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1 Conference Paper

Accurate estimates for the drag coefficients of a satellite are important in reducing the biases in densities
derived from satellite drag measurements as well as explicitly reducing the errors in orbit prediction. This
develops a approach to estimate the drag coefficient for debris objects with known shape models.This pa-
per focuses on rocket bodies in particular. The attitude and angular velocities are determined and there
orientations estimates are used to computer the drag coefficient using a flat plate model. A nonlinear least
squares estimator is used to estimate the attitude and angular velocity of the space object; both real data
and simulated data scenarios are shown. A number representative rocket body models are used for simulated
data examples, and real data examples. Good performance was shown for both simulated and real data case.

2 INTRODUCTION

The SSN network has the unique challenge of tracking more than 18,000 space objects (SOs) and providing
critical collision avoidance warnings to military, NASA, and commercial systems. However, due to the large
number of SOs and the limited number of sensors available to track them, it is impossible to maintain per-
sistent surveillance. Observation gaps result in large propagation intervals between measurements and close
approaches. Coupled with nonlinear SO dynamics this results in difficulty in modeling the probability dis-
tribution functions (pdfs) of the SO. In particular low-Earth orbiting (LEO) satellites are heavily influenced
by atmospheric drag, which is very difficult to model accurately.

Los Alamos National Laboratory (LANL) has established a research effort, called IMPACT (Integrated
Modeling of Perturbations in Atmospheres for Conjunction Tracking), to improve conjunction assessment
via improved physics-based modeling. As part of this effort calibration satellite observations are used to
dynamically calibrate the physics-based model and to improve its forecasting capability. The observations
are collected from a variety of sources, including from LANL’s own Raven-class optical telescope. This
system collects both astrometric and photometric data on space objects. The photometric data will be used
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to estimate the space objects’ attitude and shape. This work uses measured photometric data from Los
Alamos’s own raven class telescope.

A number of atmospheric models exist which can be classified as either empirical or physics-based models.
The current Air Force standard is the High Accuracy Satellite Drag Model (HASDM), which is an empirical
model based on observation of calibration satellites . These satellite observations are used to determine
model parameters based on their orbit determination solutions. Atmospheric orbits are perturbed by a
number of factors including; drag coefficient, attitude, and shape of the space object. The satellites used
for the HASDM model calibration process are chosen because of their relatively simple shapes, to minimize
errors introduced due to shape miss-modeling. Under this requirement the number of calibration satellites
that can be used for calibrating the atmospheric models is limited.

Simulations using computational methods produce accurate estimates for the drag coefficient, but are
too slow for real-time applications of orbit prediction for conjunction assessment. Therefore, modeling the
drag coefficient is very important. In this work, we present the technique for extracting drag coefficient from
light curve measurements

Non-resolved photometric data have been studiedy by many as a mechanism for space object characteriza-
tion. Photometry is the measurement of an object’s flux or apparent brightness measured over a wavelength
band. The temporal variation of photometric measurements is referred to as photometric signature. The
photometric optical signature of an object contains information about shape, attitude, size and material
composition. This work focuses on the processing of the data collected with LANL’s telescope in an effort
to use photometric data to expand the number of space objects that can be used as calibration satellites.

Light curves (the SO temporal brightness) have also been used to estimate the shape for an object.
Light curve approaches have been studied to estimate the shape and state of asteroids. [1, 2] Reference [3]
uses light curves and thermal emissions to recover the three-dimensional shape of an object assuming its
orientation with respect to the observer is known. The benefits of using a light curve-based approach over
the aforementioned others is that it is not limited to larger objects in lower orbits and it can be applied
to small and dim objects in higher orbits, such as geosynchronous. Here light curve data is considered for
shape estimation, which is useful because it provides a mechanism to estimate both position and attitude,
as well as their respective rates. [4, 5]

In the realm of spacecraft dynamics and orbit determination, the drag coefficient is defined in three
distinct ways: (i) a fixed drag coefficient, (ii) a fitted drag coefficient, and (iii) a physical drag coefficient.
Fitted drag coefficients are estimated as part of an orbit determination process and fixed drag coefficients
simply use a constant value for the drag coefficient. Errors from the use of fixed drag coefficients arise
because of the application of the value of 2.2 derived for compact satellites [6] to satellites with complex
geometries or geometries with high aspect ratio such as a rocket body. For high aspect ratio objects, there
can be a large amount of shear that drastically increases the drag coefficient. Meanwhile, multiple reflections
for complex geometries can also lead to divergence from the commonly used value of 2.2. The drag coefficient
also changes with altitude and solar conditions. Fitted drag coefficients are specific to the atmospheric model
used and therefore carry along the limitations of the atmospheric model and also frequently absorb other
model errors. Physical drag coefficients are determined by the energy and momentum exchange of freestream
atmospheric particles with the spacecraft surface3. Throughout this work, the term drag coefficients will
refer to physical drag coefficients, unless stated otherwise.

The drag coefficient, characterized by the interaction between the atmosphere and the object, is an
independent source of error whereas the errors in atmospheric mass density often stem from the use of fixed
and/or fitted drag coefficients in its derivation from orbital drag measurements. Accurately deriving densities
from drag measurements requires, in addition to accurate and high temporal resolution data (as in the case
of an accelerometer), accurate modeling of the drag coefficient along the orbit. In addition, the use of fixed
and/or fitted drag coefficients can by itself induce large orbit prediction errors.

Closed-form solutions for the drag coefficients of satellites with simple convex geometries like a sphere,
cylinder, and cube in free molecular flow (FMF) were developed early in the Space Age [7, 8]; however,
most satellites have complex shapes with concave geometries and require numerical modeling of the drag
coefficient. The need for numerical modeling arises from multiple surface reflections and flow shadowing that
changes the incident velocity distribution which is assumed to be Maxwellian for the analytic solutions. The
drag coefficient in FMF is a function of the atmospheric translational temperature, T , surface temperature,
Tw, spacecraft relative velocity, vrel, chemical composition of the atmosphere, and gas-surface interaction
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Figure 1: Reflection Geometry and Space Object Shape Model

(GSI) model.
The organization of this paper is as follows, first the methodology is briefly discussed, following this the

shape model used in this work are discussed. Next light curve and flux calculate models are shown. Then
atmospheric drag model is shown and the analytical expression for the flat plate CD model is shown and
discussed. Following this the nonlinear least squares approach using in this work is outlined. Finally, results
are shown for simulated and real data examples discussions and conclusions are provided.

3 Shape Model Definition

The shape model considered in this work consists of a finite number a flat facets, where each facet has a set
of basis vectors associated with it. These basis vectors are defined in Figure 1(b) and consist of three unit
vectors uB

n , u
B
u , and uB

v . The unit vector u
B
n points in the direction of the outward normal to the facet. For

convex surfaces this model become more accurate as the number of facets are increased. The vectors uB
u

and uB
v are in the plane of the facet. The space objects (SOs) are assumed to be rigid bodies and therefore

the unit vectors uB
n , u

B
u and uB

v do not change since they are expressed in the body frame.
The light curve and the solar radiation pressure (solar radiation pressure (SRP)) models discussed in

the next sections require that these vectors be expressed in inertial coordinates and since the SO body is
rotating, these vectors will change with respect to the inertial frame. The body vectors can be rotated to
the inertial frame by the standard attitude mapping given by:

uB
i = A(qB

I )u
I
k, k = u, v, n (1)

where A(qB
I ) is the attitude matrix mapping the inertial frame to the body frame using the quaternion

parameterization. Furthermore, the unit vector uI
sun points from the SO to the Sun direction and the unit

vector uI
obs points from the SO to the observer. The vector uI

h is the normalized half vector between uI
sun

and uI
obs. This vector is also known as the Sun-SO-Observer bisector. Each facet has an area A(i) associated

with it. Once the number of facets has been defined and their basis vectors are known, the areas A(i) define
the size and shape of the SO. To determine the SRP forces and light curve characteristics, the surface
properties must be defined for each facet.

Shape model used for this work used triangular facets defined by the location of their vertices d(i). Then
the area of the ith triangular facet formed by the convex hull of the control points is given by, A(i) =
‖d(i) × l(i)‖, where d(i) and l(i) are the vectors defining the sides of the facets or d(i) = bi − bi−1,
l(i) = bi − bi+1. The unit normal vector is given by

un =
d(i)× l(i)

‖d(i)× l(i)‖ (2)

For this work it is assumed that each facet has the same material parameters.
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(d) Flacon 9 Upper Stage

Figure 2: Representative Shape Models for Rocket Bodies

4 Ashikhmin-Shirley Model

In addition to the azimuth and elevation, the optical site also records the magnitude of the brightness of
the SOs. The brightness of an object in space can be modeled using an anisotropic Phong light diffusion
model. [9] This model is based on the bidirectional reflectance distribution function (BRDF) which models
light distribution scattered from the surface due to the incident light. The BRDF at any point on the surface
is a function of two directions, the direction from which the light source originates and the direction from
which the scattered light leaves the observed the surface. The model in Ref. 9 decomposes the BRDF into
a specular component and a diffuse component. The two terms sum to give the total BRDF:

ρtotal(i) = ρspec(i) + ρdiff(i) (3)

The diffuse component represents light that is scattered equally in all directions (Lambertian) and the
specular component represents light that is concentrated about some direction (mirror-like). Reference 9
develops a model for continuous arbitrary surfaces but simplifies for flat surfaces. This simplified model is
employed in this work as shape models are considered to consist of a finite number of flat facets. Therefore
the total observed brightness of an object becomes the sum of the contribution from each facet.

Under the flat facet assumption the specular term of the BRDF becomes [9]

ρspec(i) =

√

(nu + 1) (nv + 1)

8π

(

uI
n(i) · uI

h

)z

uI
n(i) · uI

sun + uI
n(i) · uI

obs − (uI
n(i) · uI

sun)(u
I
n(i) · uI

obs)
Freflect(i) (4)

where the exponent z is given by

z =
nu(u

I
h · uI

u(i))
2 + nv(u

I
h · uI

v(i))
2

(1− (uI
h · uI

n(i))
2)

(5)
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where the Fresnel reflectance is given by

Freflect(i) = Rspec(i) + (1−Rspec (i))
(

1− uI
sun · uI

h(i)
)5

(6)

The parameters of the Phong model that dictate the direction (locally horizontal or vertical) distribution of
the specular terms are nu and nv. The terms in Eq. (4) are functions of the reflection geometry which is
described in Figure 1(b). The diffuse term of the BRDF is

ρdiff(i) =

(

28Rdiff(i)

23π

)

(1−Rspec(i))

[

1−
(

1− uI
n(i) · uI

sun

2

)5
][

1−
(

1− uI
n(i) · uI

obs

2

)5
]

(7)

4.1 Flux Calculation

The apparent magnitude of an SOs is the result of sunlight reflecting off of its surfaces along the line-of-sight
to an observer. First, the fraction of visible sunlight that strikes an object (and not absorbed) is computed
by

Fsun(i) = Csun,vis ρtotal(i)
(

uI
n(i) · uI

sun

)

(8)

where Csun,vis = 455 W/m2 is the power per square meter impinging on a given object due to visible light
striking the surface. If either the angle between the surface normal and the observer’s direction or the angle
between the surface normal and Sun direction is greater than π/2 then there is no light reflected toward
the observer. If this is the case then the fraction of visible light is set to Fsun(i) = 0. Next, the fraction of
sunlight that strikes an object that is reflected must be computed:

Fobs(i) =
Fsun(i)A(i)

(

uI
n(i) · uI

obs

)

‖dI‖2 (9)

The reflected light is now used to compute the apparent brightness magnitude, which is measured by an
observer:

mapp = −26.7− 2.5log10

∣

∣

∣

∣

∣

N
∑

i=1

Fobs(i)

Csun,vis

∣

∣

∣

∣

∣

(10)

where −26.7 is the apparent magnitude of the sun. The reflected light of each facet is now used to compute
the total photon flux, which is measured by an observer:

F̃ =

[

N
∑

i=1

Fobs(i)

]

+ vCDD (11)

where vCDD is the measurement noise associated with flux measured by a CCD sensor.

5 Atmospheric Drag

The drag acceleration on a satellite is defined by

aIDrag = −1

2

CDA
m

ρv2
rel

vrel

|vrel|
(12)

where aIDrag is the drag force on the satellite, ρ is the mass density of the local atmosphere, vrel is the
relative velocity between the satellite and the co-rotating atmosphere, CD is the satellite drag coefficient, A
is the projected area of the satellite normal to the velocity vector, and m is the satellite mass. In practice, A
and m are well-known for attitude-stabilized artificial satellites while vrel can be assumed to be accurately
known in the absence of atmospheric winds.

The remaining two unknowns are T and CD. For orbital propagation, T is generally taken from an empir-
ical atmospheric model such as NRLMSISE-00. This leaves CD as the only remaining unknown parameter.
Early in the space age, it was common practice to simply orbital propagation by using CD 2.2; however,
theoretical work has shown that CD can have large variations away from the constant value of 2.2. CD is
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dependent on the atmospheric translation temperature, the speed of the satellite relative to the atmosphere,
the satellite surface temperature, the atmospheric composition, the satellite surface composition, and the
momentum and energy accommodation coefficients of the satellite surface.

Nearly all low Earth orbit satellites orbit at altitudes above 200 km where the atmosphere is free
molecular. In free molecular flow, collisions between particles are so infrequent that they can be neglected.
Under such conditions, closed-form solutions can be found for simple convex satellite geometries such as a
sphere, flat plate, and cylinder. Closed-form solutions only exist for convex geometries because the concave
geometries allow multiple reflections from the satellite surface and break a fundamental assumption of the
solution that the incident velocity distribution function is Maxwellian.

The closed-form solution for the drag coefficient of a flat plate with a single side exposed to the flow is
especially useful because any arbitrary geometry (convex or concave) can be decomposed into small flat plate
elements. The total drag coefficient for the arbitrary geometry is then approximated as the sum of the drag
coefficients of each of the flat plate elements. For convex geometries, the approximation converges to the
true drag coefficient as the flat plate elements’ size goes to zero. For concave geometries, the approximation
does not account for multiple reflections from the satellite surface and is generally in error by a few percent.

Sentman [8] derived the closed-form solution for a flat plate with a single side exposed to the flow under
the assumption of diffuse reflection. The solution in terms of the angle of attack, θ, is given by

CD =cos(θ)

(

1 +
1

2s2

)

[

1 + erf(s+ cos2(θ))
]

+

(

1√
πs

+
cos2(θ)

2s2

)

exp
{

(−s2 + cos2(θ))
}

+

√

T(k,r)

Ts

[√
π

2s
cos2(θ)

(

1 + erf(s2 + cos2(θ))
)

]

(13)

The angle of attack is defined θ = arccos(vT
relun). Here s is the speed ratio defined by

s =
|vrel|
vmp

(14)

where vmp is the most probable speed of a Maxwellian velocity distribution at the local translational tem-
perature of the atmosphere, T∞, and is defined by

vmp =

√

2kBT∞

mp
(15)

Here kB is the Boltzmann constant and mp is the atmospheric particle mass. The error function, erf(x), is
defined as

erf(x) =
2√
π

x
∫

0

e−t2dt (16)

T(k,r) is the kinetic reflected temperature and is defined by

T(k,r) = T(k,i)(1 − α) + αTs (17)

where t is the energy accommodation coefficient and T(k,i) is the kinetic incident temperature defined by

T(k,i) =
mp|vrel|2

3kB
(18)

When computing the drag coefficient for a mixture of gases, the total drag coefficient is the sum of the
individual species drag coefficients weighted by the species mole fraction and particle mass and normalized
by the average mass of the mixture, mavg:

C(D,T ) =
1

mavg

N
∑

j=i

χjmjCD,j (19)

Here N is the total number of species and mavg is computed from

mavg =

N
∑

j=i

χjmj (20)
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6 Nonlinear Least Squares

The estimation approach choose for this work is the Nonlinear Least Squares (NLSQ) method. This method
is a batch method and therefore it processes all the data at once. To apply the NLSQ method to attitude and
angular velocity determination one much linear both the measurement and dynamic model. Also the attitude
representation chose for this work is the quaternion and therefor the attitude error must be approximated
by a small angle error to avoid the quaternion unit constraint. The goal is to estimate a state xk for times tk
from measurements zk for k = 1, . . . ,m. Consider the following dynamic and measurement model, assuming
m scalar measurements with uncorrelated measurement errors

xk+1 = fk(xk) (21a)

zk = gk(xk) + nk (21b)

where ni ∼ N (ni; 0,Σ
2
i ) and E {ninj} = δijΣ

2
i . Then Eq. (21a) and Eq. (21a) can be used to estimate

the initial condition of system, x0, by writing the measurements as zk = gk(φk(x0)) + nk where φk(·) takes
initial conditions and maps them to time k. The measurements can be written in vector form as

y = h(x0) + v (22)

where y = [z1, . . . , zm], v ∼ N (v;0, R), R = diag
(

Σ2
1, . . . ,Σ

2
m

)

, and h(·) = gk(φk(·)). The system in
Eq (21) can be solved using nonlinear least square by linearizing the system about the current estimate.
Using Taylor series expansion the measurement function from Eq. (22) can be written as

h(xo) = h(x̂o) +H(x̂o)(x̂o − xo) +O(2) (23)

where H = ∂h(x̂o)
∂xo

∣

∣

∣

xo=x̂o

= ∂g(φk(x̂o))
∂φk

∂φk(x̂o)
∂xo

∣

∣

∣

xo=x̂o

. The derivatives of the measurement function g(·) and
the dynamic function φk(·) must be calculated. The derivatives of gk(·) can be derive from the equations
in section §4 and where shown in reference ?. The derivatives of φk(·) involve the linearization of attitude
kinematics and dynamic equations and these equations are shown later in the appendix. The NLSQ solution
can be found by minimizing the following cost function

J(xo) =
1

2
[z− h(xi)]

T
W [z− h(xi)] (24)

where the weighting matrix is selected to be measurement covariance W = R−1. The formal NLSQ iterative
solution can be written as

x̂i+1
o = x̂i

o +
[

HT
i WHi

]−1
HT

i W [z− h(xi)] (25)

where Po = E{(x̂o − xo)(x̂o − xo)
T } and Po =

(

HT
i WHi

)

−1
The estimate of xo is obtained using Eq.(26)

iteratively until a termination condition is met. Two conditions are set in this work, max number of iterations,
imax, and relative tolerance

ǫ =
‖x̂i+1

o − x̂i
o‖

‖x̂i
o‖

(26)

For this work ǫ = 0.1 and imax = 200. This solution allows for a covariance to be computed for each time
step by using Po and the linearized dynamic equations. Then this covariance could be used to represent
uncertainty in CD that is computed from the orientation estimates.

7 SIMULATION RESULTS

This section discussed simulation results for the proposed method. Four examples are considered were for
each example a different shape model is used. The shape models used are shown in Figure 2 were a cylinder
with round top (Figure 2(a)), Atlas upper stage (Figure 2(b)), cylinder (Figure 2(c)), and a Flacon 9 upper
stage (Figure 2(d)) models are used. Each model uses the same initial attitude and positions states and
simulation conditions are given by

• Geographic position of the ground site is 0◦ North, 172◦ West with 0 km altitude
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Figure 3: True Attitude and Angular Velocity Profile
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(b) Cylinder with Round Top
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(c) Flacon 9 Upper Stage
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Figure 4: Magnitude for Different Rocket Body Models

• Initial inertial position and velocity are chosen as rI = [−7.8931× 102 3.6679× 104 2.1184× 104]T km

• Initial inertial velocity is chosen as vI = [−3.0669 − 4.9425× 10−2 − 2.8545× 10−2]T km/s

• The initial time of the simulation is May 8, 2007 at 5:27.55

• Initial quaternion: qB
I = [1/

√
2 0 0 1/

√
2]T

• A constant rotation rate, defined as the body rate with respect to the inertial frame, represented in
body coordinates, is used given by ω

B
B/I = [0 0.00262 0]T rad/s

8



For all simulations scenarios, measurements are produced using zero-mean white-noise error processes
with standard deviation of 0.05 for magnitude and standard deviation of 1 arc-seconds for azimuth and
elevation. The initial errors for the states are 50 deg for all three attitudes, 1, 000 deg/hr for the rotational
rate. The time interval between the measurements is set to 2 seconds. Data is simulated for 1 hours. The
simulation true quaternion and angular velocity are shown in Figure 3 and simulation case had the same
true orientational trajectories.

The orientational state estimates can be found the NLSQ approach for each case are shown in Figures
5, 6, 8, and 7. Figure 4 shows the simulated magnitude measurements for the models considered for this
work. From this figure we can see that the simulate magnitude differ greatly for each rocket body model.
The simple cylinder model has the smallest variation since it has the smallest number of shape feature and
smoother shape. The Flacon 9 upper stage has the greatest variation since it has a very large nozzle which
provides a district feature in the light curve. The cylinder with round top model and atlas upper stage of
light curves of similar magnitudes but the atlas upper stage has additional variation due to the small nozzle
in its shape model. We can see from the simulation results that all the model shown good performance in
terms of the measurement residual and by how well the predicted observation match the actual observation.
However, since the light curve for the model are different they do not show the same observability it terms
of the attitude and angular velocity estimated. From Figure 8 we can see that Flacon 9 rocket body shows
the best attitude error of about 0.2 Degs, 0.2 Degs, and 5 Degs, in Roll, Pitch, and Yaw respectively.

Finally, the estimates from the NLSQ approach are used to compute CD using the equations from §5.
These CDs are shown in Figure 9 for each rocket body model from this figure one can see that both variations
due to rotation of the rocket bodies and variation due to changes of vrel due to orbital motion. The CD

values can be used to compute a mean CD and a variance about that mean. This could be used to quantify
the uncertainty in CD if one assume a constant CD. These values could be used in an orbit propagation and
orbit determination directly.
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Figure 5: NLSQ Results for Cylinder with Round Top Rocket Body Model
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Figure 6: NLSQ Results for Cylinder Rocket Body Model

8 Actual Data Scenario

In this section actual data from Los Alamos’s satellite observation campaign was used. The data use in
this example was gathered September 19 2012 03:29:29.5 UT. The object that was observed was a ARIANE
3 Rocket body with SSN number 15562. The observation were made from a small raven class telescope.
The observations were sample every second for 5 mins and the observations were taken from New Mexico.
The simulation results for the real data example are shown in Figure 10. From Figure 10(c) we can see that
predicted magnitude fits the observations well and captures the main period of the light curve measurements.
The estimated quaternion and angular velocity are shown in Figures 10(a) and 10(b). The orientation
trajectory was recovered from actual data but more development is required until this can provide an
improvement orbit propagation, determination, or atmospheric density recovery. The measurement errors
must be understood better to allow for actuate uncertainty quantification.

9 CONCLUSIONS

In this paper, an Nonlinear Least Squares estimation scheme using light curve measurements was presented
and was used to estimate attitude and angular velocity of a space object (SO) along. The shape of the SO
was assumed known and this work focused on rocket body with perigee lower then 300 km. The shape model
used consisted of triangular facets to allow for the modeling of complex rocket body shapes. Four different
rocket body models were used that included, a simple cylinder, a simple cylinder with rounded top, a Flacon
9 upper stage, and an Atlas upper stage. The light curve model used was based on the Ashikhmin-Shirley
BRDF and showed good performance for simulated and real data examples. The estimated orientation
trajectories were used to estimate the drag coefficient of the SO over an orbit. This drag coefficient can
then be used in orbit determination, orbit propagation, or to bound uncertainty of the drag coefficient over
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Figure 7: NLSQ Results for Altas Rocket Body Model

the orbit based on orientation variations. Future work will study the use of this approach along with the
Tomography method to recover density.

10 Appendix

In terms of the quaternion, the attitude matrix is given by

A(q) = ΞT (q)Ψ(q) (27)

where

Ξ(q) ≡
[

q4I3×3 + [̺×]
−̺

T

]

(28a)

Ψ(q) ≡
[

q4I3×3 − [̺×]
−̺

T

]

(28b)

with

[a×] ≡





0 −a3 a2
a3 0 −a1
−a2 a1 0



 (29)

for any general 3 × 1 vector a defined such that [a×]b = a × b. This representation is constrained since
the quaternion is of unit length and therefore qTq = 1. The kinematics dynamics are given by a first-order
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Figure 8: NLSQ Results for Flacon 9 Rocket Body Model

differential equation:

q̇ =
1

2
Ξ(q)ω (30a)

ω̇
B
B/I = J−1

SO

(

TB
srp −

[

ω
B
B/I×

]

JSOω
B
B/I

)

(30b)
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