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This paper proposes a new approach for relative navigation of formation flying space-

craft. This approach utilizes azimuth and elevation angle information as well as light

intensity data gathered from a photometric sensor to estimate the relative position and ve-

locity between collaborating spacecraft. A basic measurement model simulates the deputy

spacecraft as a simple sphere that only reflects light diffusely. An Unscented Kalman Filter

is successfully used for state estimation and subsequently shows the initial proof of concept.

This study motivates further investigation into the potential for using this new approach

for inexpensive and reliable relative navigation systems.

I. Introduction

Relative motion between formation flying and rendezvousing spacecraft has been an area of research
since the Apollo missions. Many approaches for determining the relative distance between these spacecraft
have been attempted since this research started. Resolved images have been used to estimate the size
and shape of satellites as well as the relative position and velocity of rendezvousing spacecraft.1, 2 These
approaches work either directly with the image pixels or are used to identify features of the space object
(SO). Features, such as corners, edges and markers, are located and tracked temporally to estimate higher
level motion and the structure of the rigid body.3 Feature-based approaches rely on continuously identifying
and tracking higher level traits of the SO by using a Kalman filter to estimate feature location and motion
parameters. Pixel-based methods rely on pixel-level information, and use the shading, texture and optical
flow of the images to estimate the relative position at each time step using a monocular camera. Since these
methods rely on pixel-level computations they typically involve very high-dimensional states. They are also
very computationally expensive due to several issues, such as image segmentation, component labeling and
searching for collocated centroids, etc. Furthermore, these methods are also very sensitive to pixel-level
detail and are easily corrupted by unpredictable light intensities, reflective material and wrinkled surfaces.
They require high resolution of the object to resolve meaningful shape estimates, and therefore are only
effective for space-based sensing of objects with small relative distances.

One method for measuring line-of-sight (LOS) observations between multiple vehicles is the vision-based
navigation (VISNAV) system.4 This consists of an optical sensor combined with a specific light source
(beacon) in order to achieve a selective vision. The VISNAV system is applied to the spacecraft formation
flying problem in Ref. 5. State estimation is performed using an optimal observer design. An Extended
Kalman Filter (EKF) is applied to the VISNAV-based relative spacecraft position and attitude estimation in
Ref. 6. Simulations show that accurate estimates of relative position and attitude are possible. The VISNAV
system relies on parallax to obtain relative state information. If the distances between the individual beacons
is much smaller compared with the relative distance between the vehicles then the beacons effectively become
a single point source. This causes the system to become unobservable. Thus, the VISNAV system is typically
used for proximity type applications.
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Light curves (the SO temporal brightness) have been used to estimate several attributes of an object.
For example, light curve approaches have been studied to estimate the shape and state of asteroids.7, 8 Light
curves and thermal emissions have been used to recover the three-dimensional shape of an object assuming
its orientation with respect to the observer is known.9 The benefits of using a light curve approach over the
aforementioned others is that it is not limited to larger objects in lower orbits and it can be applied to small
and dim objects in higher orbits, such as geosynchronous spacecraft. Here light curve data is considered for
estimating the relative position and velocity of collaborating spacecraft.

There are several aspects of using light curve data (temporal photometry) that make it particularly
advantageous for object detection, identification and tracking. Light curve data are the time-varying sensor
wavelength-dependent apparent magnitude of energy (i.e. photons) scattered (reflected) off of an object
along the line-of-sight to an observer. Because the apparent magnitude of the SO is a function of its size,
orientation and surface material properties, one or more of these characteristics should be recoverable from
the photometric data. This can aid in the detection and tracking of an SO to allow for relative navigation.
Also, the relative distance does not need to be small between the vehicles. Finally, light curve observations
can be observed using passive sensors, which reduces the complexity of the overall system.

Absolute attitude estimation using light curve data has been demonstrated in Ref. 10; however, light curve
information has not been explored yet for relative navigation. The apparent magnitude obtained from light
curves is a function of the distance between the reflecting object and the observer, which in essence provides
range information. Active ranging can be accomplished by emitting a signal and obtaining a return. Passive
ranging can be accomplished by using the ratio between the sensed area by the imager and the projected
area of the target spacecraft, but this requires that the attitude of target to be known. The main goal of
this current work is to provide a preliminary study to serve as a proof of concept for using light curve data
to determine relative position and velocity of collaborating spacecraft. Note that the only collaboration
requirement is that the spectral properties of the target vehicle be known, which is used in the light curve
model. But these properties can also be estimated as part of the overall process,11 which can lead to a
fully non-collaborating relative navigation approach between two vehicles. Here, angle and light magnitude
measurements are used to estimate the relative position of formation flying spacecraft using an Unscented
Kalman Filter (UKF). Simulation results are shown to assess the performance of using light curve data in
addition to traditional angles data. The main objective is to show that the self-contained and non-emitting
realtime approach developed here can be used to 1) provide observability for cases that are traditionally non-
observable using angles-only data, and 2) improve the estimation performance by incorporating passively
obtained light curve data. Furthermore, it is demonstrated here that the addition of light curve data
dramatically improves the performance of estimating the absolute positions of both spacecraft from only
relative observations.

The organization of this paper is as follows. First the dynamic models used for relative navigation are
summarized. This is followed by showing the models for the assumed measurements, which includes azimuth,
elevation and apparent brightness magnitude. Then the basic equations for the UKF are summarized.
Finally, simulation results are presented.

II. Relative Navigation Approach

A. Dynamical Model

When dealing with formation flying spacecraft it is most convenient to use the local Hill frame coordinates.
This is the frame that is used to describe the relative motion between the two space vehicles. Figure 1
illustrates this local Hill frame; it is defined by the triad {ôr, ôθ, ôh}, where the ôr axis points in the radial
direction of reference orbit, the ôh axis points in the direction of the angular momentum vector of the
reference orbit, and the ôθ axis is such that it forms a proper orthogonal frame.

The lead spacecraft is typically referred to as the chief spacecraft and the secondary spacecraft is referred
to as the deputy spacecraft. The relative position vector pointing from the chief spacecraft towards the
deputy is expressed using the components ρ = [x y z]

T
, as shown in Figure 1. Using the aforementioned

Hill reference frame, and assuming that the relative orbit position coordinates are small compared with
respect to the chief orbit radius, the relative position of the deputy spacecraft can be described from the
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Figure 1. Local Hill Frame Coordinates for Relative Orbit Trajectories

chief spacecraft by the full nonlinear equations of motion as12
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)

− 2ν̇
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ẏ − y
ṙc

rc

)

= 0 (1a)
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− y ν̇2
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)
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z̈ +
rc

p
ν̇2z = 0 (1c)

where ν̇ is the rate of change of the true anomaly, rc is the magnitude of the chief spacecraft’s position and
p is the the semilatus rectum of the chief. Two more differential equations are required for the chief radius
and true anomaly:

r̈c = rcν̇
2

(

1− rc

p

)

(2a)

ν̈ = −2 ṙc
rc
ν̇ (2b)

Equations (1) and (2) require initial conditions for x, y, z, rc, ν and their respective derivatives.
For near circular orbits with small relative distances these equations can be simplified to the linearized

equations of motion for relative orbital dynamics, which are commonly referred to as the Clohessy-Wiltshire
(CW) equations:

ẍ− 2nẏ − 3n2x = 0 (3a)

ÿ + 2nẋ = 0 (3b)

z̈ + n2z = 0 (3c)

where n is the mean motion. Note that the last equation is decoupled from the first two. Both the linear
and nonlinear equations are used to demonstrate the proof of concept in this paper.

B. Measurements

The goal of this paper is to prove that relative navigation can be accomplished with a photometric sensor
onboard the chief spacecraft. The measurements that can be made with such a sensor are the azimuth and
elevation angles to the deputy spacecraft and the light intensity that is reflected off of the deputy spacecraft
towards the chief spacecraft. By knowing the position of the sensor on the chief spacecraft, the LOS vector
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to the deputy can be determined. This can be done very simply by determining where on the photosensor
the deputy spacecraft is seen. The sensor can also record the light intensity that is being reflected from
the deputy spacecraft back to the chief spacecraft, which will allow for the state estimation of the deputy’s
position and velocity with respect to the chief.

For the simulations performed in this paper it is assumed that the deputy spacecraft is in view of the Sun
reflecting light off its body towards the chief spacecraft as seen in Figure 2. The photometric sensor on the
chief spacecraft, which in this illustration is pointed along the ĉ1 axis, will be able to measure the intensity
of the light being reflected. Since the location of the sensor onboard the chief spacecraft is known, the angles
that point to the deputy can be measured. This method assumes that the surface properties and shape of
the deputy spacecraft are known; therefore it will only work for collaborative formation flying spacecraft.

Figure 2. Reflection Pattern from Sun Off Deputy to Chief Spacecraft

As previously mentioned, the sensor measurements being used for this proof of concept are light intensity,
mapp, and the azimuth and elevation angles, az and el, respectively. The following equations are used to
generate the observations:

||ρ|| =
√

x2 + y2 + z2 (4a)

az = tan−1
( y

x

)

(4b)

el = sin−1

(

z

||ρ||

)

(4c)

Here, ||ρ|| is the relative range between the space vehicles. The angles are simple trigometric functions that
determine the direction of the LOS to the deputy. In order for the light intensity to be calculated, the
photon flux needs to be determined. The photon flux is the number of solar photons reflected off of the
deputy spacecraft in the direction of the photometric sensor onboard the chief spacecraft. For this initial
proof of concept the photon flux, F , can be modeled with a very simple diffuse spherical model given by13

F = Fsun
RdiffA

||ρ||2 (1 + uobs · usun) (5)

where Fsun = 455 W/m2 is the power per square meter impinging on a given object due to visible light from
the Sun striking the surface and A is the area of the spacecraft facing the Sun, which will be assumed as
πr2 where r is the approximate radius of the spacecraft. The term Rdiff is the diffuse parameter. For a fully
diffuse body Rdiff = 1, which is assumed in this paper. Equation (5) assumes that the deputy spacecraft is
a simple sphere, which eliminates the spacecraft orientation from affecting the light intensity measurements
in this proof of concept. While light will generally reflect off a surface spectrally and diffusely, here only the
diffuse term is considered in order to avoid the complexities associated with light glints and imperfections
in the surface material. In Eq. (5) uobs is the LOS vector from the deputy to the observing sensor on the
chief and usun is the LOS vector from the deputy to the Sun. The photon flux is now used to compute the
apparent brightness magnitude, which in practice is measured by a photometric sensor onboard the chief
spacecraft:

mapp = −26.7− 2.5 log10

∣
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(6)
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where −26.7 is the apparent magnitude of the Sun and Fsun is the photon flux of the Sun at the Earth,
as defined above. In Eq. (6), mapp is the apparent magnitude that is being observed reflecting off of the
deputy spacecraft. This is the light curve data that will allow the position and velocity to be estimated. The
observation vector is then given by y(t) = [mapp az el]T .

C. Unscented Kalman Filtering

A UKF is selected for this state estimation problem because it is associated with less error than the Extended
Kalman Filter (EKF) and does not require the calculation of the Jacobian matrix as required by the EKF.
Furthermore, this initial proof of concept incorporates the full nonlinear equations of relative motion for
formation flying spacecraft and in this case the UKF is associated with a higher-order of accuracy. Addi-
tionally, in future analysis when more complex light intensity models are simulated, such as models with
multiple facets or wrinkled surfaces, the Jacobian matrix will become problematic to compute whereas with
the UKF this calculation is unnecessary.

The state vector is given by x(t) = [x y z ẋ ẏ ż rc ṙc ν ν̇]T for the nonlinear system case shown in
Eqs. (1) and (2), and x(t) = [x y z ẋ ẏ ż]T for the linear system model case shown by Eq. (3). The UKF
process has been well documented and has been accomplished with the following procedure.14 The relative
equations of motion can be written as a general state equation of the form:

xk+1 = f(xk, wk, uk, k) (7a)

ỹk = h(xk, uk, vk, k) (7b)

where uk is a known control input, which is zero for the relative navigation problem. Note that a continuous-
time model can always be written using Eq. (7a) through an appropriate numerical integration scheme. As
with the Kalman filter it is assumed that wk and vk are zero-mean Gaussian noise processes with covariances
given by Qk and Rk, respectively. The Kalman filter update equations are first rewritten as

x̂+
k = x̂−

k +Kke
−

k (8a)

P+
k = P−

k −KkP
eyey
k KT

k (8b)

where the innovations process is given by
e−k ≡ ỹk − ŷ−

k (9)

The covariance of e−k is defined by P
eyey
k . The gain Kk is computed using

Kk = P
exey
k (P

eyey
k )−1 (10)

where P
exey
k is the cross-correlation matrix.

The UKF uses a different propagation than the form given by the standard EKF. Given an n×n covariance
matrix P , a set of order n points can be generated from the columns (or rows) of the matrices ±

√
nP . The

set of points is zero mean, but if the distribution has mean µ, then simply adding µ to each of the points
yields a symmetric set of 2n points having the desired mean and covariance.15 Due to the symmetric nature
of this set, its odd central moments are zero, so its first three moments are the same as the original Gaussian
distribution. This is the foundation for the UKF. A complete derivation of this filter is beyond the scope
of the present text, so only the final results are presented here. Various methods can be used to handle the
process noise and measurement noise in the UKF. One approach involves augmenting the covariance matrix
with

P a
k =















P+
k P xw

k P xv
k

(P xw
k )T Qk Pwv

k

(P xv
k )T (Pwv

k )T Rk















(11)

where P xw
k is the correlation between the state error and process noise, P xv

k is the correlation between the
state error and measurement noise, and Pwv

k is the correlation between the process noise and measurement
noise, which are all zero for most systems. Augmenting the covariance requires the computation of 2(q + ℓ)
additional sigma points (where q is the dimension of wk and ℓ is the dimension of vk, which does not
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necessarily have to be the same dimension, m, as the output in this case), but the effects of the process and
measurement noise in terms of the impact on the mean and covariance are introduced with the same order
of accuracy as the uncertainty in the state.

The general formulation for the propagation equations is given as follows. First, the following set of
sigma points is computed:

σk ← 2L columns from ±γ
√

P a
k (12a)

χ
a(0)
k = x̂a

k (12b)

χ
a(i)
k = σ

(i)
k + x̂a

k (12c)

where x̂a
k is an augmented state defined by

xa
k =







xk

wk

vk






, x̂a

k =







x̂k

0q×1

0ℓ×1






(13)

and L is the size of the vector x̂a
k. The parameter γ is given by

γ =
√
L+ λ (14)

where the composite scaling parameter, λ, is given by

λ = α2(L+ κ)− L (15)

The constant α determines the spread of the sigma points and is usually set to a small positive value (e.g.,
1 × 10−4 ≤ α ≤ 1).16 Also, the significance of the parameter κ will be discussed shortly. Efficient methods
to compute the matrix square root can be found by using the Cholesky decomposition. If an orthogonal
matrix square root is used, then the sigma points lie along the eigenvectors of the covariance matrix. Note
that there are a total of 2L values for σk (the positive and negative square roots). The transformed set of
sigma points is evaluated for each of the points by

χ
x(i)
k+1 = f(χ

x(i)
k ,χ

w(i)
k ,uk, k) (16)

where χ
x(i)
k is a vector of the first n elements of χ

a(i)
k , and χ

w(i)
k is a vector of the next q elements of χ

a(i)
k ,

with

χ
a(i)
k =







χ
x(i)
k

χ
w(i)
k

χ
v(i)
k






(17)

where χ
v(i)
k is a vector of the last l elements of χ

a(i)
k , which will be used to compute the output covariance.

We now define the following weights:

Wmean
0 =

λ

L+ λ
(18a)

W cov
0 =

λ

L+ λ
+ (1− α2 + β) (18b)

Wmean
i = W cov

i =
1

2(L+ λ)
, i = 1, 2, . . . , 2L (18c)

where β is used to incorporate prior knowledge of the distribution (a good starting guess is β = 2).
The predicted mean for the state estimate is calculated using a weighted sum of the points χx

k(i), which
is given by

x̂−

k =

2L
∑

i=0

Wmean
i χ

x(i)
k (19)

6 of 17

American Institute of Aeronautics and Astronautics



The predicted covariance is given by

P−

k =

2L
∑

i=0

W cov
i [χ

x(i)
k − x̂−

k ] [χ
x(i)
k − x̂−

k ]
T (20)

The mean observation is given by

ŷ−

k =

2L
∑

i=0

Wmean
i γ

(i)
k (21)

where
γ
(i)
k = h(χ

x(i)
k ,uk,χ

v(i)
k , k) (22)

The output covariance is given by

P
yy
k =

2L
∑

i=0

W cov
i [γ

(i)
k − ŷ−

k ] [γ
(i)
k − ŷ−

k ]
T (23)

Then, the innovations covariance is simply given by

P
eyey
k = P

yy
k (24)

Finally the cross-correlation matrix is determined using

P
exey
k =

2L
∑

i=0

W cov
i [χ

x(i)
k − x̂−

k ] [γ
(i)
k − ŷ−

k ]
T (25)

The filter gain is then computed using Eq. (10), and the state vector can now be updated using Eq. (8). Even
though propagations on the order of 2n are required for the UKF, the computations may be comparable
to the EKF (especially if the continuous-time covariance equation needs to be integrated and a numerical
Jacobian matrix is evaluated). Also, if the measurement noise, vk, appears linearly in the output (with
ℓ = m), which is the case in this paper, then the augmented state can be reduced because the system state
does not need to augmented with the measurement noise. In this case the covariance of the measurement
error is simply added to the innovations covariance, with

P
eyey
k = P

yy
k +Rk (26)

This can greatly reduce the computational requirements in the UKF.
The scalar κ in the previous set of equations is a convenient parameter for exploiting knowledge (if

available) about the higher moments of the given distribution.17 In scalar systems (i.e., for L = 1), a value
of κ = 2 leads to errors in the mean and variance that are sixth order. For higher-dimensional systems
choosing κ = 3− L minimizes the mean squared error up to the fourth order.15 However, caution should be
exercised when κ is negative since a possibility exists that the predicted covariance can become non-positive
semi-definite.

III. Simulation Results

A. Linear Model Simulation

In order to prove the new concept for relative navigation, a simulation study is conducted to show that the
assumed measurements can be used to adequately track the deputy spacecraft relative to the chief spacecraft.
For this simulation the initial positions and velocities of a chief spacecraft and deputy spacecraft are assigned
by using identical orbital elements with the exception of eccentricity. The orbits are nearly circular since
they have small eccentricities and there are small relative distances between the spacecraft. This means that
these orbits do not violate the assumptions that are used for deriving the CW equations, which are a small
relative distance and a nearly circular chief orbit. The initial condition used to propagate the CW equations
is given by

x0 =
[

42.164 0 0 0 −6.1301× 10−3 −5.6629× 10−4
]T

(27)
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The chief orbit is assumed to be a geosynchronous one. No process noise is added to the true state.
The measurement covariance matrix is given by R = diag[0.1, 0.0085◦, 0.0085◦] and the initial covariance

matrix is given by P0 = diag[1 × 101, 4 × 101, 1 × 101, 1 × 10−2, 4 × 10−2, 1 × 10−2]. These are associated
with 1 km errors in the x and z axis and 4 km in the y axis in the position and errors of the order of 10
m/s in the velocity. For this simulation the measurements are generated assuming the deputy spacecraft to
be a simple sphere with a 2 meter radius. These initial conditions produce the following results using the
filtering procedure described in the previous section.
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Figure 3. Relative Orbit Trajectories for the CW Case

In Figure 3 it is seen that the relative orbit is nearly a closed circular orbit. This figure also shows that
the relative orbit is small with the maximum displacement of the deputy from the chief spacecraft being less
than 100 km. The large errors seen in this figure are due to the large initial condition errors injected into
the filter initial estimates. In Figure 4(a) it is seen that the errors associated with the position are quickly
minimized and settle to approximately 100 m. These values are well within the 3σ bounds shown as the
dashed line. The same can be seen for the errors associated with the velocity in Figure 4(b); they are of the
order 0.01 m/s. This indicates that the filtering process is successful in tracking the deputy spacecraft for
the duration of the orbit.

To gain a better understanding of what is occurring in the simulation the light intensity is plotted in
Figure 5. It is seen that the magnitude of the intensity changes with respect to time. This is because as the
space vehicles change position in time the relative distance increases then decreases again. As the relative
distance decreases between the space vehicles the magnitude of the light intensity decreases; similarly as the
magnitude begins to increase so does the relative distance. This is because the brighter an object is the more
negative its magnitude light intensity. When Figures 4(a), 4(b) and 5 are compared it can be seen that when
the light intensity increases the 3σ bounds begin to grow. This is because the strength of the magnitude
measurement is getting weaker and therefore the measurement update in the filtering process is less helpful.
This is when the filter relies on the dynamical model for its state estimation.

Figure 6 shows various quantities that produce the light intensity shown in Figure 5. Specifically, Figure
6(a) shows the photon flux data given by Eq. (5). Figure 6(b) shows the dot product between the Sun and
observer vectors. Figure 6(c) shows the relative range between the vehicles. Figure 6(d) shows the angle
between the LOS and velocity vector, which corresponds the classic case seen in relative navigation where
these vectors are nearly perpendicular at all times.18, 19 Figure 6(b) shows that the motion of the Sun can
cause a change in the flux, which has a cycle of one day. This is due to the fact that the chief is in a
geosynchronous orbit. The value of this dot product is independent of the relative range shown in Figure
6(c), which depends strictly on the relative motion between the vehicles. Note that the flux is a function of
the inverse of the range squared and the dot product only affects the flux in a proportional manner. Thus,
the relative range causes the main fluctuations shown in the flux for this particular case. As the range
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increases the flux decreases and conversely as the range decreases the flux increases.
The results in Figures 4(a) and 4(b) show promising performance and are a proof for the concept of using

photometric data in a cooperative formation flying system to provide relative navigation information. The
reason this would be limited to cooperative flight is because the surface properties and shape of the deputy
would need to be known for the measurement model. But as mentioned previously these quantities can also
be estimated in the overall process if needed. It has been shown that relative navigation can be accomplished
using angles-only information for ceratin cases; however, if the relative orbits are near circular this approach
becomes ill-conditioned since many orbits can produce the same observations. By incorporating the light
intensity data this problem can be overcome. In order to illustrate this a Monte Carlo simulation is performed
using 200 simulation points. Figure 7 shows the root-mean-square (RMS) average position errors for the
case of angles-only (No Mag) and the addition of light curve (Mag) observations for relative navigation.
The angles-only case leads to the well-known unobservable case. The relative orbit between the chief and
deputy is elliptical in nature, which causes the range variation shown in Figure 6(c), but a family of elliptical
solutions is possible from angles-only observations. Note that the angles-only case does not diverge because
no process noise is present in the filter. The addition of light curve data provides observability to the filtering
process and yields accurate relative position estimates.

B. Nonlinear Model Simulation

In this section the full nonlinear equations of motion for formation flying spacecraft are considered, which
are described in Eqs. (1) and (2). The initial conditions for this case are given by

x0 =
[

200 200 100 −0.4 0 7.3283× 103 0 0 0
]T

(28)

The same theoretical 2 meter radius sphere is used to simulate the deputy spacecraft. A plot of the chief
radius is shown in Figure 8. For this case the chief is in a low-Earth non-circular orbit. Therefore, the
linear CW equations are not valid. First we will examine the relative trajectories. As seen in Figure 9, the
estimated orbit initially has poor predictions for the relative position of the deputy spacecraft; however, this
is quickly corrected and the filter begins to accurately track the deputy spacecraft.

The errors in the positions and velocity are plotted in Figures 10(a) and 10(b). Here it is illustrated that
after some initial uncertainty all three position errors converge to small values. The remaining uncertainty
lie within 100 m of the true value, similar to what is shown in Figure 4(a) for the linear model case. It can
also be seen in Figure 10(a) that the errors always lie within the 3σ bounds, which ensures that we have
an accurate estimator. In Figure 10(b) the error in the velocity estimates is plotted. Here it can be seen
that the estimate errors again lie within the 3σ bounds. The estimates follow the bounds as they fluctuate
around with approximately 0.01 m/s uncertainty, similar to Figure 4(b) for the linear simulation.
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Figure 4. Position and Velocity Estimation Errors for the CW Case
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Figure 5. Light Intensity Data

A Monte Carlo simulation is also performed for the nonlinear case. The average RMS position error
is calculated and plotted in Figure 12. Here it can be seen that the angles-only approach has oscillations
related to the orbital period of nearly 90 minutes. Again, as with the linear case, a converged solution is not
possible. But the proposed method of incorporating light curve data decreases the error to below 1 m with
less than a half an hour of tracking.

C. Absolute Positions Simulation

References 20 and 21 show that it possible to determine the absolute positions of two spacecraft from
relative observations only. Reference 21 uses angles and relative range information to determine the absolute
positions. As a final proof of concept, the absolute positions of the chief and deputy spacecraft are calculated
using this same navigation technique of angle and light intensity data. The initial conditions are the same
as the previous nonlinear model case. It is seen that these are nearly circular orbits that would lie in the
low-Earth orbit range and the deputy’s orbit varies from the chief spacecraft’s orbit with slight variations in
the eccentricity, inclination, right ascension to the ascending node, argument of periapsis and mean anomaly.

For this simulation the non-spherical Earth, J2, effects are also considered. The acceleration due to the
J2 effect is given by

aJ2
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(29)

where J2 = 1.082 626 683 × 10−3 is the coefficient for the second zonal harmonic and R⊕ = 6, 378.137 km is
the mean equatorial radius of the Earth. Note that here x, y and z denote the absolute position coordinates
for either the chief or deputy spacecraft and r is the magnitude of these components. When the orbits are
plotted in Figure 13, it appears that the estimated trajectory follows the true trajectory. However, since this
plot shows the orbital positions throughout the simulation time it is difficult to see how the trajectories differ
due to the large scale of the orbit. Therefore, to establish an understanding of how accurate this method is,
the error plots are analyzed.

As seen in the error plots in Figure 14 the UKF performs well in tracking the true position and velocity
of the spacecraft. In Figure 14(a) it can be seen that there is some fluctuations in the x and z axes. In the
y axis, the error is smaller in magnitude and settles faster than other the x and z axes. For this simulation
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it is also seen that the 3σ bounds also take longer to tighten around zero. This can also be seen with the 3σ
bounds for the errors in velocities in Figure 14(b). Similar results can be seen in Figures 14(c) and 14(d) for
the chief spacecraft. Figure 15 shows the absolute average RMS position errors of the deputy for both the
angles-only and addition of light curve observation cases. Clearly, the addition of light curve information
provides better estimation performance than without it.

IV. Conclusion

This initial proof of concept scenario considers both the simple linearized dynamical model and the full
nonlinear equations for the relative motion of the spacecraft, where the simulated measurement data are
the light intensity and angles pointing to the deputy spacecraft, and the estimated states and the relative
position and velocity. Previous work has shown that it is not possible to track relative motion using angles-
only data for certain cases, but the additional information of light intensity was able to improve the accuracy
and provide observability to the unobservable cases associated with angles-only tracking. This provides
motivation for subsequent studies to investigate the limitations of this new approach. In this further testing
more complex measurement models can be used to simulate spacecraft of different shapes and reflective
properties. Additionally, the incorporation of attitude estimation will also be explored.
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This new navigation system will allow for the use of cheaper sensor systems since the only required
measurement device is a photometric sensor. These photometric sensors can be of lower quality compared
to optical camera systems since only the light intensity needs to be calculated. In other optical systems
resolved images need to be used in order to determine the size and orientation of the spacecraft in the image
to determine relative distance. This proposed method allows for unresolved images to predict this same
motion by utilizing the light intensity. Additionally, it provides a way for the position to be calculated
passively, without sending information between the space vehicles.
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Figure 14. Position and Velocity Estimation Errors for the Absolute Case
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Figure 15. Root Mean Square Error for the Absolute Case
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