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In this paper two multiple model approaches are applied imatt the effective
area-to-mass ratio of a space object. Both multiple-model adaptive estimation and
a new approach called adaptive likelihood mixtures are used in this work. Multiple
model approaches have been used extensively used in target tracking applications
since they can detect abrupt changes in the models governing the target’s motion.
Since the area-to-mass ratio is a function of the projected Sun facing area, which
is a function of the orientation of the space object, then the effective area-to-mass
ratio is time varying. It is difficult to estimate the time varying nature of the area-
to-mass ratio using traditional estimators. Therefore multiple model approaches
are proposed here. Simulation results are shown for different scenarios and good
performance is given to determine the effective area-to-mass ratios as, well as their
changes over time.

INTRODUCTION

In recent years space situational awareness, which is concerned with collecting and maintaining
knowledge of all objects orbiting the Earth, has gained much attention. The U.S. Air Force collects
the necessary data for space object (SO) catalog development and maintenance through a global
network of radars and optical sensors. Due to the fact that a limited number of sensors are avail-
able to track a large number of SOs, sparse data collected must be exploited to its fullest extent.
Various sensors such as radars and optical sensors exist for SO state estimation, which typically
includes position, velocity and a non-conservative force parameter analogous to a ballistic coeffi-
cient. However, the ballistic coefficient parameters may not fully describe the SO’s motion. Hence,
more detailed attitude dependent models are required. In this case more elaborate techniques for
processing observation data are required.

There is a coupling between SO attitude and non-conservative force/torques. The acceleration
due to solar radiation pressure (SRP) is modeled as function of an object’s Sun-facing area, surface
properties, mass, position and attitude. It has a very small magnitude compared to gravitational
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accelerations and typically has an order of magnitude aro0n’ to 10-? m/s?, but is the dominant
non-conservative acceleration for objects above 1,000 Relow 1,000 km, drag caused by the
atmospheric neutral density is the dominant non-consgevatceleration.

Deep space optical surveys of near geosynchronous (GE&Qtsitjave identified a class of high
area-to-mass ratio (HAMR) objectsThe exact characteristics of these objects are not well know
and their motion pose a collision hazard with GEO objectstiaeSRP induced large variations of
inclination and eccentricity. These objects are typicalbn-resolved and difficult to track due to
dim magnitude and dynamic mismodeling. Therefore, charaag the large population of HAMR
objects in geostationary orbit is required to allow for aéetinderstanding of their origins, and the
current and future threats they pose to the active SO populat

Estimating the dynamic characteristics of a HAMR objechgdight curve and astrometric data
can allow for mass parameters to be observable. Estimatass fior HAMR objects can help in
the development of a detailed understanding of the origoh &mamics of these objects. It has
been shown that the SRP albedo area-to-mass %3;1% is observable from angles détﬂnrough
the dynamic mismodeling of SRP forces. Refererednducts a study with simulated and actual
data to quantify the error in the estimate§%{‘—‘ and good performance is found using data spanning
over a number of months. Also RefB][shows that orbital, attitude and shape parameters can be
recovered with sufficient accuracy using a multiple-modidive estimation approach coupled
with an unscented Kalman filter. This approach works redslgveell but requires that the area-to-
mass ratio is knowa priori. The purpose of this work is to show that sin%;gé is observable from
angles data and shape/albedo properties are observami@fiatometric data, then by fusing these
data types, the area-to-mass ratio can be extracted wibmable accuracy.

Filtering algorithms for state estimation, such as thereee Kalman filter (EKF¥,the unscented
Kalman filter (UKFP and patrticle filter¥are commonly used to both estimate hidden (indirectly ob-
servable) states and filter noisy measurements. The bdfgiedice between the EKF and the UKF
results from the manner in which the state distribution @ tlonlinear models is approximated.
The UKEF, introduced by Julier and UhimaRmises a nonlinear transformation called the unscented
transform, in which the state probability density functiqalf) is represented by a set of weighted
sigma points (state vectors deterministically samplediabhanean). These are used to parameter-
ize the true mean and covariance of the state distributiohemthe sigma points are propagated
through the nonlinear system, the posterior mean and @n@iare obtained up to the second or-
der for any nonlinearity. The EKF and UKF assume that the gg®aoise terms are represented
by zero-mean Gaussian white-noise processes and the meesrnoise is represented by zero-
mean Gaussian random variable. Furthermore both appreadseme that the posteriori anda
priori pdf is Gaussian in a linear domain. This is true given the iptessassumptions but under
the effect of nonlinear measurement functions and systamardics the initial Gaussian state un-
certainty may quickly become non-Gaussian. Both filtery pnbvide approximate solutions to the
nonlinear filtering problem, since tkaeposteriori anda priori pdf are most often non-Gaussian due
to nonlinear effects. The EKF typically works well only iretihegion where the first-order Taylor-
series linearization adequately approximates the nors§au pdf. The UKF provides higher-order
moments for the computation of tleeposteriori pdf without the need to calculate Jacobian matri-
ces as required in the EKF. The light curve measurement nmisdéghly nonlinear, and Jacobian
calculations are non-trivial; thus, the UKF is used to pdeva numerical means of estimating the
states of the SO using light curve measurement models.

In this paper the usefulness of the information taken bycaptensors is investigated with the



Figurel. Space Object Shape Model

UKF and adaptive filtering technigues to determine the &maaass ratio. The standard multiple-
model adaptive estimation (MMAE) approach is applied torabierize the area-to-mass ratio of
an SO, given angles data. Also a technique call adaptivéHdad mixtures (ALM) is presented
and applied to characterizing the area-to-mass ratio. agpsoach works by weighting each model
with the current likelihood ratio and therefore the weighits not functions of the previous weights
which removes the memory of the multiple model approachs FiiM approach can then detect
very abrupt changes in the data and is flexible enough tordeterthe correct corresponding model.
Since the area-to-mass ratio is a function of the projected af the SO which is a function of the
orientation of SO, then the effective area-to-mass ratiais varying. This time variation is difficult
to capture in traditional estimators, so the aforementameltiple model approaches are proposed
to capture the transition between simplified cannonball efsd

The organization of this paper is as follows. First, the ni®deed for SO shape, orbital dynamics
and attitude dynamics are discussed. Following this a ghger of the measurement models used
in this paper are given. Next, a review of the UKF approachasiped. Then both multiple model
approaches are discussed. Finally, simulation resulteeofitea-to-mass estimation approach are
provided.

SHAPE MODEL

The shape model considered in this work consists of a finiteban a flat facets, where each
facet has a set of basis vectors associated with it. These \mgors consist of three unit vectors
u?, uB, andu”. The unit vectoru? points in the direction of the outward normal to the facet.
For curved surfaces this model become more accurate as thieenwf facets are increased. The
vectorsu”? andu? are in the plane of the facet, the notation supersdsigtenotes that the vector
is expressed in body coordinates. The SOs are assumed tgithéadies and therefore the unit

vectorsu”?, u”? andu? do not change since they are expressed in the body frame.

The light curve and the solar radiation pressure modelsiggsr in the next sections require that
these vectors be expressed in inertial coordinates and #iiecSO body is rotating, these vectors
will change with respect to the inertial frame. The body vexican be rotated to the inertial frame
by the standard attitude mapping given by:

u? = A(dP)ul, k=u, v n, 1)
whereA(q’IB) is the attitude matrix mapping the inertial frame to the b&dyne using the quater-
nion parameterization. Furthermore, the unit veaidy, points from the SO to the Sun direction



and the unit vecton’, . points from the SO to the observer. Each facet has an.4fgaassociated
with it. Once the number of facets has been defined and thsis bactors are known, the areas
A(7) define the size and shape of the SO. To determine the solaticadpressure forces and light

curve characteristics, the surface properties must beegkefar each facet.

For the development of the measured light curve data, fdce@® shape models are used. The
rectangular model is described by three paramelets,andd, which are the length, width, and
height, respectively.

DYNAMIC MODELS
The two-body equation of motion with solar radiation pres($RP) accelerations is given by

il = _ﬂrl + aérp» (2)

wherey. is the gravitational parameter of the Earth= ||r!||, andaé’rIO represents the acceleration
perturbation due to SRP, which will be discussed in detaihefollowing section. The superscript
I denotes that the vectors are expressed in inertial codedina

A number of parameterizations exist to specify attitudejuding Euler angles, quaternions
and Rodrigues parameters.This paper uses the quaternion, which is based on the Euler an
gle/axis parametrization. The quaternion is definedjas [o? q¢4]7 with o = ésin(v/2), and
q4 = cos(v/2), whereé andv are the Euler axis of rotation and rotation angle, respelgtivThe
quaternion must satisfy a unit norm constraigpt,q = 1. In terms of the quaternion, the attitude
matrix is given by

A(q) =E"(q)¥(q), (3)
where
I3
i = [ o] »
with
0 —as as
[ax] = | a3 0 —-a (5)
—a9 aq 0

for any generaB x 1 vectora defined such that the matrix form is equivalent to the vectoss
productfax|b = a x b.

The rotational dynamics are given by the coupled first-odiféerential equations:

af = E(QIB)wg/p (6a)

wir = Jso <T§p_ [wg/lx} JSO“’gﬂ) ; (6b)

DO | =

wherewgﬂ is the angular velocity of the SO with respect to the inefftiane, expressed in body
coordinates (the notation superscriptdenotes that the vector is expressed in body coordinates),



Jso s the inertia matrix of the SO aﬁﬂgp is the net torque acting on the SO due to SRP expressed
in body coordinates.

The SO is assumed to be of uniform density and therefore theipal components of the inertia
tensor for the shape model given in Figdrare given by

2 + b2

J1 = mso% (7a)
2 4 l2

5y = msot 5 (7b)
l2 2

J3 = mso% (7c)

Then the inertia matrix is given byso = diag[/; J» J3]. This work will consider simplified
SRP models which consider the SO to be of spherical shapeharefdre the SRP force does not
depend on orientation. In most cases this simplificatiom ig@proximation and therefore one of the
simulation scenarios will consider the shape model digtigsrlier and simulation the rotational
dynamics using Ed6 to generate truth data and process the data with an estithatbassumes
spherical shapes.

SOLAR RADIATION FORCE MODEL

For higher altitude objects>( 1,000 km) SRP represents the primary non-conservativerpart
tion acting on SOs. Because SRP depends upon the SO’s paaitiborientation, the position and
attitude dynamics are thus coupled. The acceleration d&&R is computed as a function of the
total solar energy impressed upon exposed SO surfacesréhadfiected, absorbed and reradiated.
The rate at which radiant energy is incident on an elementeai®A4 is a function of angle between
the normal tal A, u,,, and the Sun directiong,, The power of incident radiant energy is given by

Psun, tot
Pr=—""=(u,- d 8
where®g 10tiS the average incident radiant flux density from the SuhAlt), given by ®syn 1ot =
1,367 W/m?. Therefore the energy flux at any distanktis given by®syn 1o/ (d/do)? wheredy = 1
AU. The reflected radiation will have the following diffusadaspecular power:

Dsun, tot

Pp = Cyitt W (uy, - ugyn) dA (9a)
Pgyn, tot
Pg = Cspecﬁ (un : U—sun) dA (9b)

where the incident solar radiant energy is accounted fdnrieetterms: the absorbed ener@ps
the specularly reflected energype, and the diffusely reflected enerdysirr, which yields

Cabs‘|‘ C’spec‘|‘ C’diff =1 (10)

The elemental force od.A can be written in three terms: incident fored';, specular reflection
force, dFg, and diffuse reflection force]F . The incident force accounts for force due to the
three termsCaps Cspeo @nd Cyist, Since for each term the radiant particle is at least brotight
rest before being absorbed or reflected. Theref@Fe, accounts for the transfer in momentum to



bring a radiated particle to rest. The force term for diffasel specular reflectance accounts for the
momentum transfer due to reflection. The momentum conioibwtue to incident energy is in the
opposite direction of the incoming energy, given by

ar, = Ty, (11)
C

The force exerted by specularly reflected energy is in thecton of specular reflection which is
given by reflecting the vectats,, about an axis defined by the directiap. Then the force exerted
by specular reflection is given by

P.
dFs = 75 [2 (un : U—sun) U, — U—sun] (12)

Diffusely reflected energy will reflect equally in all direamds and the resulting force will be in
the normal direction due to symmetric components cancelirig For surfaces obeying Lambert’s
cosine law of diffuse emission the diffuse term wilfoe

aF, = 20y, (13)
3 c

where the facto% accounts for the portion of energy that is reflected in thenabdirection. Then
the force on an element of area is given by

dF = dF; +dFg +dFp (14)

The force acting on a body due to solar radiation pressuréealetermined by integrating over the
Sun exposed surface area, given by

F = / (dF; + dFs + dFp) (15)
sun
For a spherical body this integral is calculated over the &qposed area. The result is given by

 Dsunjtot 2.,
F = C(d/dO)QA |:1 + 3Cd|ff:| Usun (16)

This equation can be rewritten in terms of albedo

Psun,tot
F=—""F"Z"AC, 17

whereC, =1 + %Cdiff. Similarly the forces can be calculated for a flat plate:

o

) (18)
+ <§Cdiff + 2Cspec(un : usun)> usun]
Under the assumption of a perfectly diffuse flat plate, BE§) becomes
Psun, tot 4
F= —W (u, - Usun) {A u, + §A Cift U—sun:| (19)
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Figure2. Geometry of Earth Observations of Spacecraft Motion

We can note that, if1,, remains aligned withugyn, @ similar expression to EqLT) can be written

for the flat plate model, wher€, = 1 + %Cdiff in the case of the flat plate. To calculate the SRP
force for the facet model discussed previously, the SRRefrcalculated for each facet using the
SRP force equation for a flat plate, E§9), and then summed over all facets to obtain the total SRP
force on the body:

N
FL — FFI . 20
sp= D Flp; (20)
j=1

where N is the total number of facets. The sum is performed over ddssof the SO. If for any
side the angle between the surface normal and the Sun’sidirés greater tham /2, then this side
is not facing the Sun and receives no energy from the Sun.efdrer, the solar radiation pressure
for these sides is set to zelﬁgrm = 0 if Ojnc > m/2. The acceleration due to SRP is then simply
given byal,, = FL /m.

The solar radiation pressure moments can be calculated dwymasgy that the SRP force acts
through the center of each facet. Then the SRP moments caritbenvas

Np

T, =Y [rPx] AFE,; (21)
j=1

wherer? is the location of the geometric center of each facet witipeesto the center of mass
of the SO in body coordinates. The SRP moments are used wit{6Fip simulate the rotational
dynamics of the SO.

ORBIT DETERMINATION USING UNSCENTED KALMAN FILTER
Observation Model

Consider observations made by a optical site which meatheasght ascension and declination
to a SO. The geometry and common terminology associatedhigtiobservation is shown in Figure



2, whered! is the position vector from the observer to the $6is the position of the SO in inertial
coordinatesR/ is the radius vector locating the observer. The fundamenisérvation is given by

p' =r' —R! (22)

wherep = [p, py p-)T. The angle observations consist of the right ascensiomndeclination,
dec. The observation equations are given by

ra= tan (%) (23a)
Y
dec= sin~"! (H?H) (23b)

UNSCENTED KALMAN FILTER FORMULATION

The unscented Kalman filter (UKF) is chosen for state estomabecause it has at least the
accuracy of a second-order fiRewithout the requirement of computing Jacobians like the EKF

Model and Measurement Uncertainty

A UKF is now summarized for estimating the state of a SO’s tumsi velocity given byx =
[r!" vI")T. The dynamic models from Eq2)(and ) can be written in the general state equation
which gives the deterministic part of the stochastic model:

% =f(x,t)+ G (x,t)[(t) (24)

whereI'(t) is a Gaussian white noise process term with correlationtiomed (¢, — t2). The func-
tionf (x, t) is a general nonlinear function. To solve the general nealiffiltering problem the UKF
utilizes the unscented transformation to determine thenraed covariance propagation though the
function f (x,¢). The dynamic function used in this work consists of rotatioand translational
dynamics given by the sigma points, which are propagateditir the system dynamics:

{,I
(25)

If the initial pdf p(x,) that describes the associated state uncertainty is gikersdlution for the
time evolution ofp(x, t) constitutes the nonlinear filtering problem.

Given a system model with initial state and covariance \sltlee UKF propagates the state
vector and the error-covariance matrix recursively. Atdite observation times, the UKF updates
the state and covariance matrix conditioned on the infaonagained from the measurements. The
prediction phase is important for overall filter performandn general, the discrete measurement
equation can be expressed for the filter as

Vi =h(xp, k) + Vi (26)

wherey; is a measurement vector ang is the measurement noise, which is assumed to be a
zero-mean Gaussian process with covariakige

All random variables in the UKF are assumed to be Gaussiatioranvariables and their dis-
tribution are approximated by the deterministically seddcsigma points. The sigma points are



selected to be along the principal axis directions of théestaror-covariance. Given ah x L
error-covariance matri®;,, the sigma points are constructed by

oy, < 2L columns from+ /(L + \) Py (27a)
Xk(0) = p (27b)
Xk(i) = O'k(i) + K (27¢)

where+/M is shorthand notation for a matriZ such thatM = Z Z7. Given that these points
are selected to represent the distribution of the stat@reziich sigma point is given a weight that
preserves the information contained in the initial disttion:

A

pgnean— 2 28a
0 L+ (28a)
A
W((]',‘OV = L——|—/\ (1 — Oé2 + B) (28b)
1
whean— eV — ___—__ j=1,2 ..., 2L 28
(2 7 2(L + A)? ? Y ) Y ( C)

where\ = o?(L + k) — L is a composite scaling parameter.

The constantx controls the spread of the sigma point distribution and khbe a small number,
0 < a < 1.k =3— L provides an extra degree of freedom that is used to fine-henkigher-order
moments, and is used to incorporate prior knowledge of the distributignweighting the mean
sigma point in the covariance calculation.
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Figure3. MMAE Process

MULTIPLE-MODEL ADAPTIVE ESTIMATION

In this section a review of MMAE is shown. More details can barfd in Refs. 9] and [10].
Figure 3 shows the MMAE process. Multiple-model adaptive estinrai®a recursive estimator



that uses a bank of filters that depend on models with diffggarameters, denoted by the vegtor
which is assumed to be constant (at least throughout thevatef adaptation). Note the stationary
assumption for the state and/or output processes is nosseady required though, i.e. time varying
state and output matrices can be used. A set of distribueedeglts is generated from some known
pdf of p, denoted by (p), to give{p¥); £ =1, ..., M}. The finite set of parameters can be the re-
sults of discretizing a continuous parameters space,tseexset of valuegp™), p@, ..., p¥}
dispersed throughout the region of reasonable paramdtersva

The goal of the estimation process is to determine the dondit pdf of the/" element,p®,
given all the measurements. Application of Bayes’ ruledsel

p (p(Z) |Y—k) — ]\f (Yk‘p(g)) p (p(g)) (29)
> p(Yilp?)p(p)
j=1

whereY, denotes the sequenégo, 1, ..., yi}. The conditional probability (p)|Y},) will be
the metric used to select the most likely model and or the iil@dy combination of shape models.
Thea posteriori probabilities can be computed throddh

p ¥k, PO[Yi_1)

O1F,) = ~
PETYe) p(Ye[Yi-1)
_ <yk|f<,;“>> (P Y5-1) (30)
M
> [P (Yl ) p (PO Y )|
7=1

The conditional probability densities of the observatiddiased on each hypothesis (likelihood)
p (Fxl%; ) are given as
1 1 or

Pl ) = — 5 e {—5% Sff’eﬁf)} (31)
det (27TS,E, ))

where measurement residual for #fehypothesis (model) is given by
ol = 7. — hix; (p“) (32)
and corresponding residual (innovations) covarianceimaitom the UKF, denoted bﬁg), given
from the/™ filter.
Note that the denominator of EGQ) is just a normalizing factor to ensure thatp)|Y,) is a
pdf. The recursion formula can now be cast into a set of deﬁmightSwff), so that

/ Y4 ~ ~+(0
o == pFe5Y)

(33)
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wherew,g) = p(p|y). Note that only the current time measuremgptis needed to update
the weights. The weights at timg are initialized t0w((f) =1/Mfor¢ =1,2,..., M. The
convergence properties of MMAE are shown in R&fl][ which assumes ergodicity in the proof.
The ergodicity assumptions can be relaxed to asymptotiostaity and other assumptions are even

possible for non-stationary situatiotfs.

From Eg. 83) and Eq. 81) we can see that models that have lower residuals will havegtility
that will increase, this will favor models that fit the obsations better. Also from Eq3Q) we can
see that models that have small values fo(ﬁgi) will have probability that will grow. Assuming
that all models have same measurement noise covariance matrthis will favor models that
have smaller variance. Therefore the MMAE process will temdelect the maximum likelihood
minimum variance model from the bank of models.

ADAPTIVE LIKELIHOOD MIXTURE

The adaptive likelihood mixture (ALM) is a variation of theMAE and interacting multiple-
model approach in that it maintains less memory of the likad ratios of the models. The ALM
approach starts by initializing each model with equal wiigind updates these weights by setting
them to the likelihood ratios. After the weights are updatkd individual model estimates are used
to calculate an overall estimate via a weighted sum of th&iimhgal models. Following this the
overall estimate is fed back into the individual models asdduas the current estimate for each
model. This approach weights models based on their curembnmmance and how well they fit
the current data sample and by feeding back the best estitmentsures that each model’s state
prediction is near the best model.

Over very short propagation intervals the ALM will tend touatize all the models since they
will be re-initialized with the same state estimate as th@fteupdate. Since the propagation time
is short the models will not deviate much from each other arldhave very similar likelihoods.
However for long propagation intervals the difference lestwthe models will become more appar-
ent and the likelihood ratio will be fairly different. Thdoee the likelihood ratios do not vary much
for a given track of data. But with disparate tracks the agphowill be very sensitive to detecting
changes in the models.

The ALM approach is now summarized:

1. Initialization of probabilities
w((f) =1/M
2. Update weights based on likelihood of models
@) = pFr-1lx D)
(0)

Wi

)
w]
; ;

o (34)

3. Forming state estimate from individual models
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M
P = (P,j(j) + [%9 -x7] [0 - x,‘j]T> (35)
=1

M
5= %V (36)
j=1
4. Resetting individual models '
}—{Z(J) _ 5{1—:
_Z:;;+'(Lf) — _lzzék

Note that the weight update does not depend on the weights tine previous time step but
just the likelihood of the model at the current time step.sTdreates a multiple model that has no
memory and can adapt to abrupt changes in the models.
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Figure4. ALM Process

NUMERICAL EXAMPLE

Three simulations scenarios are presented: in scenaganduel bank is such that the true model
is present in the bank and simple cannonball dynamics, H), ére used for both the true and
estimators models; in scenario Il the true model is not indidrek and simple cannonball dynamics
are used for both the true and estimator models; and in dodiighe true model is not in the bank
and simple cannonball dynamics are used for the estimatéordsumodel and measurement data are
generated using a cube shape model and general SRP forodrglzg. (L8). In all cases the same
initial attitude, position, velocity and angular velociye used. For the generation of data for the
true model, an equatorial ground station is chosen as thefdihe observer. The SO is simulated to
fly in a near-geosynchronous orbit in a trajectory that igiooiously lighted. This is accomplished

12



by inclining the orbit byl5 degrees and choosing an appropriate time of the year, thaxeiding
the shadow cast by the Earth.

The initial inertial position and velocity are chosenrds= [7.8931x10? 3.6679x10* 2.1184x
1047 km andv! = [~3.0669 —4.9425x 1072 —2.8545x 10~2]7 km/s. The geographic position
of the ground site i9° North, 172° West with0 km altitude. The time of the start of the simulation
is May 8, 2007 at 5:27.55.

For all simulations scenarios, measurements are produsied aero-mean white-noise error
processes with standard deviation0o$ arc-seconds for azimuth and elevation. The initial errors
for the states aré km and0.001 km/s for the position and the velocity errors, respectivéiye
initial condition error-covariance values are sef tckm? and0.0012 (km/s)? for the position and
the velocity errors, respectively. The time interval betwéhe measurements is setbseconds.
Data is simulated fot4 nights (aboutl4 orbits) where observations of the SO are made every two
nights for5 minutes. The simulation results are plotted versus numbéata samples since there
are large time gaps between edciminutes data arc.
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Figure5. MMAE Resultsfor Scenarioll

Scenario |

Scenario | shows the case where the model is given to the nhadél and the multiple model
approach attempts to identify the correct model for the bafnkypothesized models. Figurés
and5 show the simulation results for the MMAE and ALM, respediivd he results show position
errors, velocity errors and the probabilities over time.
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From Figures(c) the MMAE approach selects the correct model after over 28 skatples which
is approximately just over one track of data. Since the sack separated by 2 days the models have
enough time after the first data track for a model differerceadvelop. Once the new track of data
is accepted the probabilities very quickly jump to the carraodel since the predicted states of the
incorrect model differ from the measurements of the newktr&ggure5(d) shows the probability
contours for the area-to-mass ratio, this figure gives aitation of the probability distribution of
the area-to-mass ratio parameter space. From Fhfaiat can be seen that the uncertainty in the
area-to-mass ratio parameter reduces over time but flestséightly.

Figure 6(c) shows the probabilities time series for the ALM approach @&mén be seen from
this figure that it takes a bit longer for the ALM approach tongerge to the correct model since
it is designed to detect abrupt changes and therefore hgdiveted memory. Figures(d) shows
the contours for the ALM approach. From this figure we can batthe probabilities are equal-
ized during tracks but change at the beginning of a new traoénwthere is an abrupt change in
the data (since the tracks are separated by two days in timge thange is given between time
propagations). The state errors for the ALM approach arkiwihe 30 bounds and show good
performance.

Sample sample
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Figure6. ALM Resultsfor Scenarioll

Scenario |l

Scenario Il considers the case where the actual area-te-rais model is not in the bank. In
this case the true area-to-mass ratio is 2?fkmand the closest model in the bank is 2.8kg. The
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Figure7. MMAE Resultsfor Scenarioll

MMAE results for scenario Il are shown in Figurevhere it can be see that the MMAE determines
the most probable model as the model with an area-to-massafa® n?/kg. The position and
velocity estimates for the MMAE approach are within the Bounds and show good performance.
The results for the ALM approach are shown in Fig8re From Figure8(c) it can be see that
the ALM approach correctly identifies the most probable nhodée position and velocity state
estimates for the ALM approach are shown in Figu8és and8(b), and the estimates for the ALM
approach are within the @ bounds and show good performance.

Scenario |1

Scenario Il studies the case where the SO shape model is siotpde cannonball model but
rather more complex. A faceted model is considered for tinmikstion where the shape model
parameters as discussed previously are givem £y8.9443 m, d = 8.9443 m, andl = 7.8262 m.
The mass of the SO is given by massl.5kg and this results in an effective area-to-mass ratio for
each side given by A2M= [0.1201 0.1201 0.1201 0.1201 2.5202 2.5202]T.

The initial true quaternion attitude mapping from the ir@frame to the body frame is chosen as
q? =[1/2 0 0 1/2]T. A constant rotation rate, defined as the body rate with rtgpehe inertial
frame, represented in body coordinates, is used and given?;y = [0 0.00262 0] rad/s. A
constant rotation rate, defined as the body rate with redpeitie inertial frame, represented in
body coordinates, is used and givembﬁ/l = [0 0.00262 0] rad/s.

The SRP model for faceted plates given by Eq. is used to simtlia trajectory of the SO and

15



Sample Sample

(a) Position Estimation Error (b) Velocity Estimation Error

P(yl) Likelyhood

o
3
3
L3
g
5 s
o
s 2

=
°
4

°
S
o
>

°
B
°
@

P(y|z) Likelihood
Area-to-Mass (km/r)

[ S S
o
©

0.2
| | 1 | | |

0 1 5 6 10 20 30 40 éo 60 70 80 90 100 110
al

3 4
Samples mples

(c) Probabilities Time Series (d) Probabilities Contour Plot

Figure8. ALM Results Scenarioll

from the simulated trajectory synthetic data are generdtbd model in both the MMAE and ALM
approach use simplified cannonball models where the SRE i®rwt a function of the orientation
of the SO. Therefore the models in the bank will attempt toraxmate the more complex truth
models that generate the data.

The MMAE results for scenario Il are shown in Fig®evhere is can be see that the MMAE
determinea the most probable model over time as models witir@a-to-mass ratio of 2 3tkg
which the highest area-to-mass for the flat plate shape madhel position and velocity estimates
for the MMAE approach are within the @ bounds and show good performance. The results for
the ALM approach are shown in Figui®. From Figurel0(c)it can be see that the ALM approach
correctly identifies the most probable model. The positiodh #elocity state estimates for the ALM
approach are shown in Figurg&8(a)and10(b), and the estimates for the ALM approach are within
the 3¢ bounds and show good performance.

CONCLUSION

In this paper a bank of unscented Kalman filters are used imast the position of a space
object (SO) using angles data and hypothesizing on thetaremss ratio for each model. This
approach is used to detect abrupt changes in the area-s+ai#s that will allow improved state
estimation without the use of process noise to account outiimodeled changes in the effective
area-to-mass ratio. This work presented two multiple nedpproach applied to the area-to-mass
ratio estimation problem. The first approach is the well knanultiple-model adaptive estimation
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Figure9. MMAE Resultsfor Scenariolll

(MMAE) approach and the second approach was proposed $owthk is called adaptive likelihood
mixture (ALM). The ALM approach removed the memory of the MEAy basing the weights of
each model on the current likelihood ratios of the modelscivhiiot dependent on the previous
weights. The usefulness of the ALM approach is that it caeaetbrupt changes in the data. In the
case where un-modeled effects cause changes in effecéaet@mass ratio the ALM can detect
these changes faster than the MMAE approach. Simulatiorasios are presented in this work and
are used to show the effectiveness of the proposed appé&mhdetecting the area-to-mass ratio
of a SO and compensating for un-modeled effects that créwtieges in the effective area-to-mass
ratio. It is shown that the multiple model approaches carectly identify the correct area-to-mass
ratio model when it is given in the bank and can find the mogbgiote model if this model is not
in the bank. Itis also shown that if the true model is not a caiall shape that the multiple model
approaches can find the most probable effective area-ts-ma#ie using the bank of models. The

state estimation errors and ®ounds show that the multiple model approaches provideisiens
results.
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