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The Probability Hypothesis Density (PHD) filter has been recently received a lot of attention by the 

estimation and data fusion community for its ability to provide a useful solution to the Bayesian filter 

problem (i.e., implementation issue).  Its core foundation to other parallel directions, such as the Sequential 

Monte Carlo PHD, the Gaussian Mixture PHD and others, offers a viable path to practically implement and 

realize this promising technology.  Potential key solutions offered by a PHD based design paradigm include: 

(1) non-Gaussian noise and correlated noise process mitigation; (2) replacement of the Extended Kalman 

Filter (EKF) linearization process to improve numerical instability; and (3) substitution of current 

convoluted multiple-target multiple-sensors mainstream solutions (e.g., bookkeeping of EKFs on the track file 

side coupled with a large probability/hypothesis combinatorial computation) with a compact and 

computational efficient solution framework (i.e., only need one PHD filter which processes a random finite set 

as a meta target estimate using one meta sensor consisting of multiple sensors being stacked in a “measurement 

set”).  This paper provides a survey on mainstream multiple-target multiple-sensor tracking algorithms and 

uses those for a baseline comparison to evaluate the potential payoff of the emerging PHD design framework.  

Potential benefits of a PHD based design framework via the single meta target single meta sensor concept and 

current emerging missions, such as near Earth object tracking, space traffic modeling and control, and space 

situational awareness, will also be discussed in the context of closely spaced objects and large target 

population beyond typical terrestrial domain applications. 

I. Introduction 

A. General Discussion of Multiple Target Multiple Sensor Detection and tracking 

 
There are eight major well known design challenges associated with the closed-loop multiple target multiple sensor 

(MTMS) detection and tracking system.  They are listed as follows:  

 
(1)The nonlinear dynamic behavior of the object itself (i.e. ,  state uncertainty due 
to process noise influencing input; target maneuvering uncertainty. Modeled by 
the process noise covariance matrix Q);  

 

(2) The measurement uncertainty due to sensor dynamic and its bandwidth 

capturing capacity (i.e., measurement noise uncertainty modeled by the covariance 

matrix R);  

 

(3) Filtering and Prediction Process i tself (i.e. ,  l inear filtering vs nonlinear 
filtering techniques selected to address the first  two design challenges)  
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(4) The front end measurement to object’s state vector estimate association or 

fusion; 

 

(5) The back end object’s  state vector estimate to state vector estimate fusion 
(i.e. ,  track to track fusion) 

 

(6) Closely Spaced Objects (CSOs) Detection and Tracking  
 

(7) Target status uncertainty (i.e. ,  the number of target variation; its  
appearance/disappearance in the sensor FOV or death/birth by its  nature or 
control by operator)  

 

(8) Target/Object Identity Identification (and it  is quite a challenge for space 
traffic environment subject to (i) which object needs to have its  identity 
identified and which object does not need and (ii) debris and unannounced 
foreign launch satellite/object)  

 

The first three challenges are usually tied together and being addressed under the filtering design framework. For 

instance,  Kalman filter based design technique and its implementation variants can be found in [1]-[4] which 

capture the basic essence of how those three can be designed to address the MTMS tracking system.  It is worth 

pointing out here that tuning of the Q and R matrices in order to address efficient MTMS performance was actively 

investigated by many researchers [5]-[8] (also see Figure 6 for an illustration of how Q and R are being processed 

using a traditional EKF scheme). Today, how to tune the Q and R matrices in order to reach an optimal (or 

suboptimal) performance is still being viewed as an art rather than a mathematical science based algorithm.  

Challenges 4 and 5 (i.e., measurement to track fusion and track to track fusion) become even tougher to address 

when multiple distributed and disparate sensors are being taken into account and the number of targets (to be 

detected and tracked) exceeds the typical terrestrial tracking applications (i.e., larger than 5000).  Challenges 6 (i.e., 

CSOs) and 7 (target death and birth) are the most challenging subject of all for the space traffic modeling and 

control problem and they are the crux of this paper’s main interests to introduce the Random Finite Set (RFS) and 

Probability Hypothesis Density (PHD) filter to address those two design challenges.  These two challenges will be 

discussed throughout the entire paper in the context of track initiation, track fusion/merging, and track deletion on 

the track file side of the MTMS tracking system to assist future space traffic controller/operator for their traffic 

management decision subject to traffic alert message generation and collision avoidance maneuvering request. 

 

B. Challenges of Space Traffic Modeling and Management 

 

Space situational awareness (SSA) is a term used to describe both friendly and non-friendly (possible evasive) space 

vehicles (SVs) and other objects, such as space debris.  SSA involves both knowing SV and object information, 

usually orbital position, and assessing how this information can affect future state information in relation to other 

SVs.  A common example involves assigning probabilities of collisions by an object or SV with another SV.  A 

recent incident in February 2009 involving an unintentional collision between Russia’s Cosmos 2251 satellite and a 

US Iridium satellite underscores the need for SSA for friendly SVs.  This resulted in over 500 pieces of debris which 

pose an additional risk to satellites.  China’s intentional destruction of one of its aging weather satellites set forth a 

new era of non-friendly SSA and threat assessment (TA).  Note that this collision left about 2,500 pieces of debris in 

Earth orbit. 

 

With the advent of improved space sensing technologies such as the Space Surveillance Telescope and the Space 

Based Space Surveillance satellite, the catalog of tracked resident space objects (RSOs) has the potential to grow 

from 20,000 RSOs to over 300,000 RSOs.  The collision between Iridium 33 and Cosmos 2251 communications 

satellites and the constant threat of micrometeoroid and orbital debris collision in low-Earth orbit to national and 

international assets underscores the need for accurate SSA, including support to identify potential RSOs collisions 

and to provide optimal course of action planning in order to mitigate such situations.  The order of magnitude 

increase in tracked RSOs will prevent current approaches from performing accurate data association.   
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Extensions of data association methods used for air traffic control (ATC) for RSO tracking are arduous in nature due 

to the much larger number of objects to be detected, tracked, monitored, and managed in space versus jetliners.  

Furthermore, the technology for space tracking does not exist compared to ATC in the context of transponder 

communication between aircraft to aircraft and aircraft to air traffic control.  Object identity is a challenge for both 

aircraft [19] and RSOs though.  Aircraft trackers typically employ a Kalman filter based tracking system while space 

traffic detection and tracking still use least square batch processing with man in the loop sorting for data association.  

Up to 30% of RSOs are associated using subject matter experts.  This is due to the fact that space tracking data is 

sparse [20] by nature make the object detection and tracking in real time a challenge. 

 

C. Need of Advanced Nonlinear Filtering With Random Finite Set as Space Traffic Modeling and 

Management 

 

The mainstream MTMS data association and fusion algorithms described in [1] to [4] also exhibit some performance 

limitations.  These include but are not limited to (i) complex multiple steps data association at the front end (i.e., 

correct measurement to the right track association for track update in the context of multiple sensors multiple target 

tracking and fusion) and back end (i.e., track association and fusion in the context of track fusion architecture at the 

track file levels either implemented in the centralized or decentralized architectures in order to produce a global 

cohesive consistent track accuracy at the system level).  Limitations per algorithm are summarized in Table 1.  The 

key summary statement for all of them is that they are no longer suitable for future space traffic modeling and 

tracking due to the large Resident Space Object (RSO) population. 

 

Table 1: Limitations of Mainstream Conventional Multiple Target Tracking Systems 

Algorithm Name Shortcomings & Comments 

Global Nearest 

Neighbor Filter 

(GNNF)  & Its Variants 

(1) Non Probability Approach, (2) may overlook some feasible association cases (i.e., 

miss-association), (3) require a large number of EKFs to be processed on the track file 

side  due to a large RSOs population, (4) robust association against False Alarm (FA) 

rate (beating MHT) but susceptible to low probability of detection. Clearly not 

feasible for SSA application which has an RSO population of larger than 15,000 

for normal size and much bigger than that when accounting for smaller size of 

RSOs (3cm to 5 cm diameter range)  

Joint Probability Data 

Association Filter 

(JPDAF)  & Its 

Variants 

(1) The number of targets is fixed and known ;(2) the complexity of the calculation for 

joint association probabilities grows exponentially with the number of targets and the 

number of Measurements; (3) unable to perform track initiation and maintenance.  The 

above three points make JDPA unsuitable for Space Traffic Modeling and 

Control mission due to large RSO population. 
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Multiple Hypothesis 

Tracker (MHT) & Its 

Variants 

(1) Deferred or built-in combinations of measurement to target associations; (2) An 

exhaustive association of all received measurements (past and present) to either a 

single track or as clutter is known as a hypothesis (and needed for all tracks and 

clutters!); (3) At each time step, the MHT filter 

attempts to maintain a small set of hypotheses with high posterior probability; (4) 

When a new set of measurements arrives, a new set of hypotheses is created from the 

existing hypotheses and their posterior probabilities are updated using Bayes  rule; (5) 

Note that in the generation of new hypotheses, a measurement can be assigned either 

to clutter, an existing track or a completely new track; (6) able to handle unknown 

target, target birth/death, and varying number of targets; (7) In practice, traditional 

implementations of MHT usually require validation/gating of measurements as well as 

heuristic pruning/merging of hypotheses to reduce computational requirements; (8) 

hypothesis is not observable indeed and impossible to measure it . The combinatorial 

nature of MHT is its biggest limitation since the total number of possible 

hypotheses increases exponentially with time, thus unsuitable for SSA application  

Multi-Target Bayes 

Filtering Algorithm 

(1) involving the evaluation of multiple set-integrals and with a large amount of 

targets, it is impossible to carry out that task; (2) Intractable due to heavy 

computational loads;  (3) PF-SMC based can solve the first two limitations but still 

remains as a big hurdle; (4) not even being considered for terrestrial applications.  Not 

a good candidate for Space Traffic Modeling and Control application 

 

II. Nonlinear Filtering Based Multiple Target Tracking Algorithm Survey 

A. Extended Kalman Filter and Unscented Kalman Filter 

 

The Extended Kalman Filter (EKF) applies the Kalman filter to nonlinear systems by linearizing the nonlinear 

models (i.e., nonlinear dynamic model f and nonlinear measurement h described next, [26]) so that the traditional 

linear Kalman filter equations can be applied. 
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The nonlinear dynamic model f for a space based object is formulated as follow. The position and velocity 

vectors of the target relative to the sensor platform, i.e., X(t)=[rt(t)  vt(t)]
T
, expressed in an ECI frame are written as 

follows: 
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where rt(t) and vt(t) are target or RSO position and velocity, respectively and  is the gravity constant and w(t) is the 

state process noise accounting for both gravitational and non-gravitational acceleration uncertainties. 

Rewriting equation (2) in terms of state space continuous dynamic expression as follows, 
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The term f(r,t), expressed in equation (3), is a nonlinear function per axis and exists only for the diagonal terms.  

Equation (3) will be used as the dynamic predicted model for the EKF when we linearize the nonlinear function f 

about its current state vector as first order Taylor Series expansion.  It will be carried out in the complete EKF 

formulation once we introduce the nonlinear measurement model as follows, 
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where h1() is the range ((t)), h2() is the azimuth angle ((t)), and h3() is the elevation angle (el(t)).  

 

The EKF framework for a single object tracking is then accomplished using the processing flow described in Section 

4 of this paper while multiple object measurements are being sorted out and associated with the right EKF using the 

Global Nearest Neighbor (GNN) data association scheme presented in Figures 5 & 6 of Section IV. 

 

B. Multiple Model Based Estimator 

 
Multiple-model adaptive estimation (MMAE) is a recursive estimator that uses a bank of filters that depend on 

some unknown parameters [21].  For example these parameters can be the elements of the process noise covariance, 

denoted by the vector p, which are assumed to be constant (at least throughout the interval of adaptation).  Note that 

we do not necessarily need to make the stationary assumption for the state and/or output processes though, i.e. time 

varying state and output matrices can be used.  A set of distributed elements is generated from some known pdf of p, 

denoted by p(p), to give {p
(ℓ)

; ℓ = 1, . . . , M}.  The goal of the estimation process is to determine the conditional pdf 

of the ℓth element p
(ℓ)

 given the current-time measurement ky .  Application of Bayes’ rule yields 
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where 
kY  denotes the sequence  0 1, , , ky y y .  The a posteriori probabilities can be computed through [18] 
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since  ( )

1| ,k kp y Y p  is given by  ( )|k kp 
y x  in the Kalman recursion.  Note that the denominator of Eq. (6) 

is just a normalizing factor to ensure that  ( ) | kp p Y  is a pdf.  The recursion formula can now be cast into a set 

of defined weights 
 
k , so that 
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where 
   ( ) |k kp  p y .  The weights at time t0 are initialized to 

 
k  = 1/M for ℓ = 1, 2,..., M. 

 

The standard MMAE approach runs a set of parallel single-model-based filters, which are independent of each other.  

This works well with an unknown structure or parameters but requires no structural or parametric changes.  Faults 

typically do not fall under this concept because the structure or parameters do change as a component or subsystem 

fails.  Several approaches can be used to overcome this difficulty [22].  The most common is the interacting 

multiple-model (IMM) estimator, which “switches” from one model to another in a probabilistic manner.  The 

switches are modeled by a Markov sequence.  Like the MMAE approach the IMM estimator also consists of a bank 

of model-based filters running in parallel at each cycle.  However, the initial estimate at the beginning of each cycle 

for each filter is a mixture of all most recent estimates from the single-model-based filters, which enables it to 

effectively take into account the history of the modes without the exponentially growing requirements in 

computation and storage as required by the optimally derived estimator.  This provides a faster and more accurate 

estimate for the changed system states. Also, the probability of each mode is calculated, which indicates the affected 

mode and transition at each time. 

 

The four major steps in the IMM cycle are: 1) model-conditional re-initialization (interacting or mixing of the 

estimates), in which the input to the filter matched to a certain mode is obtained by mixing the estimates of all filters 

at the previous time under the assumption that this particular mode is in effect at the present time; 2) model-

conditional filtering, performed in parallel for each mode; 3) mode probability update, based on the model-

conditional likelihood functions; and 4) estimate combination, which yields the overall state estimate as the 

probabilistically weighted sum of the updated state estimates of all filters.  The mode probability is provided by the 

weights used to update the state estimate, which is similar to the MMAE structure. 

 

C. Gaussian Sum Filter 

 

The EKF and UKF work with nonlinear systems and measurement models.  The posterior probability density 

(pdf) function of the vector is still assumed to be represented by a Gaussian distribution.  Hence, only the mean and 

covariance are needed to be maintained and updated in these filters.  For nonlinear systems the posterior pdf may not 

be Gaussian though, which may lead to problems in the EKF and UF.  The goal of Gaussian sum filters (GSFs) is to 

determine the posterior pdf using a sum of Gaussian distributions.   

 

Consider  0 1, , ,k kY y y y
, which is the set of measurements up to and including tk and a state xk.  The 

Gaussian sum approximation uses a Bayesian estimation approach to construct  |k kp x Y
.  The central idea in a 

GSF is to use a finite set of Gaussian distributions to estimate the pdf  |k kp x Y
. Consider the following 

Gaussian distribution: 
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where x
(j)

 is the mean and P
(j)

 is the covariance.  The Gaussian approximation is based on the lemma that any 

probability density p(x) can be approximated by 
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for some N and positive weights with 
1

1
N

jj
w


 , which is required so that the approximated p(x) is indeed a 

valid pdf. 

 

For nonlinear systems we wish to employ a bank of EKFs in a GSF setting to estimate  |k kp x Y .  A GSF is 

similar to a MMAE approach.  However, in the GSF there is only one random variable, xk, that is to be estimated, 

while in the MMAE approach there are multiple random variables associated with each model.  Fortunately, the 

derivation of the update law for the weights in the GSF follows from the theory of the MMAE approach.  The table 

below summarizes the EKF-based GSF. 
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where the likelihood function is given by 
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The weights at time t0 are initialized to 1/N.  A set of N initial conditions for the state and covariance for each filter 

are developed.  Note that no filters can be duplicated with the same initial conditions because this will produce 

identical filters that are redundant.  Each filter can have the same covariance but must have different initial states, 

likewise each filter can have the same initial state but must have different covariances.  Extended Kalman filters are 

executed using the different initial conditions, running through the normal update and propagation stages.  The 

conditional mean estimate is the weighted sum of the parallel filter estimates: 
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Also, the covariance of the state estimate can be computed using 
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Reference [20] presents a GSF to characterize the uncertainty associated with orbital tracking problems.  For 

stochastic continuous dynamic systems the exact evolution of the state pdf is given by the Fokker-Planck-

Kolmogorov Equation (FPKE).  Reference [23] develops an adaptive Gaussian sum filter approach for accurate 

uncertainty propagation through nonlinear dynamical systems while incorporating the solution to the FPKE. 

D. Particle Filter (PF) 

 
Particle filters (PFs) have gained much attention in recent years.  Like other approximate nonlinear filtering 

methods, the ultimate objective of the PF is to reconstruct the posterior pdf of the state vector, or the probability 

distribution of the state vector conditional on all the available measurements.  However, the approximation of the PF 

is vastly different from that of conventional nonlinear filters.  By approximating a continuous distribution of interest 

by a finite (but large) number of weighted random samples or particles in the state space, the PF assumes no 

functional form for the posterior probability distribution. In the simplest form of the PF, the particles are propagated 

through the dynamic model and then weighted according to the likelihood function, which determines how closely 

the particles match the measurements.  Those that best match the measurements are multiplied and those that do not 

are discarded. 

 

In principle, the PF (with an infinite number of particles) can approximate the posterior probability distribution of 

any form and solve any nonlinear and/or non- Gaussian estimation problem.  In practice, however, it is nontrivial to 

design a PF with a relatively small number of particles.  The performance of the PF heavily depends on whether the 

particles are located in the significant regions of the state space and whether the significant regions are covered by 

the particles.  When the measurements are accurate, which is typical for many estimation problems, the likelihood 

function concentrates in a small region of the state space, and the particles propagated through the dynamic model 

are more often than not located outside the significant regions of the likelihood function.  State estimates such as the 

mean and covariance approximated with these particles are imprecise.  This problem becomes even worse when the 

initial estimation errors are large, for example, a few orders of magnitude larger than the sensor accuracy.  

Consequently, the basic PF quickly suffers the problem of severe particle degeneracy (the loss of diversity of the 

particles) and filter divergence. 

 

The particles of the PF are randomly sampled from an importance function.  The importance weight associated with 

each particle is adaptively computed based on the ratio between the posterior pdf and the importance function (up to 

a constant).  Given the particles, higher moments of interest as well as the mean and covariance can be computed in 

a straightforward manner whenever desired.  From these particles, it is also convenient to compute statistics such as 
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the modes and the median, which may be desired in certain applications. Stated in another way, the PF provides a 

whole picture of the underlying distribution. 

 

The bootstrap filter (BF) was first derived by Gordon, Salmond and Smith [9]. Being the first operational PF, the BF 

is modular and easy to implement.  The justification for the BF is based on asymptotic results.  Thus, it is usually 

difficult to prove any general result for a finite number of samples or to make any precise, provable statement on 

how many samples are required to give a satisfactory representation of the pdf.  We prefer to use as few particles as 

possible in the BF, because the computational cost of the BF is largely proportional to the number of particles.  For a 

BF with a modest number of particles to work properly, the sampling efficiency has to be enhanced.  In order to do 

this, in the proposed BF the scheme of particle roughening is typically used.  More details on PFs can be found in 

Ref. [8]. 

 

E. Probability Hypothesis Density (PHD) Filter 

 
Note that all aforementioned non-linear filters are capable of addressing the MTMS design challenges discussed 

in Section 1.0; however, the data association at the front end and the track fusion at the back end still have to be 

handled in an ad-hoc or traditional fashion. In addition, the second major cumbersome implementation associated 

with those nonlinear filters is that for every single object to be tracked and estimated on the track file side, a 

nonlinear filter has to be implemented in parallel.  As a result, for 10,000 of objects or beyond for the space traffic 

modeling and tracking and control, 10,000 of nonlinear filters have to be implemented and maintained/processed in 

parallel.  This implementation issue when coupled with the front end measurement to non linear filter association 

(for correct measurement to be used by respective nonlinear filter at each measurement update) will generate a 

tremendous amount of permutations and computational loads during the gating process (See detailed discussion 

Section 4).  Likewise, by the same token track merging at the output of each nonlinear filter in the back end needs to 

be addressed as well to ensure track life of RSOs’ state vectors to be properly managed and maintained. 

 

It is only recently that a rigorous mathematical framework has been established [Mahler] allowing us to handle the 

multiple object tracking problem by just using a single meta filter via the finite set statistics (FISST) [Mahler & 

Nguyen, Vo] with Random Finite Set (RFS) as the “multiple object” set estimate whose elements are the individual 

respective RSOs state vectors. First the collection of targets and the collection of observations are both treated as 

separate set-valued entities. These set-valued entities are then modeled by separate RFSs s that the problem of multi-

target tracking can be formulated in the Bayesian frame-work. This has led to the development of novel and efficient 

multi-target filters and their computationally efficient approximations, which have generated substantial interests 

and set a stage for multiple development directions.  

 

How the RFS and PHD filter framework can be leveraged to turn a complex multiple target multiple sensor system 

into a “single meta target” and “single meta sensor” is discussed next. This single meta target is possible thanks 

to the random finite set framework which practically captures all individual targets or objects in a random set 

regardless of their actual population value (i.e., several hundred thousand or beyond).  This single meta target 

random set is then being process by a single PHD filter to predict the movement of all objects captured in that 

random set.  Likewise, the single meta sensor is also being captured by a random (sensors) set. In other words, all 

sensors are now being “stacked” in a random set which contains multiple target measurements collected by multiple 

sensors. Users who are interested in this great strategy and attractive framework are recommended to check into 

work done by Mahler (Refs. 10 & 16) and Vo & Vo (Refs. 11 & 13). 

 

Multi-target state and multi-target measurement at time k are naturally represented as finite sets Xk and Zk. For 

example, if at time k there are M(k) targets located at 

 

    
    

     
                                (13) 

 

then,  

 

   [   
    

       
 ]                               (14) 

 

Note that Xk is now a set representation and F(ES) is the collection of all finite subsets of ES 
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Similarly, if N(k) observations at time k, 

 

   
    

     
                                 (15) 

 

are received at time k, then 

 

   [   
    

     
 ]                               (16) 

 

where some of the N(k) observations may be due to clutter.  

 

Analogous to single target system, where uncertainty is characterized by modeling the state and measurement by 

random vectors, uncertainty in a multi-target system is characterized by modeling multi-target state and multi-target 

measurement as random finite sets (RFS) k and k on the state and observation spaces Es and Eo, respectively. 

 

Given a realization Xk-1 of the multi-target state at time k1, the multi-target state at time k can be modeled by the 

RFS 

 

k = Sk(Xk-1)U Bk(Xk-1)U k                        (17) 

 

where Sk(Xk-1) denotes the RFS of targets that have survived at time k, Bk(Xk-1) denotes the RFS of targets spawned 

from Xk-1 and k denotes the RFS of targets that appear spontaneously at time k.  

 

Likewise, for measurement set it accounts for (i) actual target measurement; (ii) clutter; and (iii) sensor noise 

 

k= Ek(Xk-1)U Ck(Xk-1)U k                        (18) 

 

The three sets (being accounted for as a union of all) on the right hand side of equations (18) represent for sensor 

measurement, clutter, and sensor noise, respectively. 

 

Important Note: Equation (17) is the key RFS modeling of the target space illustrating how target appearance, 

death, and spawning can be captured in the target space k.  This target set space with its multiple targets existence 

therein later will be integrated using the RFS target density D(k) to pinpoint exactly how many targets are residing 

in that target space in real time regardless the target types (i.e., birth, death, or spawning).   

 

The following section presents a tractable solution of the PHD filter using the Sequential Monte Carlo (SMC) 

implementation.  Via this PF based SMC implementation, the PHD filter yields an attractive multiple target 

detection and tracking solution which is highly applicable to the space traffic modeling, management, and control. 

 

III. PF Based Design for PHD Filter Implementation 

The PHD filter can be implemented using the PF based filter design techniques discussed in Section II.  SMC 

implementation (over Gaussian Sum Filter or Gaussian Mixture) is employed as an illustration example in this 

survey. 

A. SMC Implementation Discussion 

The SMC implementation scheme has been recognized as a popular means for implementation of a PHD filter.  

Detailed SMC implementation process can be obtained by cross checking with References [10], [11], and [13].  

Therefore, it is not repeated herein. 

B. Simulation Results and Discussion 

Figures 1 to 4 present the performance of the SMC-PHD filter 
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Figure 1: True Multiple Targets’ Tracks in X-Y Coordinate 

 

 
Figure 2: True Multiple Targets’ Tracks vs Multiple Target’s Estimated Track 
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Figure 3:  Estimated Number of Targets vs True Number of Varying Targets & Its PHD Error 

 

 
Figure 4: SMC-PHD Performance in Estimating the Number of Targets in Real Time 
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IV. Benefits of PHD Filter & Its Future Development Directions 

 

The direct benefit of the PHD/RFS design framework is that the front end measurement to object’s state vector 

estimate (i.e., object’s track under the traditional MTMS design framework) is no longer needed (see Figure 5 for 

front end measurement to track data association).  We use the Global Nearest Neighbor (GNN) filtering scheme 

depicted in Figure 5 to illustrate this benefit.  The PHD/RFS framework can produce multiple objects’ state vector 

estimates without explicitly performing the measurement to object’s state vector estimate association (i.e., 

measurement to track fusion or association), it will eliminate a tremendous amount of computational load and 

logical check upfront when the object population exceeds 10,000 objects.  The other benefit of the PHD/RFS 

framework is its ability to quickly converge to the “truth” state vector without heavily relying on the state vector’s 

initial condition of a new object (i.e., initial orbit determination.)  

 

 
 

Figure 5: GNN Tracking Architecture With Front End Data Association 
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Figure 6: GNN Gating Process & Single EKF Processing Flow 

V. Conclusion 

      Nonlinear estimation problems, especially in the context of multiple target multiple sensor tracking paradigm, 

are inherent challenging topic for both theorists and practitioners to iron out a path in mixing R&D solutions with 

practical implementation techniques to meet their emerging needs.  While reality is still dwelling on EKF based 

and ad-hoc utilization of UKF, IMM/JPDA, and PF based, the PHD/RFS framework does offer a viable path to 

resolve the computational intensive front end data association (i.e., ten thousands of object measurements to be 

associated with the right current object’s state vector for update and prediction via a gating process).  However, its 

applicability to effectively solve the back end of the object’s state vector fusion (i.e., track to track fusion) remains 

to be seen.  It is quite a challenge to address track fusion within the PHD/RFS framework; however, an emerging 

trend toward reaching a practical solution is observed to be reachable (e.g., see [27] by Panta and [28] by Clark). 

With the number of targets approaching 100,000 range, a judicious selection of various schemes may be the right 

way to cure this high target population. 
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