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In this paper two multiple model approaches are applied to estimate the effective
area-to-mass ratio of a space object. Both multiple-model adaptive estimation and
a new approach called adaptive likelihood mixtures are used in this work. Multiple
model approaches have been used extensively used in target tracking applications
since they can detect abrupt changes in the models governing the target’s motion.
Since the area-to-mass ratio is a function of the projected Sun facing area, which
is a function of the orientation of the space object, then the effective area-to-mass
ratio is time varying. It is difficult to estimate the time varying nature of the area-
to-mass ratio using traditional estimators. Therefore multiple model approaches
are proposed here. Simulation results are shown for different scenarios and good
performance is given to determine the effective area-to-mass ratios as, well as their
changes over time.

INTRODUCTION

In recent years space situational awareness, which is concerned with collecting and maintaining
knowledge of all objects orbiting the Earth, has gained much attention. The U.S. Air Force collects
the necessary data for space object (SO) catalog development and maintenance through a global
network of radars and optical sensors. Due to the fact that a limited number of sensors are avail-
able to track a large number of SOs, sparse data collected must be exploited to its fullest extent.
Various sensors such as radars and optical sensors exist for SO state estimation, which typically
includes position, velocity and a non-conservative force parameter analogous to a ballistic coeffi-
cient. However, the ballistic coefficient parameters may not fully describe the SO’s motion. Hence,
more detailed attitude dependent models are required. In this case more elaborate techniques for
processing observation data are required.

There is a coupling between SO attitude and non-conservative force/torques. The acceleration
due to solar radiation pressure (SRP) is modeled as function of an object’s Sun-facing area, surface
properties, mass, position and attitude. It has a very small magnitude compared to gravitational
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accelerations and typically has an order of magnitude around 10−7 to10−9 m/s2, but is the dominant
non-conservative acceleration for objects above 1,000 km.Below 1,000 km, drag caused by the
atmospheric neutral density is the dominant non-conservative acceleration.

Deep space optical surveys of near geosynchronous (GEO) objects have identified a class of high
area-to-mass ratio (HAMR) objects.1 The exact characteristics of these objects are not well known
and their motion pose a collision hazard with GEO objects duethe SRP induced large variations of
inclination and eccentricity. These objects are typicallynon-resolved and difficult to track due to
dim magnitude and dynamic mismodeling. Therefore, characterizing the large population of HAMR
objects in geostationary orbit is required to allow for a better understanding of their origins, and the
current and future threats they pose to the active SO population.

Estimating the dynamic characteristics of a HAMR object using light curve and astrometric data
can allow for mass parameters to be observable. Estimating mass for HAMR objects can help in
the development of a detailed understanding of the origin and dynamics of these objects. It has
been shown that the SRP albedo area-to-mass ratio,CrA

m , is observable from angles data2 through
the dynamic mismodeling of SRP forces. Reference [2] conducts a study with simulated and actual
data to quantify the error in the estimates ofCrA

m and good performance is found using data spanning
over a number of months. Also Ref. [3] shows that orbital, attitude and shape parameters can be
recovered with sufficient accuracy using a multiple-model adaptive estimation approach coupled
with an unscented Kalman filter. This approach works reasonably well but requires that the area-to-
mass ratio is knowna priori. The purpose of this work is to show that sinceCrA

m is observable from
angles data and shape/albedo properties are observable from photometric data, then by fusing these
data types, the area-to-mass ratio can be extracted with reasonable accuracy.

Filtering algorithms for state estimation, such as the extended Kalman filter (EKF),4 the unscented
Kalman filter (UKF)5 and particle filters6 are commonly used to both estimate hidden (indirectly ob-
servable) states and filter noisy measurements. The basic difference between the EKF and the UKF
results from the manner in which the state distribution of the nonlinear models is approximated.
The UKF, introduced by Julier and Uhlmann,5 uses a nonlinear transformation called the unscented
transform, in which the state probability density function(pdf) is represented by a set of weighted
sigma points (state vectors deterministically sampled about a mean). These are used to parameter-
ize the true mean and covariance of the state distribution. When the sigma points are propagated
through the nonlinear system, the posterior mean and covariance are obtained up to the second or-
der for any nonlinearity. The EKF and UKF assume that the process noise terms are represented
by zero-mean Gaussian white-noise processes and the measurement noise is represented by zero-
mean Gaussian random variable. Furthermore both approaches assume that thea posteriori anda
priori pdf is Gaussian in a linear domain. This is true given the previous assumptions but under
the effect of nonlinear measurement functions and system dynamics the initial Gaussian state un-
certainty may quickly become non-Gaussian. Both filters only provide approximate solutions to the
nonlinear filtering problem, since thea posteriori anda priori pdf are most often non-Gaussian due
to nonlinear effects. The EKF typically works well only in the region where the first-order Taylor-
series linearization adequately approximates the non-Gaussian pdf. The UKF provides higher-order
moments for the computation of thea posteriori pdf without the need to calculate Jacobian matri-
ces as required in the EKF. The light curve measurement modelis highly nonlinear, and Jacobian
calculations are non-trivial; thus, the UKF is used to provide a numerical means of estimating the
states of the SO using light curve measurement models.

In this paper the usefulness of the information taken by optical sensors is investigated with the
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Figure 1. Space Object Shape Model

UKF and adaptive filtering techniques to determine the area-to-mass ratio. The standard multiple-
model adaptive estimation (MMAE) approach is applied to characterize the area-to-mass ratio of
an SO, given angles data. Also a technique call adaptive likelihood mixtures (ALM) is presented
and applied to characterizing the area-to-mass ratio. Thisapproach works by weighting each model
with the current likelihood ratio and therefore the weightsare not functions of the previous weights
which removes the memory of the multiple model approach. This ALM approach can then detect
very abrupt changes in the data and is flexible enough to determine the correct corresponding model.
Since the area-to-mass ratio is a function of the projected area of the SO which is a function of the
orientation of SO, then the effective area-to-mass ratio istime varying. This time variation is difficult
to capture in traditional estimators, so the aforementioned multiple model approaches are proposed
to capture the transition between simplified cannonball models.

The organization of this paper is as follows. First, the models used for SO shape, orbital dynamics
and attitude dynamics are discussed. Following this a description of the measurement models used
in this paper are given. Next, a review of the UKF approach is provided. Then both multiple model
approaches are discussed. Finally, simulation results of the area-to-mass estimation approach are
provided.

SHAPE MODEL

The shape model considered in this work consists of a finite number a flat facets, where each
facet has a set of basis vectors associated with it. These basis vectors consist of three unit vectors
uB
n , uB

u , anduB
v . The unit vectoruB

n points in the direction of the outward normal to the facet.
For curved surfaces this model become more accurate as the number of facets are increased. The
vectorsuB

u anduB
v are in the plane of the facet, the notation superscriptB denotes that the vector

is expressed in body coordinates. The SOs are assumed to be rigid bodies and therefore the unit
vectorsuB

n , uB
u anduB

v do not change since they are expressed in the body frame.

The light curve and the solar radiation pressure models discussed in the next sections require that
these vectors be expressed in inertial coordinates and since the SO body is rotating, these vectors
will change with respect to the inertial frame. The body vectors can be rotated to the inertial frame
by the standard attitude mapping given by:

uB
i = A(qB

I )u
I
k, k = u, v, n, (1)

whereA(qB
I ) is the attitude matrix mapping the inertial frame to the bodyframe using the quater-

nion parameterization. Furthermore, the unit vectoruI
sun points from the SO to the Sun direction
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and the unit vectoruI
obs points from the SO to the observer. Each facet has an areaA(i) associated

with it. Once the number of facets has been defined and their basis vectors are known, the areas
A(i) define the size and shape of the SO. To determine the solar radiation pressure forces and light
curve characteristics, the surface properties must be defined for each facet.

For the development of the measured light curve data, faceted SO shape models are used. The
rectangular model is described by three parameters,l, a, andd, which are the length, width, and
height, respectively.

DYNAMIC MODELS

The two-body equation of motion with solar radiation pressure (SRP) accelerations is given by

r̈I = − µ

r3
rI + aIsrp, (2)

whereµ is the gravitational parameter of the Earth,r = ‖rI‖, andaIsrp represents the acceleration
perturbation due to SRP, which will be discussed in detail inthe following section. The superscript
I denotes that the vectors are expressed in inertial coordinates

A number of parameterizations exist to specify attitude, including Euler angles, quaternions
and Rodrigues parameters.7 This paper uses the quaternion, which is based on the Euler an-
gle/axis parametrization. The quaternion is defined asq ≡ [̺T q4]

T with ̺ = ê sin(ν/2), and
q4 = cos(ν/2), whereê andν are the Euler axis of rotation and rotation angle, respectively. The
quaternion must satisfy a unit norm constraint,qTq = 1. In terms of the quaternion, the attitude
matrix is given by

A(q) = ΞT (q)Ψ(q), (3)

where

Ξ(q) ≡
[

q4I3×3 + [̺×]
−̺T

]

, (4a)

Ψ(q) ≡
[

q4I3×3 − [̺×]
−̺T

]

, (4b)

with

[a×] ≡





0 −a3 a2
a3 0 −a1
−a2 a1 0



 (5)

for any general3 × 1 vectora defined such that the matrix form is equivalent to the vector cross
product[a×]b = a× b.

The rotational dynamics are given by the coupled first-orderdifferential equations:

q̇B
I =

1

2
Ξ(qB

I )ω
B
B/I , (6a)

ω̇
B
B/I = J−1

SO

(

TB
srp−

[

ω
B
B/I×

]

JSOω
B
B/I

)

, (6b)

whereωB
B/I is the angular velocity of the SO with respect to the inertialframe, expressed in body

coordinates (the notation superscriptB denotes that the vector is expressed in body coordinates),
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JSO is the inertia matrix of the SO andTB
srp is the net torque acting on the SO due to SRP expressed

in body coordinates.

The SO is assumed to be of uniform density and therefore the principal components of the inertia
tensor for the shape model given in Figure1 are given by

J1 = mSO

(

a2 + b2
)

12
(7a)

J2 = mSO

(

a2 + l2
)

12
(7b)

J3 = mSO

(

l2 + b2
)

12
(7c)

Then the inertia matrix is given byJSO = diag[J1 J2 J3]. This work will consider simplified
SRP models which consider the SO to be of spherical shape and therefore the SRP force does not
depend on orientation. In most cases this simplification is an approximation and therefore one of the
simulation scenarios will consider the shape model discussed earlier and simulation the rotational
dynamics using Eq.6 to generate truth data and process the data with an estimatorthat assumes
spherical shapes.

SOLAR RADIATION FORCE MODEL

For higher altitude objects (≥ 1,000 km) SRP represents the primary non-conservative perturba-
tion acting on SOs. Because SRP depends upon the SO’s position and orientation, the position and
attitude dynamics are thus coupled. The acceleration due toSRP is computed as a function of the
total solar energy impressed upon exposed SO surfaces that are reflected, absorbed and reradiated.
The rate at which radiant energy is incident on an element of areadA is a function of angle between
the normal todA, un, and the Sun directionusun. The power of incident radiant energy is given by

PI =
Φsun,tot

(d/d0)2
(un · usun) dA (8)

whereΦsun,tot is the average incident radiant flux density from the Sun at1 AU, given byΦsun,tot=
1, 367 W/m2. Therefore the energy flux at any distanced is given byΦsun,tot/(d/d0)

2 whered0 = 1
AU. The reflected radiation will have the following diffuse and specular power:

PD = Cdiff
Φsun,tot

(d/d0)2
(un · usun) dA (9a)

PS = Cspec
Φsun,tot

(d/d0)2
(un · usun) dA (9b)

where the incident solar radiant energy is accounted for in three terms: the absorbed energy,Cabs,
the specularly reflected energyCspec, and the diffusely reflected energy,Cdiff , which yields

Cabs+ Cspec+Cdiff = 1 (10)

The elemental force ondA can be written in three terms: incident force,dFI , specular reflection
force,dFS , and diffuse reflection force,dFD. The incident force accounts for force due to the
three termsCabs, Cspec, andCdiff , since for each term the radiant particle is at least broughtto
rest before being absorbed or reflected. Therefore,dFI accounts for the transfer in momentum to
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bring a radiated particle to rest. The force term for diffuseand specular reflectance accounts for the
momentum transfer due to reflection. The momentum contribution due to incident energy is in the
opposite direction of the incoming energy, given by

dFI = −PI

c
un (11)

The force exerted by specularly reflected energy is in the direction of specular reflection which is
given by reflecting the vectorusun about an axis defined by the directionun. Then the force exerted
by specular reflection is given by

dFS =
PS

c
[2 (un · usun)un − usun] (12)

Diffusely reflected energy will reflect equally in all directions and the resulting force will be in
the normal direction due to symmetric components cancelingout. For surfaces obeying Lambert’s
cosine law of diffuse emission the diffuse term will be8

dFD =
2

3

PD

c
un (13)

where the factor23 accounts for the portion of energy that is reflected in the normal direction. Then
the force on an element of area is given by

dF = dFI + dFS + dFD (14)

The force acting on a body due to solar radiation pressure canbe determined by integrating over the
Sun exposed surface area, given by

F =

∫

sun
(dFI + dFS + dFD) (15)

For a spherical body this integral is calculated over the Sunexposed area. The result is given by

F = − Φsun,tot

c(d/d0)2
A
[

1 +
2

3
Cdiff

]

usun (16)

This equation can be rewritten in terms of albedo

F = − Φsun,tot

c(d/d0)2
ACrusun (17)

whereCr = 1 + 2
3Cdiff . Similarly the forces can be calculated for a flat plate:

F = − Φsun,tot

c(d/d0)2
A (un · usun)

[

(

1− Cspec
)

un

+

(

4

9
Cdiff + 2Cspec(un · usun)

)

usun

] (18)

Under the assumption of a perfectly diffuse flat plate, Eq. (18) becomes

F = − Φsun,tot

c(d/d0)2
(un · usun)

[

Aun +
4

9
ACdiff usun

]

(19)
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ê

r

 

R

!"

# $

%

 

Figure 2. Geometry of Earth Observations of Spacecraft Motion

We can note that, ifun remains aligned withusun, a similar expression to Eq. (17) can be written
for the flat plate model, whereCr = 1 + 4

9Cdiff in the case of the flat plate. To calculate the SRP
force for the facet model discussed previously, the SRP force is calculated for each facet using the
SRP force equation for a flat plate, Eq. (19), and then summed over all facets to obtain the total SRP
force on the body:

FI
srp =

NF
∑

j=1

FI
srp,j (20)

whereNF is the total number of facets. The sum is performed over all sides of the SO. If for any
side the angle between the surface normal and the Sun’s direction is greater thanπ/2, then this side
is not facing the Sun and receives no energy from the Sun. Therefore, the solar radiation pressure
for these sides is set to zero,FI

srp,j = 0 if θinc > π/2. The acceleration due to SRP is then simply
given byaIsrp = FI

srp/m.

The solar radiation pressure moments can be calculated by assuming that the SRP force acts
through the center of each facet. Then the SRP moments can be written as

TB
srp =

NF
∑

j=1

[

rBi ×
]

AFB
srp,j (21)

whererBi is the location of the geometric center of each facet with respect to the center of mass
of the SO in body coordinates. The SRP moments are used with Eq. (6) to simulate the rotational
dynamics of the SO.

ORBIT DETERMINATION USING UNSCENTED KALMAN FILTER

Observation Model

Consider observations made by a optical site which measuresthe right ascension and declination
to a SO. The geometry and common terminology associated withthis observation is shown in Figure
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2, wheredI is the position vector from the observer to the SO,rI is the position of the SO in inertial
coordinates,RI is the radius vector locating the observer. The fundamentalobservation is given by

ρ
I = rI −RI (22)

whereρ = [ρx ρy ρz]
T . The angle observations consist of the right ascension, ra,and declination,

dec. The observation equations are given by

ra= tan−1

(

ρx
ρy

)

(23a)

dec= sin−1

(

ρz
‖ρI‖

)

(23b)

UNSCENTED KALMAN FILTER FORMULATION

The unscented Kalman filter (UKF) is chosen for state estimation because it has at least the
accuracy of a second-order filter5 without the requirement of computing Jacobians like the EKF.

Model and Measurement Uncertainty

A UKF is now summarized for estimating the state of a SO’s position, velocity given byx =
[rI

T

vIT ]T . The dynamic models from Eqs. (2) and (6) can be written in the general state equation
which gives the deterministic part of the stochastic model:

ẋ = f (x, t) +G (x, t)Γ(t) (24)

whereΓ(t) is a Gaussian white noise process term with correlation function Qδ(t1− t2). The func-
tion f (x, t) is a general nonlinear function. To solve the general nonlinear filtering problem the UKF
utilizes the unscented transformation to determine the mean and covariance propagation though the
function f (x, t). The dynamic function used in this work consists of rotational and translational
dynamics given by the sigma points, which are propagated through the system dynamics:

f ([χ, q̂]) =

[

v̂I

− µ

r3
r̂I + âISRP

]

(25)

If the initial pdf p(xo) that describes the associated state uncertainty is given, the solution for the
time evolution ofp(x, t) constitutes the nonlinear filtering problem.

Given a system model with initial state and covariance values, the UKF propagates the state
vector and the error-covariance matrix recursively. At discrete observation times, the UKF updates
the state and covariance matrix conditioned on the information gained from the measurements. The
prediction phase is important for overall filter performance. In general, the discrete measurement
equation can be expressed for the filter as

ỹk = h (xk, tk) + vk (26)

where ỹk is a measurement vector andvk is the measurement noise, which is assumed to be a
zero-mean Gaussian process with covarianceRk.

All random variables in the UKF are assumed to be Gaussian random variables and their dis-
tribution are approximated by the deterministically selected sigma points. The sigma points are
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selected to be along the principal axis directions of the state error-covariance. Given anL × L
error-covariance matrixPk, the sigma points are constructed by

σk ← 2L columns from±
√

(L+ λ)Pk (27a)

χk(0) = µk (27b)

χk(i) = σk(i) + µk (27c)

where
√
M is shorthand notation for a matrixZ such thatM = Z ZT . Given that these points

are selected to represent the distribution of the state vector, each sigma point is given a weight that
preserves the information contained in the initial distribution:

Wmean
0 =

λ

L+ λ
(28a)

W cov
0 =

λ

L+ λ
+ (1− α2 + β) (28b)

Wmean
i = W cov

i =
1

2(L+ λ)
, i = 1, 2, . . . , 2L (28c)

whereλ = α2(L+ κ)− L is a composite scaling parameter.

The constantα controls the spread of the sigma point distribution and should be a small number,
0 < α ≤ 1. κ = 3−L provides an extra degree of freedom that is used to fine-tune the higher-order
moments, andβ is used to incorporate prior knowledge of the distribution by weighting the mean
sigma point in the covariance calculation.

Posterior 

pdf

UF 1

UF 2

UF M

Unknown System
Real System

MMAE Filter

Figure 3. MMAE Process

MULTIPLE-MODEL ADAPTIVE ESTIMATION

In this section a review of MMAE is shown. More details can be found in Refs. [9] and [10].
Figure3 shows the MMAE process. Multiple-model adaptive estimation is a recursive estimator
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that uses a bank of filters that depend on models with different parameters, denoted by the vectorp,
which is assumed to be constant (at least throughout the interval of adaptation). Note the stationary
assumption for the state and/or output processes is not necessarily required though, i.e. time varying
state and output matrices can be used. A set of distributed elements is generated from some known
pdf ofp, denoted byp (p), to give{p(ℓ); ℓ = 1, . . . , M}. The finite set of parameters can be the re-
sults of discretizing a continuous parameters space, selecting a set of values{p(1), p(2), . . . , p(k)}
dispersed throughout the region of reasonable parameter values.

The goal of the estimation process is to determine the conditional pdf of theℓth element,p(ℓ),
given all the measurements. Application of Bayes’ rule yields

p (p(ℓ)|Ỹk) =
p (Ỹk|p(ℓ)) p (p(ℓ))

M
∑

j=1

p (Ỹk|p(j)) p (p(j))

(29)

whereỸk denotes the sequence{ỹ0, ỹ1, . . . , ỹk}. The conditional probabilityp (p(ℓ)|Ỹk) will be
the metric used to select the most likely model and or the mostlikely combination of shape models.
Thea posteriori probabilities can be computed through11

p (p(ℓ)|Ỹk) =
p (ỹk, p

(ℓ)|Ỹk−1)

p (ỹk|Ỹk−1)

=
p (ỹk|x̂−(ℓ)

k ) p (p(ℓ)|Ỹk−1)
M
∑

j=1

[

p (Ỹk|x̂−(j)
k ) p (p(j)|Ỹk−1)

]

(30)

The conditional probability densities of the observationsbased on each hypothesis (likelihood)
p (ỹk|x̂−(ℓ)

k ) are given as

p (ỹk|x̂−(ℓ)
k ) =

1

det
(

2πS
(ℓ)
k

)1/2
exp

{

−1

2
e
(ℓ)T
k S

(ℓ)
k e

(ℓ)
k

}

(31)

where measurement residual for theℓth hypothesis (model) is given by

e
(ℓ)
k = ỹk − h[x̂−

k (p
(ℓ))] (32)

and corresponding residual (innovations) covariance matrix from the UKF, denoted byS(ℓ)
k , given

from theℓth filter.

Note that the denominator of Eq. (30) is just a normalizing factor to ensure thatp (p(ℓ)|Ỹk) is a

pdf. The recursion formula can now be cast into a set of definedweights̟(ℓ)
k , so that

̟
(ℓ)
k = ̟

(ℓ)
k−1p (ỹk−1|x̂+(ℓ)

k−1 )

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(33)
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where̟(ℓ)
k ≡ p (p(ℓ)|ỹk). Note that only the current time measurementỹk is needed to update

the weights. The weights at timet0 are initialized to̟(ℓ)
0 = 1/M for ℓ = 1, 2, . . . , M . The

convergence properties of MMAE are shown in Ref. [11], which assumes ergodicity in the proof.
The ergodicity assumptions can be relaxed to asymptotic stationarity and other assumptions are even
possible for non-stationary situations.12

From Eq. (33) and Eq. (31) we can see that models that have lower residuals will have probability
that will increase, this will favor models that fit the observations better. Also from Eq. (31) we can
see that models that have small values for det(S

(ℓ)
k ) will have probability that will grow. Assuming

that all models have same measurement noise covariance matrix Rk, this will favor models that
have smaller variance. Therefore the MMAE process will tendto select the maximum likelihood
minimum variance model from the bank of models.

ADAPTIVE LIKELIHOOD MIXTURE

The adaptive likelihood mixture (ALM) is a variation of the MMAE and interacting multiple-
model approach in that it maintains less memory of the likelihood ratios of the models. The ALM
approach starts by initializing each model with equal weights and updates these weights by setting
them to the likelihood ratios. After the weights are updated, the individual model estimates are used
to calculate an overall estimate via a weighted sum of the individual models. Following this the
overall estimate is fed back into the individual models and used as the current estimate for each
model. This approach weights models based on their current performance and how well they fit
the current data sample and by feeding back the best estimateit ensures that each model’s state
prediction is near the best model.

Over very short propagation intervals the ALM will tend to equalize all the models since they
will be re-initialized with the same state estimate as the weight update. Since the propagation time
is short the models will not deviate much from each other and will have very similar likelihoods.
However for long propagation intervals the difference between the models will become more appar-
ent and the likelihood ratio will be fairly different. Therefore the likelihood ratios do not vary much
for a given track of data. But with disparate tracks the approach will be very sensitive to detecting
changes in the models.

The ALM approach is now summarized:

1. Initialization of probabilities

̟
(ℓ)
0 = 1/M

2. Update weights based on likelihood of models

̟
(ℓ)
k = p (ỹk−1|x̂+(ℓ)

k−1 )

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(34)

3. Forming state estimate from individual models
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P+
k =

M
∑

j=1

̟
(j)
k

(

P
+(j)
k +

[

x̄
+(j)
k − x̄+

k

] [

x̄
+(j)
k − x̄+

k

]T
)

(35)

x̄+
k =

M
∑

j=1

̟
(j)
k x̄

+(j)
k (36)

4. Resetting individual models
x̄
+(j)
k = x̄+

k

P
+(j)
k = P+

k

Note that the weight update does not depend on the weights from the previous time step but
just the likelihood of the model at the current time step. This creates a multiple model that has no
memory and can adapt to abrupt changes in the models.
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Figure 4. ALM Process

NUMERICAL EXAMPLE

Three simulations scenarios are presented: in scenario I the model bank is such that the true model
is present in the bank and simple cannonball dynamics, Eq. (16), are used for both the true and
estimators models; in scenario II the true model is not in thebank and simple cannonball dynamics
are used for both the true and estimator models; and in scenario III the true model is not in the bank
and simple cannonball dynamics are used for the estimator but true model and measurement data are
generated using a cube shape model and general SRP force given in Eq. (18). In all cases the same
initial attitude, position, velocity and angular velocityare used. For the generation of data for the
true model, an equatorial ground station is chosen as the site of the observer. The SO is simulated to
fly in a near-geosynchronous orbit in a trajectory that is continuously lighted. This is accomplished
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by inclining the orbit by15 degrees and choosing an appropriate time of the year, thereby avoiding
the shadow cast by the Earth.

The initial inertial position and velocity are chosen asrI = [−7.8931×102 3.6679×104 2.1184×
104]T km andvI = [−3.0669 −4.9425×10−2 −2.8545×10−2]T km/s. The geographic position
of the ground site is0◦ North,172◦ West with0 km altitude. The time of the start of the simulation
is May8, 2007 at 5:27.55.

For all simulations scenarios, measurements are produced using zero-mean white-noise error
processes with standard deviation of0.5 arc-seconds for azimuth and elevation. The initial errors
for the states are1 km and0.001 km/s for the position and the velocity errors, respectively. The
initial condition error-covariance values are set to12 km2 and0.0012 (km/s)2 for the position and
the velocity errors, respectively. The time interval between the measurements is set to20 seconds.
Data is simulated for14 nights (about14 orbits) where observations of the SO are made every two
nights for5 minutes. The simulation results are plotted versus number of data samples since there
are large time gaps between each5 minutes data arc.
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Figure 5. MMAE Results for Scenario I

Scenario I

Scenario I shows the case where the model is given to the modelbank and the multiple model
approach attempts to identify the correct model for the bankof hypothesized models. Figures5
and5 show the simulation results for the MMAE and ALM, respectively. The results show position
errors, velocity errors and the probabilities over time.
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From Figure5(c) the MMAE approach selects the correct model after over 20 data samples which
is approximately just over one track of data. Since the tracks are separated by 2 days the models have
enough time after the first data track for a model difference to develop. Once the new track of data
is accepted the probabilities very quickly jump to the correct model since the predicted states of the
incorrect model differ from the measurements of the new track. Figure5(d) shows the probability
contours for the area-to-mass ratio, this figure gives an indication of the probability distribution of
the area-to-mass ratio parameter space. From Figure5(d) it can be seen that the uncertainty in the
area-to-mass ratio parameter reduces over time but fluctuates slightly.

Figure6(c) shows the probabilities time series for the ALM approach andit can be seen from
this figure that it takes a bit longer for the ALM approach to converge to the correct model since
it is designed to detect abrupt changes and therefore has very limited memory. Figure6(d) shows
the contours for the ALM approach. From this figure we can see that the probabilities are equal-
ized during tracks but change at the beginning of a new track when there is an abrupt change in
the data (since the tracks are separated by two days in time a large change is given between time
propagations). The state errors for the ALM approach are within the 3σ bounds and show good
performance.
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Figure 6. ALM Results for Scenario I

Scenario II

Scenario II considers the case where the actual area-to-mass ratio model is not in the bank. In
this case the true area-to-mass ratio is 2.8 m2/kg and the closest model in the bank is 2.8 m2/kg. The
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Figure 7. MMAE Results for Scenario II

MMAE results for scenario II are shown in Figure7 where it can be see that the MMAE determines
the most probable model as the model with an area-to-mass ratio of 2 m2/kg. The position and
velocity estimates for the MMAE approach are within the 3σ bounds and show good performance.
The results for the ALM approach are shown in Figure8. From Figure8(c) it can be see that
the ALM approach correctly identifies the most probable model. The position and velocity state
estimates for the ALM approach are shown in Figures8(a)and8(b), and the estimates for the ALM
approach are within the 3σ bounds and show good performance.

Scenario III

Scenario III studies the case where the SO shape model is not asimple cannonball model but
rather more complex. A faceted model is considered for this simulation where the shape model
parameters as discussed previously are given bya = 8.9443 m, d = 8.9443 m, andl = 7.8262 m.
The mass of the SO is given by mass= 1.5kg and this results in an effective area-to-mass ratio for
each side given by A2M= [0.1201 0.1201 0.1201 0.1201 2.5202 2.5202]T .

The initial true quaternion attitude mapping from the inertial frame to the body frame is chosen as
qB
I = [1/2 0 0 1/2]T . A constant rotation rate, defined as the body rate with respect to the inertial

frame, represented in body coordinates, is used and given byω
B
B/I = [0 0.00262 0]T rad/s. A

constant rotation rate, defined as the body rate with respectto the inertial frame, represented in
body coordinates, is used and given byω

B
B/I = [0 0.00262 0]T rad/s.

The SRP model for faceted plates given by Eq. is used to simulate the trajectory of the SO and
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Figure 8. ALM Results Scenario II

from the simulated trajectory synthetic data are generated. The model in both the MMAE and ALM
approach use simplified cannonball models where the SRP force is not a function of the orientation
of the SO. Therefore the models in the bank will attempt to approximate the more complex truth
models that generate the data.

The MMAE results for scenario III are shown in Figure9 where is can be see that the MMAE
determinea the most probable model over time as models with an area-to-mass ratio of 2 m2/kg
which the highest area-to-mass for the flat plate shape model. The position and velocity estimates
for the MMAE approach are within the 3σ bounds and show good performance. The results for
the ALM approach are shown in Figure10. From Figure10(c)it can be see that the ALM approach
correctly identifies the most probable model. The position and velocity state estimates for the ALM
approach are shown in Figures10(a)and10(b), and the estimates for the ALM approach are within
the 3σ bounds and show good performance.

CONCLUSION

In this paper a bank of unscented Kalman filters are used to estimate the position of a space
object (SO) using angles data and hypothesizing on the area-to-mass ratio for each model. This
approach is used to detect abrupt changes in the area-to-mass ratio that will allow improved state
estimation without the use of process noise to account for the un-modeled changes in the effective
area-to-mass ratio. This work presented two multiple models approach applied to the area-to-mass
ratio estimation problem. The first approach is the well known multiple-model adaptive estimation
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Figure 9. MMAE Results for Scenario III

(MMAE) approach and the second approach was proposed for this work is called adaptive likelihood
mixture (ALM). The ALM approach removed the memory of the MMAE by basing the weights of
each model on the current likelihood ratios of the models which not dependent on the previous
weights. The usefulness of the ALM approach is that it can detect abrupt changes in the data. In the
case where un-modeled effects cause changes in effective area-to-mass ratio the ALM can detect
these changes faster than the MMAE approach. Simulation scenarios are presented in this work and
are used to show the effectiveness of the proposed approaches for detecting the area-to-mass ratio
of a SO and compensating for un-modeled effects that create changes in the effective area-to-mass
ratio. It is shown that the multiple model approaches can correctly identify the correct area-to-mass
ratio model when it is given in the bank and can find the most probable model if this model is not
in the bank. It is also shown that if the true model is not a cannonball shape that the multiple model
approaches can find the most probable effective area-to-mass ratio using the bank of models. The
state estimation errors and 3σ bounds show that the multiple model approaches provide consistent
results.
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