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This paper presents an experimental validation of a method of determining the relative

attitude matrix between two quadrotors using line-of-sight vectors between each other

as well as a common reference location. The result of the line-of-sight vector method is

compared to the relative attitude matrix obtained from a motion capture system which is

taken as the ground truth. The difference between the two measurements is calculated and

then analyzed to characterize the error that occurs in the sensor model.

I. Introduction

T
here are many applications that require knowing the relative attitude of two or more vehicles. Know-
ing the relative attitude may be important whenever communication or cooperation between different

vehicles is necessary. For instance, relative orientation of antennas might affect radio signals, or relative
vehicle orientation might determine the success or failure of a transfer of items between different vehicles.
Such applications may occur for unmanned aerial vehicles (UAVs) as well as for spacecraft formations.

For UAV formations to be effective, they must be able to maintain their formation, reconfigure to new
formations as required, and also avoid collisions with either each other or with other obstacles.1 Another
application of relative attitude determination is performing inspections between two satellites.2 For this
situation, the instrumentation on the observing satellite must be oriented towards the observed satellite, and
the relative orientation of the observed satellite must be known as well to ensure that the area of interest
on the observed satellite is in the field of view of the observing satellite. The Global Positioning System
(GPS) can be used to determine the relative attitude between two vehicles; however GPS is subject to several
limitations. First, GPS measurements can only initially obtain the attitude relative to an inertial frame.
This must then be converted to the relative attitude matrix, costing both computational time and energy.
Both computation and energy can be valuable resources on vehicles such as spacecraft. GPS systems also
require the ability to observe multiple other reference points instead of just one reference point as well as
also vulnerable to jamming which can reduce the accuracy or even prevent obtaining an attitude matrix.

Motion capture technology has been used for a quadrotor in flight.3 By placing four markers on each
vehicle for the motion capture system to track, the system is able to determine both the location and attitude
of each vehicle relative to a common reference coordinate system. This information can then be compared
to the data collected by each vehicle to verify the relative attitude matrix obtained by the vehicles.

The line-of-sight method between each vehicle has been proven to determine a unique solution.4 However,
this solution requires knowledge of the LOS vectors obtained by the other vehicle. The set of LOS vectors can
then be used to calculate the relative attitude matrix between each vehicle without need of an intermediate
inertial reference frame.

This paper presents an experimental verification of the relative attitude determination discussed in Ref. 5.
Using line-of-sight (LOS) vectors, the relative attitude between two vehicles can be determined. Both
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vehicles, with the addition of a common reference point, form a triangle with each vehicle and the common
reference point forming a separate vertex of the triangle. Two non-inertial LOS vectors are obtained for each
vehicle, one to the other vehicle while the other vector is to the common reference point. The two angles
located at the two vehicles in the triangle formed by this formation can be obtained from the LOS vectors,
and these angles can be used to calculate the third angle of the triangle. The relative attitude matrix can be
obtained by first obtaining a rotation to align the two LOS vectors between the vehicles and then applying
a rotation to satisfy the constraint that the remaining vectors from each vehicle to the common reference
point are located in a plane. This approach to relative attitude determination has been verified in simulation
in Ref. 5. The present paper extends that work by applying the technique to real experimental data.

The experiment consists of two quadrotor helicopters representing the vehicles. The helicopters have
six infrared cameras mounted facing different directions to pick up the infrared LEDs mounted to each
helicopter. The resulting attitude matrix obtained from the algorithm in Ref. 5 will be compared to the
attitude matrix given by the VICON motion capture system.6

II. Configuration and Sensor Model

Figure 1 shows the configuration and observations used for the solution of the relative attitude from frame
B1 to frame B2. The vector w1 is the LOS observation from B2 to B1 expressed in B2 coordinates. The
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Figure 1. Observation Geometry

vector v1 is the LOS observation from B2 to B1 expressed in B1 coordinates; note, in practice the negative
of this vector is measured. The vector w2 is the LOS observation from B2 to the common object expressed
in B2 coordinates. Finally, the vector v2 is the LOS observation from B1 to the common object expressed in
B1 coordinates.

Line-of-sight unit vector observations are typically obtained indirectly. A camera measures the 2-
dimensional position of an incident light beam on a focal plane, and then uses a mathematical model to
compute the LOS vector. The resulting unit vector, b̃, can be approximated as a measurement with additive
noise given by

b̃ = b+ υ (1)

with
υ ∼ N (0,Ω) (2)

where υ is assumed to be a Gaussian random vector with zero mean and covariance Ω. As the constructed
measurement b̃ is constrained to have unit length, the noise υ must be orthogonal to the true LOS vector
and its covariance will be singular. The calculation for the covariance Ω depends on the assumptions made
about the camera sensor and the camera’s mathematical model. Two methods for calculating Ω are the
standard QUEST measurement model7 and an adapted model for sensors with a wide field of view (FOV).8

For the present experiment, however, a covariance has been computed directly from an empirically-derived
model for the quadrotor camera measurements. The reminder of this section briefly describes the QUEST
and wide FOV models, and then presents a more detailed outline of the quadrotor camera model and the
associated covariance calculations.

The raw measurement can be expressed as coordinates in the focal plane, denoted by α and β. The focal
plane coordinates can be written in a 2× 1 vector m ≡ [α β]

T
with the measurement model

m̃ = m+w (3)

A typical model for the noise w in the focal-plane coordinate observations for many camera systems is given
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as:9

w∼N
(

0, RFOCAL
)

(4a)

RFOCAL =
σ2

1 + d (α2 + β2)

[

(

1 + dα2
)2

(dαβ)2

(dαβ)
2

(

1 + dβ2
)2

]

(4b)

where σ2 is the variance of the measurement errors associated with α and β, and d is on the order of 1. The
covariance RFOCAL for the focal plane measurements is a function of the true values and this covariance
realistically increases as the distance from the boresight increases. One example system that can be modeled
by Eq. (4) is the vision-based navigation system.10 This system has a position sending diode as the focal
plane, and it captures incident light from a beacon emitted from a neighboring vehicle. This sensor has the
advantage of having a small size and a very wide FOV.11

A general unit-length LOS observation can be expressed in terms of the focal plane coordinates as

b =
1

√

f2 + α2 + β2







α

β

f






(5)

where f denotes the focal length. Shuster7 has shown that the probability density for unit vector measure-
ments lies on a sphere and can accurately be approximated by a density on a plane tangent to the vector
for sensors with a sufficiently small FOV. This approximation is known as the QUEST measurement model.
It characterizes υ, the LOS additive noise process resulting from the focal plane model of Eq. (4), as a
zero-mean Gaussian vector with covariance

Ω ≡ E
{

υυ
T
}

= σ2
(

I3×3 − bbT
)

(6)

The covariance of Eq. (6) is only valid for a small FOV, for which a tangent plane closely approximates the
surface of a unit sphere. For wide-FOV sensors, a more accurate measurement covariance is shown in Ref. 8.
This formulation employs a first-order Taylor series approximation about the focal-plane axes. The partial
derivative operator is used to linearly expand the focal-plane covariance in Eq. (4), given by

J =
∂b

∂m
=

1
√

1 + α2 + β2







1 0

0 1

0 0






− 1

1 + α2 + β2
bmT (7)

where a focal length of f = 1 has been assumed. Then the wide-FOV covariance model is given by

Ω = J RFOCALJT (8)

If a camera with a small FOV is used, then Eq. (8) is still valid, but it is nearly identical to Eq. (6).
For the present experiment, the quadrotor cameras are PixArt infrared cameras taken from a Nintendo

Wii remote. More details about the experimental setup are provided in Section IV. The camera has a field
of view of ±20 degrees in the horizontal direction and ±15 degrees in the vertical direction. Each quadrotor
carries three cameras oriented outward and orthogonal to each other. The raw focal plane measurements
from these cameras are assumed to take the form of Eq. (3), where the zero-mean noise w has covariance

w =

[

δα

δβ

]

∼
[

σ2
α 0

0 σ2
β

]

(9)

From each focal plane observation pair (α, β), a unit vector is constructed in spherical coordinates. The
spherical coordinate angles θ and φ are related to α and β by the functions

θ (α, β) = p00 + p10α+ p01β (10a)

φ (α, β) = q00 + q10α+ q01β (10b)
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In these equations, the scalar coefficients pij and qij have been empirically measured for each individual
camera, along with standard deviations for these measurements. The assumed measurement models for
these coefficients are given by

p̃ij = pij + δpij , δpij ∼ N
(

0, σ2

pij

)

(11a)

q̃ij = qij + δqij , δqij ∼ N
(

0, σ2

qij

)

(11b)

Finally, the unit vector b is constructed from the angles θ and φ as

b =







cos θ cosφ

cos θ sinφ

sin θ






(12)

Depending on the orientation of a particular camera on the quadrotor, an additional 90-degree rotation of
the vector in Eq. (12) may be necessary, but this only causes a permutation of the elements.

The covariance of the noise υ in the unit vector measurement b̃ is obtained for this camera model by
propagating uncertainties through the equations and taking expectations. For simplicity, the noise terms are
assumed to be small relative to the measurements, and small-angle approximations are incorporated. First,
the means, covariances, and cross-covariances of θ and φ are obtained by substituting (α+ δα), (β + δβ),
(pij + δpij), and (qij + δqij) into Eqs. (10a) and (10b) and taking expectations. The resulting expressions
for θ and φ can be written in a manner analogous to measurement functions:

[

θ̃

φ̃

]

=

[

θ

φ

]

+

[

δθ

δφ

]

(13)

where δθ and δφ are zero-mean with covariance

E

{[

δθ

δφ

]

[

δθ δφ
]

}

=

[

σ2
θ σθφ

σθφ σ2
φ

]

(14)

and
σ2

θ = σ2

p00 + p210σ
2

α + p201σ
2

β + α2σ2

p10 + β2σ2

p01 (15a)

σ2

φ = σ2

q00 + q210σ
2

α + q201σ
2

β + α2σ2

q10 + β2σ2

q01 (15b)

σθφ = p10q10σ
2

α + p01q01σ
2

β (15c)

Next, Eq. (13) is substituted into the unit vector equation, Eq. (12), and expectation operations are performed
once more to compute the LOS vector covariance Ω. After much algebra and appropriate small-angle
approximations, the final expression for covariance is

Ω = E

[

(

b̃− b
)(

b̃− b
)T

]

=







Ω11 Ω12 Ω13

Ω12 Ω22 Ω23

Ω13 Ω23 Ω33






(16)

where the six unique elements of the matrix Ω are given by

Ω11 = sin2 θ cos2 φσ2

θ + cos2 θ sin2 φσ2

φ + 2 cos θ sin θ cosφ sinφσθφ

+ sin2 θ sin2 φ
(

3p210q
2

10σ
4

α + 3p201q
2

01σ
4

β − σ2

θφ

) (17a)

Ω22 = sin2 θ sin2 φσ2

θ + cos2 θ cos2 φσ2

φ − 2 cos θ sin θ cosφ sinφσθφ

+ sin2 θ cos2 φ
(

3p210q
2

10σ
4

α + 3p201q
2

01σ
4

β + 3σ2

θφ

) (17b)

Ω33 = cos2 θ σ2

θ (17c)

Ω12 = sin2 θ cosφ sinφσ2

θ − cos2 θ cosφ sinφσ2

φ + cos θ sin θ
(

sin2 φ− cos2 φ
)

σθφ

− sin2 θ cosφ sin φ
(

3p210q
2

10σ
4

α + 3p201q
2

01σ
4

β − σ2

θφ

) (17d)

Ω13 = − sin θ cos θ cosφσ2

θ − cos2 θ sinφσθφ (17e)
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Ω23 = − cos θ sin θ sinφσ2

θ + cos2 θ cosφσθφ (17f)

All three LOS vector measurement models (QUEST, wide FOV, and the model based on this experiment’s
camera) yield a singular 3× 3 covariance Ω because the unit-length LOS vectors have only two independent
parameters. A nonsingular covariance matrix for the LOS measurements can be obtained for all three
methods by a rank-one update to Ω:

Ωnew = Ω +
1

2
trace (Ω)bbT (18)

which can be used without loss in generality to develop attitude-error covariance expressions.12 The com-
puted covariances are for the LOS measurements in the body frame corresponding to that particular quad-
rotor. The four measurements and their respective covariances, using notation defined by Fig. 1 instead of
b, are summarized by

w̃1 = w1 + υw1, υw1∼N (0, Rw1
) (19a)

w̃2 = w2 + υw2, υw2∼N (0, Rw2
) (19b)

ṽ1 = v1 + υv1, υv1∼N (0, Rv1) (19c)

ṽ2 = v2 + υv2, υv2∼N (0, Rv2) (19d)

Since in practice each vehicle will have its own set of LOS measurement devices, the measurements in Eq. (19)
can be assumed to be uncorrelated.

III. Constrained Solution

This section summarizes the constrained attitude solution of Ref. 5. More details can be found in that
reference. Considering the measurements shown in Fig. 1, to determine the full attitude between the B2 and
B1 frames the attitude matrix must satisfy the following measurement equations:

w1 = Av1 (20a)

d = wT
2 Av2 (20b)

It is assumed that |d| ≤ 1; otherwise a solution will not exist. Also, it is assumed that the LOS vectors v1

and w1 are parallel. Also note that from Fig. 1 no observation information is required from the third object
to either B1 or B2. Hence, no information such as position is required for this object to determine the relative
attitude. A solution for the attitude satisfying Eq. (20) is discussed in Ref. 13 and will be utilized to form
a solution for the constrained problem discussed here. The solution for the rotation matrix that satisfies
Eq. (20) can be found by first finding a rotation matrix that satisfies the first equation and then finding the
angle that one must rotate about the reference direction to align the two remaining vectors such that their
dot product is equivalent to that measured in the remaining frame in the formation. The first rotation can
be found by rotating about any direction by any angle, where B = R (n1, θ) is a general rotation about some
axis that satisfies Eq. (20a). The choice of the initial rotation axis is arbitrary. Here, the vector that bisects
the angle between the two reference direction vectors is used and the rotation is as follows:

B =
(w1 + v1)(w1 + v1)

T

(1 + vT
1
w1)

− I3×3 (21)

where n1 = (w1 + v1) and θ = π. This rotation matrix will align the LOS vectorsw1 and v1 between frames,
but the frames could still have some rotation about this vector, so the rotation about the w1 axis must be
determined to solve the second equation. To do so the vectorw∗ is first defined, which is the vector produced
after applying the rotation B on the vector v2. This will allow us to determine the second rotation needed
to map v2 properly to the B2 frame with w∗ = B v2. Since the rotation axis is the w1 vector, w1 will be
invariant under this transformation and the solution to the full attitude can be written as A = R (n2, θ)B.

Consider solving for the rotation angle using the planar constraint. The constraint can be written as:

0 = wT
2 [w1×]R (n2, θ)w

∗ (22)
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where [w1×] denotes the cross product matrix for the vector w1. The definition of this matrix for a general
3× 1 vector α is

[α×] =







0 −α3 α2

α3 0 −α1

−α2 α1 0






(23)

Substituting the second rotation matrix into Eq. (22), and with n2 = w1, leads to

0 = wT
2 [w1×]

(

w1w
T
1 − cos(θ)[w1×]

2
w∗ − sin(θ)[w1×]w∗

)

(24)

Expanding out this expression yields

(

wT
2 [w1×]w∗

)

cos(θ) =
(

wT
2 [w1×]2w∗

)

sin(θ) (25)

Notice that if Eq. (25) is divided by −1 then the equation would be unchanged but the solution for the angle
θ would differ by π. Therefore, using the planar constraint the solution for the angle θ can be written as
θ = β + φ, where

β = atan2(wT
2 [w1×]w∗,wT

2 [w1×]
2
w∗) (26)

and φ = 0 or π. Note that these are not the same β, θ and φ used in the derivation for the measurement
model covariance. An ambiguity exists when using this approach but it is important to note that one of the
possible solutions for this approach is equivalent to the triangle constraint case.

Finally the solution for the attitude is given by A = R (w1, θ)B. The solution is now summarized:

B =
(w1 + v1)(w1 + v1)

T

(1 + vT
1
w1)

− I3×3 (27a)

R (w1, θ) = I3×3 cos(θ) + (1 − cos(θ))w1w
T
1 − sin(θ)[w1×] (27b)

θ = atan2(wT
2 [w1×]w∗,wT

2 [w1×]
2
w∗) + π (27c)

A = R (w1, θ)B (27d)

This result shows that for any formation of two vehicles a deterministic solution will exist using one direction
and one angle. Due to the fact that our case is truly deterministic there is no need to minimize a cost function
and the solution will always be the maximum likelihood one. It is very important to note that without the
resolution of the attitude ambiguity any covariance development might not have any meaning since although
the covariance might take a small value if the wrong possible attitude is used then the error might be fairly
large and not bounded by the attitude covariance.

The solution in Eq. (27) can be rewritten without the use of any transcendental functions. The following
relationships can be derived:

cos(θ) = − wT
2 [w1×]2w∗

‖w1 ×w2‖‖v1 × v2‖
(28a)

sin(θ) = − wT
2 [w1×]w∗

‖w1 ×w2‖‖v1 × v2‖
(28b)

This leads to cos(θ) = −b/c and sin(θ) = −a/c with

a = wT
2 [w1×] ([w1×] + [v1×]) [v1×]v2 (29a)

b = wT
2 [w1×] ([w1×][v1×]− I3×3) [v1×]v2 (29b)

c = (1 + vT
1 w1)‖w1 ×w2‖‖v1 × v2‖ (29c)

Note that c =
√
a2 + b2. Then the matrix R is given by

R = −b

c
I3×3 +

(

1 +
b

c

)

w1w
T
1 +

a

c
[w1×] (30)
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Noting that w1w
T
1 B = w1v

T
1 then the solution in Eq. (27d) can be rewritten as

A =
b

c

(

I3×3 −
(w1 + v1)(w1 + v1)

T

(1 + vT
1
w1)

+w1v
T
1

)

+
a

c
[w1×]

(

v1w
T
1 + v1v

T
1

(1 + vT
1
w1)

− I3×3

)

+w1v
T
1

(31)

Note in practice the measured quantities from the previous section are used in place of the observed quantities
shown in Eq. (27), and Eqs. (29) and (31).

The covariance matrix for an attitude estimate is defined as the covariance of a small angle rotation
taking the true attitude to the estimated attitude. Typically the small Euler angles are used to parameterize
the attitude error-matrix. Reference 5 derives the attitude error-covariance for the constrained solution by
using the attitude matrix with respect to the small angle errors. The attitude error-covariance is given by

P =















−[Atruev1×]

−wT
2 [w1×][Atruev2×]







T 





R∆1
R∆1∆2

RT
∆1∆2

R∆2







−1





−[Atruev1×]

−wT
2 [w1×][Atruev2×]















−1

(32)

where

R∆1
= Rw1

+AtrueRv1A
T
true (33a)

R∆2
= −

{

wT
2 [Atruev2×]Rw1

[Atruev2×]w2 + (Atruev2)
T [w1×]Rw2

[w1×] (Atruev2)

+wT
2 [w1×]AtrueRv2A

T
true[w1×]w2

}
(33b)

R∆1∆2
= −Rw1

[Atruev2×]w2 (33c)

This expression is a function of the true attitude, Atrue, but the true attitude can effectively be replaced
with the estimated attitude to within first order.

IV. Experiment

A. Setup

The experiment consists of two remote-controlled quadrotor helicopters,3 shown in Figs. 2 and 3. These

Figure 2. Image of Quadrotors Used

quadrotors are flown in the range of a Vicon motion capture system at the University at Buffalo (Fig. 4).
The quadrotors have markers placed on the fuselage that can be detected by the Vicon system and resolve
positions of each marker with an accuracy of 1 mm.6 By placing at least 4 markers on each quadrotor, the
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Figure 3. Detailed View of Quadrotor with Cameras

Figure 4. Experimental Facility
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attitude with respect to the reference coordinate system of the Vicon system is determined and reported
as 3-2-1 Euler angles. From the Euler angles, the attitude matrix from the Vicon coordinate system to
each quadrotor body frame can be determined, and thus the relative attitude matrix from B2 to B1 can be
determined.

Each camera being used is a PixArt infrared camera, as described in Section II. The camera has the
ability to track up to 4 individual points simultaneously and is most sensitive to the 940 nm wavelength.
Each quadrotor has infrared light emitting diodes (LEDs) with a wavelength of 940 nm located around the
center of the body for the cameras on the other quadrotor to detect. There are also infrared LEDs located
at the origin of the coordinate system used by the Vicon system as the common reference object. The LEDs
located at the common reference object are arranged in a pattern that is distinguishable from the LEDs on
the quadrotors as the infrared cameras used in this experiment are unable to distinguish between different
wavelengths of light.

The camera data are read and processed by an Arduino Mega 2560 microcontroller. The microcontroller
takes the position data of the LEDs detected by the cameras and converts the data into vector form. It
computes one vector in the direction of the other quadrotor, and a second vector in the direction of the
common reference point. The microcontroller in the B1 vehicle frame then communicates via Bluetooth to
the other quadrotor to obtain the w1 and w2 vectors in the B2 vehicle frame and uses Eq. (27) to calculate
the relative attitude matrix from B2 to B1.

B. Calibration

The calibration for this setup is performed using the Vicon system to track the location of each quadrotor
and the reference beacon. Asymmetric patterns of reflective markers are placed on each quadrotor and the
reference beacon to allow Vicon to uniquely identify each object, as well as its position and orientation. The
calibration is performed by placing the reference beacon at several different locations in the FOV of each
camera and recording the pixel that detected the infrared LED, and the unit vector from the quadrotor
to the reference beacon in the body frame of the quadrotor. The unit vector is converted to spherical
coordinates, and a relationship between the two-dimensional Cartesian coordinates given by each camera
and the spherical azimuth and elevation angles is fit. For these cameras, there is a linear relationship that
transforms the camera coordinates into spherical coordinates in the body frame of the quadrotor.

C. Procedure

To begin the experiment, the microcontrollers on each quadrotor are powered on and the Bluetooth commu-
nications between them are synchronized to share their vectors in real-time. Once the microcontrollers are
synchronized and the Vicon data is being recorded, the quadrotors are moved around and rotated in the air
with different attitudes relative to each other and different attitudes relative to their inertial surroundings.
After sufficient data are obtained, recording is stopped, and the data from the Vicon system and from the
onboard SD cards are uploaded to a computer and saved.

V. Results & Discussion

The experiments conducted produced quaternion attitude solutions from both the Vicon system and the
quadrotors. Figure 5 shows these two quaternion histories. Figure 6 shows the comparison between the Vicon
system and the quadrotor quaternion elements individually. Note that the plot for element q4 has a different
vertical scale from that of the other three elements, in order to more clearly show the variation. It is evident
from these plots, particularly for the q2 and q3 quaternion elements, that there is a strong similarity between
the Vicon and the quadrotor data. To determine the error between the two relative attitude matrices, the
angle errors between the two attitudes are calculated and plotted in Fig. 7 along with their corresponding
3σ error bounds. The quadrotors are able to actively maintain LOS vectors between each other and the
reference beacon throughout most of the experiment. These vectors are utilized to calculate the relative
attitude between the two vehicles. As evidenced by the agreement between the quadrotor and Vicon data in
the detailed plots for each quaternion component, the quadrotors are able to accurately obtain their relative
attitudes. Figure 8 shows that the difference between the two attitudes is generally around 5 degrees or less,
and rarely exceeded 10 degrees.
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Figure 8. Total Angular Error
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Some of the observed differences are caused by one of the cameras on the quadrotor failing to detect the
infrared light source for a period of time. When this occurs, the quadrotor’s reported attitude jumps sharply,
resulting in a temporary divergence from the true attitude. An example of this failure occurs at around t=9
seconds in the q1 component of the quaternion in Fig. 6.

In Figs. 7 and 8, the Vicon attitude solution is treated as the “truth” and the reported errors are relative
to that solution. This treatment is reasonable because the Vicon measurements are known to have much
greater accuracy than the quadrotor camera measurements. Another approach that accounts for the expected
noise in both types of measurements is track-to-track correlation.14 This technique tests the hypothesis that
both estimated attitudes refer to the same underlying true attitude. One computes the statistic

y = δα
T (P11 + P22 − P12 − P21)

−1
δα (34)

where δα is the difference between the two estimates (in this case the vector of relative angles between
the two attitudes). The matrices P11 and P22 are the covariances matrices associated with the estimation
errors for each method, and the matrices P12 and P21 are their cross-covariances. If the Vicon and quadrotor
solutions are in agreement, the computed test statistic should behave as a chi-squared random variable with
three degrees of freedom, and 95% of the points should fall within the boundaries for such a distribution.
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Figure 9. Track-to-Track Correlation Statistic

Figure 9 shows the correlation test statistic for the current experiment, along with the appropriate 95%
bounds. For simplicity, the measurements from the two attitude sensors are assumed to be independent,
such that P12 and P21 are zero. This assumption of independence is invalid for filtering methods which
rely on the same underlying process noise, but it may be acceptable for point solutions such as those in the
present experiment. A standard deviation of 1 degree is assumed for the Vicon attitude, and the covariance
from the LOS vectors was computed using Eq. (32). The constant bias is also removed from each component
of the attitude angle difference to account for poor calibration of the Vicon. The test statistic fell within the
95% bounds about 92% of the time, which indicates good agreement.

VI. Conclusions

In this paper experimental verification of a relative attitude determination approach for two vehicles
using a triangle constraint in the observations was presented. The triangle constraint is useful because it

12 of 13

American Institute of Aeronautics and Astronautics



requires two fewer observations than a deterministic relative approach without the constraint. In actual
practice, the triangle scenario reflects a realistic physical situation; however, out-of-plane deflections can
occur due to misalignments and/or noise. This paper studied the practical implementation for the relative
attitude determination approach using formation of two vehicles. A Vicon motion capture system was used
to provide a more accurate alternative solution, and this solution was compared to the experimental data
from two quadrotors. These two attitude solutions were compared statistically, and their strong agreement
validated the proposed theory.
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