cells (6..7, 15). However, the slow decay of noise
estimate made the tracker ignore the moment when the skiboat
crossed the Anti Shipping Report area in cell (5, 17), 200
seconds later. Figures 5, 6 show the covariance and red-flags
obtained with current GMMAE implementation. It detects 4
anomalous events:
• Crossing marked channel at 400s < t < 450s
• Passing near HVU in (10..11, 8), at 470s < t < 500s
• Passing near HVU in cells (6..7, 15), at 880s < t < 950s
• Crossing the ASR around t = 1050s

It is important to see that the reason for the alarms is
correctly inferred (2 for channels, 3 for HVUs, 4 for ASRs).
A simple visual inspection of figures 5, 6 shows that alarms
can be detected using raw noise magnitude ‖q‖ –something

Fig. 5: ConTracker estimate for the magnitude of the process
noise in skiboat 2 trajectory

Fig. 6: ConTracker red-flag events and the inferred reasons in
skiboat 2 trajectory

not possible with MMAE, which had to calculate the noise
change ratio ∆‖q‖.

Previous work [11] analyzed three other trajectories. In two
of them, the new proposal returns similar results –as there is
no margin of improvement–. The first one is skiboat 1, where
the vessel crosses two marked channels and one ASR. Three
alarms are clearly raised with both techniques. The second
case is a sailboat that is stuck in low waters: ConTracker red-
flags it in several occasions spread along the duration of the
whole trajectory.

In the remaining trajectory, a tugboat is navigating a marked
channel withouth raising any alarms. Our results, however,
raise an alarm when the ship briefly enters the bottom-right
corner of cell (3, 13). The reason is that the cell has near-zero
trafficability because most of its surface is outside the channel.
Strictly speaking, this alarm is not correct: it is a false positive
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Fig. 7: Instant likelihood for filters in a GMMAE when the
skiboat of trajectory #2 is red-flaged around t=400s. Filters
sorted according to the magnitude of their process noise ‖q‖

Fig. 8: Instant likelihood for filters in a GMMAE when the
skiboat of trajectory #2 is navigating inside normal parameters,
around t=80s.

caused by the coarse granularity of the cell partitioning –and
because of this, difficult to get rid of it–. However, it shows that
the proposed system has increased its sensitivity with respect
to previous version.

B. Number of correlation steps in GMMAE

This section analyzes how the result is affected by the size
of the autocorrelation matrix in GMMAE. As the number
of steps is increased, the weights of GMMAE filters will
differentiate better between adecquate and incorrect values of
q. Figures 7 and 8 show us how the number of correlation
steps used in the weight update phase affects the behavior of
GMMAE –remember that with 1 correlation step, GMMAE
likelihood is the same as MMAE. These figures plot the
instant likelihood values p(yk|x(`)k ) used to update the weight

Fig. 9: Detail of the change ratio for ||q|| in skiboat 1 trajec-
tory. Correlating a larger number of steps leads to smoother,
less aggressive estimations

of the Kalkman filters in two different moments: when a vessel
starts to missbehave (figure 7), and during normal navigation
(figure 8). The likelihood of a filter is tightly related with the
magnitude of its process noise –apart from certain variance
that gives the plot a noisy look–. However, it can be seen
that increasing the number of correlation steps enlarges the
likelihood gap between filters representing suitable and non-
suitable process noises.

Increasing the number of correlation steps represents a clear
advantage, because the magnitude of the weight of badly
adapted particles is decreased in several orders of magnitude.
This will improve response time, and also the estimation of
real ‖q‖ value. On the other hand, arbitrary increments in
the number of correlation steps can be dangerous because
they introduce more past measures in weight calculation.
In our experiments, the scan period of the radar providing
observations is around 6s. Under this conditions, a 5-step
autocorrelation process employs data over a time span of 30
seconds. In figure 9 is possible to see that noise estimate is
smoother, although this can cause the filter to ignore some
“fast” anomalies that would, otherwise, been detected.

In general, we can say that a number between 3-5 correla-
tion steps is adecquate in a wide range of scenarios, in spite
that it is recommendable to tune it depending on the desired
sensitivity of the tracker.

C. Number of particles

Increasing the number of filters that compose the GMMAE
has an effect quite similar to increasing the number of corre-
lation steps: it makes the estimate of ConTracker less agile,
although it appears to result in a more robust detector –reduce
the risk of false positives–. Plot in figure 10 also shows that
an smaller number of particles mark the beginning of red-flag
periods clearer (for instance, the two peaks around t = 600s).
However, with more particles it is easier to infer the duration
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Fig. 10: Detail of the normalized magnitude of q in skiboat 2
trajectory, for two different numbers of particles

of the alarms. It is difficult to objectively estimate the best
number of particles, since the optimal setting varies between
scenarios. The final choice, as in the case of the number of
correlation steps, will depend on the desired characteristics of
the tracker and also on the available computational power.

VII. CONCLUSIONS

ConTracker is a tool which uses low level information to
track vessels, and then alert of suspicious behaviors taking
into account contextual infromation. GMMAE was proposed
as a possible solution to the weaknesses of previous Con-
Tracker implementation, and this work proves that theory
right. The implemented version features other improvements:
a new scheme for positioning the filters of GMMAE in the
state space, and using a limited window of observations for
calculating the weights of the filters.

The results presented here show an overall performance
improvement, with faster response and an increased detection
ratio of red-flag events. Two main parameters were identified:
the number of components in GMMAE, and the number of
steps comprised by the autocorrelation matrix, that is later
used for calculating the likelihood of the filters. They affect
the behavior of ConTracker in a similar way: a larger value
makes the filter more robust against noise, but also less agile
–risking to lose anomalous events–.

In spite that the number of particles/correlation steps have
significative impact on the results, ConTracker offers reason-
able accuracy over a wide range of configurations. Because os
this, the optimal setup must be analized on a per case basis,
taking into account other factors as the available computational
power.

Finally, one of the test triggered a false alarm caused
by the coarse granularity of context information: a refined
trafficability grid could improve results even further.
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