
Astrometric and Photometric Data Fusion for Mass and Surface

Material Estimation using Refined Bidirectional Reflectance

Distribution Functions-Solar Radiation Pressure Model∗

Richard Linares†, John L. Crassidis∗, Charles J. Wetterer‡,

Keric Hill†, and Moriba K. Jah§

Abstract

This paper studies the inference of space object mass, which is made possible due to the coupled
influence of solar radiation pressure (SRP) acceleration on the orbit of satellites and their observed
brightness. This effect takes time to be observed in optical angle measurements given the combination of
a priori kinematic state uncertainties and the magnitude of this effect relative to them and the sensor data
noise. Therefore multiple nights of observations are typically required to extract this “weak” signal from
collected measurements. From angles data alone, only effective albedo-area-to-mass can be estimated
since this term appears in the SRP acceleration equation, but when photometric data is fused with
the astrometric angle measurements, it provides observability of, and thus constrains, the albedo-area
estimates. This inferred constraint makes mass the most open degree of freedom and thus the fused data
eventually informs the filter of the mass. The observability of albedo-area products is provided by the
photometric brightness measurements, since the brightness of the space object is a strong function of the
albedo-areas. However, the relationship between the albedo-areas and both the photometric return and
SRP involves knowledge of the Bidirectional Reflectance Distribution Function (BRDF) for the surface of
the space object. If the BRDF in the photometric measurement model and the BRDF in the SRP model
are not consistent with each other, then the resulting estimated albedo-areas and mass are inaccurate
and biased. This work studies the use of physically consistent BRDF-SRP models for mass estimation
where simulation studies are used to provide an indication of the benefits of using these new models.

An unscented Kalman filter approach that includes BRDF and mass parameters in the state vector is
used. The full set of estimated parameters are position, velocity, attitude, angular rates, mass, exponen-
tial factor (parameter in Ashikhmin-Shirley BRDF related to sharpness of specular reflection), specular
coefficient, and diffuse coefficient. The challenge of adding these additional parameters is the fact that
they are constrained, where all must be positive and the specular and diffuse coefficients must be less
than unity. Two approaches are adopted to account for the constraints; the first approach projects the
sigma points onto the constraint boundary if any violate the constraints on the parameters, and the
second approach defines proxy parameters that are unconstrained version of the original parameters.
The results for estimating mass are promising and show that the addition of new BRDF-SRP models
benefits the estimation process.

1 INTRODUCTION

Deep space optical surveys of near geosynchronous (GEO) objects have identified a class of high area-to-mass
ratio (HAMR) objects [1]. The exact characteristics of these objects are not well known and their motion
pose a collision hazard with GEO objects due to the solar radiation pressure (SRP) induced, large variations
of inclination and eccentricity. These objects are typically non-resolved and difficult to track due to dim
magnitude and dynamic mismodeling. Therefore, characterizing the large population of HAMR objects in
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GEO orbits is required to allow for a better understanding of their origins, and the current and future threats
they pose to the active space object (SO) population.

For establishing unique identification and discrimination of SOs past researchers have searched for defining
attributes that are unique to a given SO. These attributes can then be used to study classes of objects or
at the very least correlate observations. An obvious attribute that can be assigned to an SO is its orbital
state. Reference [2] studies the process of correlating a sequence of optical measurements to a given SO
using constraints on the orbital states derived from the measurements. Although orbital states do provide
an attribute to identify an SO, for the case of high-area-to-mass ratio objects and objects with sparse
observations it may be difficult to identify an SO with just this attribute.

In order to understand the nature and eventually the origin of these objects, physical characteristics such
size, shape and material are required. These characteristics can serve as information on the shape and the
attitude motion of a debris piece. They can be obtained from existing data sources such as photometric
and astrometric data [3]. To investigate the surface material properties reflectance spectroscopy data can be
gathered [4]. Reflectance spectroscopy or multi-band photometric data can be used to study non-resolved
debris objects and determine their material composition [5]. The measurements made from debris objects
can be compared to laboratory derived observations to determine material composition of the debris [6–8].

The photometric return depends on a number of parameters such as shape, size, material and observation
geometry. Therefore, extracting material composition is difficult. Reference [9] studies the light curves of
different uncontrolled SOs. From this study it is clear that there are unique features in these light curves.
But reflectance parameters and albedo estimates may also provide useful attributes. Size estimates have
been derived in the past using radar measurements [10], but for objects in higher orbits these types of
measurements may not be available. Reference [11] develops a technique for estimating the intrinsic but
rough size and albedo estimates of orbital fragmentation debris from optical measurements. These albedo
values provide a very useful attribute, but the estimation technique assumes that the objects are spherical
in shape. This assumption limits the accuracy of this method.

Features may also exist in the light curve measurements. For example some objects have been identified
by the shape and features in their light curves. Reference [12] shows how glint data can be used to determine
the solar panel off-set and improve the detectability of SOs. Glint data however is very much a function of the
geometry and orientation of the SO, since glint only occurs at given reflection angles. Therefore to process
this data attitude and shape must be accounted for in the estimation process. Reference [12] does not use
estimation techniques to account for the attitude dependency, but rather makes qualitative conclusions from
glint data. Also Ref. [13] uses optimal control methods to determine reachability and correlate observations;
knowledge of mass can greatly assist in these types of calculations.

Estimating the dynamic characteristics of a HAMR object using light curve and astrometric data can
allow for mass parameters to be observable. Estimating mass for HAMR objects can help in the development
of a detailed understanding of the origin and dynamics of these objects. It has been shown that the SRP
albedo area-to-mass ratio, CrA

m , is observable from angles data [14] through the dynamic mismodeling of SRP
forces. Reference [14] conducts a study with simulated and actual data to quantify the error in the estimates
of CrA

m and good performance is found using data spanning over a number of months. Also Ref. [15] shows
that orbital, attitude and shape parameters can be recovered with sufficient accuracy using a multiple-model
adaptive estimation approach coupled with an Unscented Kalman Filters (UKFs). This approach works
reasonably well but requires that the area-to-mass ratio is known a priori. The purpose of this work is
to show that since CrA

m is observable from angles data and shape/albedo properties are observable from
photometric data, then by fusing these data types mass can be extracted with reasonable accuracy.

The area-to-mass ratio of a space object can also provide an attribute. This ratio is very important for
predicting the orbital motion of the SO under the influence of solar radiation pressure (SRP). Since SRP is
the primary nonconservative disturbance force for GEO objects it is a very important dynamical parameter
for this class of objects. If the albedo of the object is known it may be possible to determine the mass from
this parameter. A similar approach has been applied to low-Earth orbiting objects using the drag ballistic
coefficient [16]. Knowing the mass of a space object can be very valuable. For example one can examine
breakup fragments by determining the masses of each fragment [17]. This work will look at methods for
determining the mass of an SO from photometric and astrometric data sources.

The organization of this paper is as follows. First, the methods used to recover mass are discussed.
Then the models used for SO shape, orbital dynamics and attitude dynamics are discussed. Following this
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a description of the measurement models used in this paper are given. Next, a review of the constrained
UKF approach is provided. Finally, simulation results of the mass and albedo-area estimation approach are
provided.

2 DETAILS OF APPROACH

The mass estimation approach used in this paper depends on the fusion of the astrometric and photometric
data. Since both of these data sources have a albedo-area dependency then mass can be separated from
albedo-area through data fusion. For example consider the following simplified relationships:

aSRP = −k
CrA

m
s (1a)

Fflux = CdA(cos(θi))(cos(θo)) (1b)

where k = Φ/c. The terms Cd, Cr, θi, and θo are the diffuse coefficient, reflectance coefficient, incident angle
and observer angle, respectively. As mentioned previously, light curve data is sensitive to Ar and angles
data are sensitive to CrA

m , where Cr is the albedo coefficient for the SRP force [14]. The Cr coefficient is
a function of the albedo of the SO; Cr = 1 + r for the cannonball model [14], and therefore, to allow for
mass to be separated from area, an estimate of albedo must be determined. It is shown in Ref. [18] that
Cr = 1 + 2

3Cdiff for a diffuse sphere assuming Lambert’s cosine law and Cr = 1 + 4
9Cdiff for a diffuse flat

plate assuming Lambert’s cosine law with the normal direction aligned with the sun direction.
From Eq. (1) and the relationship between Cr and Cd, it is clear that mass separated from area is very

much dependent on the assumptions made about shape and surface reflection. Also it is clear that brightness
and the SRP force are related by the physics that they model. Therefore, to obtain realistic and reliable
estimates for mass both the SRP and light curve models must be physically constant. Toward this end a
general SRP model is defined as

aSRP = −
Nfacet
∑

k=1

∞
∫

0

Fi(λ)Akfk(L
TNk)



L+





2π
∫

0

2π
∫

0

fr cos(θr)Vdθrdφ







 dλ (2)

where this model calculates the acceleration due to Nfacet facets. The terms Ak, fk, and Fi(λ) are the area
of the kth facet, fraction of facet that is illuminated, and the wavelength dependent solar flux respectively.
The BRDF (fr) defines how light is reflected from an opaque surface with a given surface normal direction
(Nk) based on a light source in the L direction. Finally each differential dθrdφ spherical element of outing
light rays has s V vector defining the direction of the acceleration do to ray existing through this spherical
element. Then the acceleration can be calculated by defining fr depending on the surface properties and
then evaluating the integral in Eq. (2).

2.1 Shape Model

The shape model considered in this work consists of a finite number a flat facets. For curved surfaces this
model becomes more accurate as the number of facets is increased. Each facet has a set of three basis vectors
(uB

n , u
B
u , u

B
v ) associated with it as defined in Figure 1(a). The unit vector uB

n points in the direction of
the outward normal to the facet, and the vectors uB

u and uB
v are in the plane of the facet. The notation

superscript B denotes that the vector is expressed in body coordinates. The SOs are assumed to be rigid
bodies, and the unit vectors uB

n , u
B
u and uB

v therefore do not change in time since they are expressed in the
body frame.

The light curve and the SRP models discussed in the next sections require that these vectors be expressed
in inertial coordinates. Since the SO body is rotating, these vectors will change inertially. The body vectors
can be rotated to the inertial frame by the standard attitude mapping given by

uB
k = A(qB

I )u
I
k, k = u, v, n (3)

where A(qB
I ) is the attitude matrix mapping the inertial frame to the body frame using the quaternion

parameterization. The superscript I denotes that a vector is expressed in inertial coordinates. The unit
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Figure 1: Geometry and Shape Description

vector uI
sun points from the SO to the Sun direction, and the unit vector uI

obs points from the SO to the
observer as shown in Figure 1(b). The vector uI

h is the normalized half vector between uI
sun and uI

obs also
shown in Figure 1(b). This vector is also known as the Sun-SO-Observer bisector. Each facet has an area
A(i) associated with it. Once the number of facets has been defined and their basis vectors are known, the
areas A(i) define the size and shape of the SO.

For the development of the measured light curve data, faceted SO rectangular cuboid shape models as
shown in Figure 1(b) are used. The rectangular cuboid model is described by three parameters, l, a, and d,
which are the length, width, and height, respectively.

2.2 Review of Bidirectional Distribution Functions

A number of bidirectional reflectance distribution functions (BRDFs) exist in literature. These models are
based on the BRDF that models light distribution scattered from the surface due to the incident light. The
BRDF at any point on the surface is a function of two directions, the direction from which the light source
originates and the direction from which the scattered light leaves the observed the surface. These models
include Ashikhmin-Shirley [19], a simplified Blinn-Phong [20], and Cook-Torrance [21] to list some. The
BRDF models how light energy reflects off of surfaces and how this reflected energy is distributed in going
directions. The brightness of an object in space can be modeled using an anisotropic Phong light diffusion
model. [19]

The model in Ref. [19] decomposes the BRDF into a specular component and a diffuse component. The
two terms sum to give the total BRDF:

ρtotal(i) = ρspec(i) + ρdiff(i) (4)

The diffuse component represents light that is scattered equally in all directions (Lambertian) and the
specular component represents light that is concentrated about some direction (mirror-like). Reference 19
develops a model for continuous arbitrary surfaces but simplifies for flat surfaces. This simplified model is
employed in this work as shape models are considered to consist of a finite number of flat facets. Therefore
the total observed brightness of an object becomes the sum of the contribution from each facet:

fr = (dRd + sRs) (5)

which depends on the diffuse bidirectional reflectance (Rd) and the specular bidirectional reflectance (Rs) and
the fraction of each to the total (d and s respectively where d+ s = 1). These bidirectional reflectances are
calculated differently for the various models. In each model, however, c = VTH, ρ is the diffuse reflectance
(0 ≤ ρ ≤ 1), and F0 is the specular reflectance of the surface at normal incidence (0 ≤ F0 ≤ 1). To be used
as a prediction tool for brightness and radiation pressure calculations, an important aspect of the BRDF
is energy conservation. For energy to be conserved, the integral of the BRDF times cos (θr) over all solid
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angles in the hemisphere with θr ≤ 90 needs to be less than unity, with

2π
∫

0

π/2
∫

0

fr cos (θr) sin (θr) dθrdφ = Rd +Rs (6)

For the BRDF given in Eq. (5), this corresponds to constant values of Rd = dρ and Rs = sF0. The
remaining energy not reflected by the surface is either transmitted or absorbed. In this paper it is assumed
the transmitted energy is zero. A review of the various BRDS functions is provided in Table 1.

Ashikhmin-Shirley BRDF: In addition to d, ρ, and F0, the Ashikhmin-Shirley BRDF has two expo-
nential factors (nu, nv) that define the reflectance properties of each surface. The Ashikhmin-Shirley diffuse
and specular reflectivities are not constant, however, but rather complicated functions of illumination angle,
exponential factor, and the diffuse and specular reflectances. In all cases, however, Rd + Rs ≤ 1, so energy
is conserved.

Blinn-Phong: The specular bidirectional reflectance of the original Phong model is proportional to
(NR)n, where R is the perfect mirror-like reflection of L. Blinn [20] proposes that H be used instead of
R to make it easier and faster to calculate. Unfortunately, both versions of the model do not conserve
energy and thus are unsuited for the purposes of brightness estimation. The model can be made to conserve
energy, however, by modifying the leading term. In keeping with the desire for simplicity in this model, the
leading term is chosen to only be a function of the exponential factor and set to yield a reflectivity equal
to the mirror-like reflection of Eq. (3) at normal illumination. In addition to d, ρ and F0, the simplified
Blinn-Phong BRDF has a single exponential factor (n) that defines the reflectance properties of each surface.

Cook-Torrance BRDF: This model has the facet slope distribution function (D), the geometrical
attenuation factor (G) and the reflectance of a perfectly smooth surface (F ) with g = n2 + c2 − 1 and the

index of refraction n = 1+
√
F0

1−
√
F0

. In addition to d, ρ, and F0, the Cook-Torrance BRDF has a facet slope

(m) parameter that defines the reflectance properties of each surface. The facet slope parameter of the
Cook-Torrance BRDF and the exponential factor of the Ashikhmin-Shirley and Blinn-Phong BRDFs are
roughly related by n = 2/m2.

Table 1: Review of Bidirectional Distribution Functions

Lambertian Rd = ρd
π

Rs = 0
non-Lambertian diffuse Rs = 0

Rd = F1

(

1−
(

1− uI
n
T
(i)uI

sun/2
)5

)(

1−
(

1− uI
n
T
(i)uI

obs/2
)5

)

Ashikhmin-Shirley F = F0 +
(

1
s − F0

)

(1− c)
5

Rd = 28ρ
23π (1− sF0)

(

1−
(

1− N
T
L

2

)5
)(

1−
(

1− N
T
V

2

)5
)

Rs =

√
(nu+1)(nv+1)

8π
F

cmax[NTL,NTV] (cos (α))
nu cos2(β)+nv sin2(β)

Cook-Torrance Rd = ρ/π

D = 1
πm2 cos4 αe

tan(α)/m2

G = min

{

1,
2(NT

H)(NT
V)

VTH
,
2(NT

L)(NT
H)

VTH

}

F = (g−c)2

2(g+c)2

{

1 + [c(g+c)−1]2

[c(g−c)+1]2

}

Rd = DGF
4(NTL)(NTV)

Blinn-Phong Rd = ρd
π

Rd = (1− d)
(

F0(n+2)(n+4)
8π(n+2−n/2)

)(

uI
n
T
(i)uI

h(i)
)
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3 SOLAR RADIATION PRESSURE DEPENDENCE ON BRDF

In general, Rd and Rs are complicated functions of illumination angle and material properties represented
by parameters within the particular BRDF model. For certain BRDFs, however, the integral can be solved
analytically. For example, the BRDF with a Lambertian diffuse component and purely “mirror-like” specular
component (where R = 2

(

LTN
)

N− L is the direction of mirror-like reflection of L) is given by

fr = d (ρ/π) + s

(

Foδ(V −R)

cos θi

)

(7)

where δ is the Delta function. If the BRDF from Eq. (7) is submitted into Eq. (2) the following acceleration
due to the SRP is found by

aSRP = −
Nfacet
∑

k=1

FsunAkfk(L
TNk)

msoc

(

(1− sk(F0)k)L+

(

2

3
dkρk + 2sk(F0)kLNk

)

Nk

)

(8)

For a more complicated BRDF, the exact solution obtained by numerically integrating Eq. (2) is different than
the idealized solution obtained by Eq. (8). The numerical integration of Eq. (2) over the full hemisphere,
however, is time consuming and might be prohibitive to calculate in certain applications. In this paper,
correction factors for Eq. (8) are developed and the acceleration is calculated in a single step by using

aSRP = −
Nfacet
∑

k=1

FsunAkfk(L
TNk)

msoc

(

(1−∆s1sk(F0)k)L+

(

2

3
(∆d)dkρk + 2∆s2sk(F0)kLNk

)

Nk

)

(9)

where the ∆ factors depend on the illumination angle and possibly parameters within the BRDF model.
Thus, for ∆d = 1, the diffuse reflectance is Lambertian and for ∆s1 = ∆s2 = 1, the specular reflectance is
mirror-like. The further these factors are from unity, the greater the difference between the BRDF model
and the idealized BRDF of Eq. (8). Values for the specular ∆’s can be numerically calculated at a particular
illumination angle and set of BRDF parameters by comparing the numerical integration of the BRDF in
Eq. (2):

Ĺ =

2π
∫

0

π/2
∫

0

fr (VN) cos θrdθrdφr (10)

to the equivalent portion of Eq. (9) when only considering the specular component:

Ĺ = (1−∆s1sk(F0)k)L+ (2∆s2sk(F0)kLNk)Nk (11)

Specifically, for the case were L 6= N we have

∆s1 =

(

ĹTN cos θi − ĹTL
)

F0 sin
2 θi

(12)

∆s2 =

(

ĹTN− ĹTL cos θi

)

2F0 cos θi sin
2 θi

(13)

In this case, one of the specular ∆’s must be estimated using nonzero illumination angles as the illumination
angle approaches zero, and the other can be calculated from Eq. (13). The ∆’s for each model are shown in
Table 2.

4 Unscented Kalman Filter Formulation

Applying the UKF structure for attitude estimation has some challenges. For instance, although three
parameter sets are attitude minimal representations, they inherently have singularities. On the other hand
the quaternion representation, which is a four parameter set with no singularity, has a nonlinear constraint
which results in a singular covariance matrix. This does not allow use of quaternions in a straightforward UKF
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Table 2: Solar Radiation Pressure ∆ Corrections

Lambertian ∆d−L = 1
∆s1 = ∆s1 = 0

non-Lambertian diffuse ∆d−NL(θi, sF0) =
1573
1426

(

1−
(

1− cos θi
2

)5
)

∆s1−NL = ∆s1−NL = 0

Ashikhmin-Shirley ∆d−AS(θi, sF0) =
1573
1426

(

31
32 (1− sF0)

)

(

1−
(

1− cos θi
2

)5
)

∆s1−AS = ∆s1AS(n)∆s1AS(θi, sF0)δs1−AS(n)
∆s2−AS = ∆s2AS(n)∆s2AS(θi, sF0)δs2−AS(n)

Cook-Torrance ∆d−CT (θi, sF0) = 1
∆s1−CT = ∆s1CT (n)∆s1CT (θi, sF0)δs1−CT (n)
∆s2−CT = ∆s2CT (n)∆s2CT (θi, sF0)δs2−CT (n)

Blinn-Phong ∆d = 1
∆s1−BP = ∆s1BP (n)∆s1BP (θi, sF0)δs1−BP (n)
∆s2−BP = ∆s2BP (n)∆s2BP (θi, sF0)δs2−BP (n)

implementation. Reference [22] overcomes these challenges by utilizing generalized Rodrigues parameters
(GRPs), a three parameter set, to define the local error and quaternions to define the global attitude.

The global parameterization for attitude UKF approach used for this work is the quaternion while a
minimal parametrization involving the generalized Rodriguez parameters (GRPs) is used to define the local
error. The representation of the attitude error as a GRP is useful for the propagation and update stages
of the attitude covariance because the structure of the UKF can be used directly. Complete explanations
of the quaternion and its mapping to GRPs is provided in Refs. [23] and [24]. In the UKF implementation
described in Ref. [22], the covariance matrix is interpreted as the covariance of the error GRP because for
small angle errors, the error GRP is additive and the UKF structure can be used directly to compute sigma-
points. The error GRP sigma points are converted to error quaternions and then to global quaternions for
the propagation stage. To compute the propagated covariance the global quaternions are converted to error
quaternions and then back to error GRPs. The process is then as follows: error GRP → error quaternion,
error quaternion → global quaternion, global quaternion → error quaternion, and finally error quaternion
→ error GRP.

4.1 Constrained UKF

The estimator discussed in this work includes constrained states since the area states are constrained to be
positive. To account for these constraints the method two methods are used. The constrained UKF method
discussed in Ref. [25] is used and proxy states method is used. Reference [25] incorporates the information of
the constraints in the UKF algorithm by projecting sigma points and estimates onto the constraint boundary
when sigma points or estimates are found outside the feasible region. Since r ≥ 0 we have the following
constraints

rA ≥ 0 (14a)

A ≥ 0 (14b)

Then if the constraints are violated during, sampling the sigma pointing from covariance matrix, after
propagation, or after the update step, the estimates and or sigma points that violate the constraints are
projected onto the constraint boundary.

The proxy state method for dealing with constraints is based on defined unconstrained proxy values
and estimating those values instead of the constrained states. To account for the constraints within the
filter, unconstrained proxy values are used in the state vector and estimation filter and these proxy values
are converted back to the surface parameter value when needed. Then given a constrained parameter
(a1 : a1 > 0, a2 : 0 < a2 < 1) proxies b1 and b2 can be defined. The conversion equations to the proxy value
and from the proxy value for each of the surface parameters are
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b1 = ln (a1) , a1 = exp (b1) (15a)

b2 =
1

2
ln

(

a2
1− a2

)

, a2 =
[tanh (b2) + 1]

2
(15b)

Depending on the kind of state constraint either Eq. (15a) or Eq. (15b) is used.
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Figure 2: Ashikhmin-Shirley Results

5 SIMULATION RESULTS

Two simulations cases are presented: an Ashikhmin-Shirley model and a Cook-Torrance model. Both cases
have the same dynamic configuration, with same initial attitude, true orbit and true angular velocity. The
cases only differ in the BRDF model used to simulate and process the measurements. For the generation of
data for the true model, an equatorial ground station is chosen as the site of the observer. Also, all scenarios
use the same shape model which contains six sides where the areas and BRDF parameters are assumed to
be the same for each side. The SO is simulated to fly in a near-geosynchronous orbit in a trajectory that is
continuously lighted. This is accomplished by inclining the orbit by 30 degrees and choosing an appropriate
time of the year, thereby avoiding the shadow cast by the Earth. The simulation parameters are:

• Geographic position of the ground site is 0◦ North, 172◦ West with 0 km altitude
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Figure 3: Cook-Torrance Results

• Initial inertial position and velocity are chosen as rI = [−7.8931× 102 3.6679× 104 2.1184× 104]T km

• Initial inertial velocity is chosen as vI = [−3.0669 − 4.9425× 10−2 − 2.8545× 10−2]T km/s

• The initial time of the simulation is May 8, 2007 at 5:27.55

• Initial quaternion: qB
I = [1/2 0 0 1/2]T

• A constant rotation rate, defined as the body rate with respect to the inertial frame, represented in
body coordinates, is used given by ω

B
B/I = [0 0.00262 0]T rad/s

For all simulations scenarios, measurements are produced using zero-mean white-noise error processes
with standard deviation of 0.1 for magnitude and standard deviation of 1 arc-seconds for azimuth and
elevation. The initial errors for the states are 5 deg for all three attitudes, 1, 000 deg/hr for the rotational
rates, and 1 km and 0.001 km/s for the position and the velocity errors, respectively. The initial condition
error-covariance values are set to 202 deg2 for all three attitude components, 1, 4002 (deg/hr)2 for the
rotational rates, and 12 km2 and 0.0012 (km/s)2 for the position and the velocity errors, respectively. The
initial condition error-covariance values for the mass, albedo-area, and area are 3002 kg2, 102 m4, and 102

m4, respectively. The time interval between the measurements is set to 5 seconds. Data is simulated for 7
nights (about 7 orbits) where observations of the SO are made each night for 1 hours. The simulation results
are plotted versus number of data samples since there are large time gaps between each 1 hour data arc.

For the development of the measured light curve data a six sided facet SO shape model is used. The three
parameters for the shape model are given, l, a, and d which are the length, width, and height respectively,
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as shown in Figure 1(b). For the truth model a six-facet rectangular shape model is used with dimension
l = 4 m, a = 2 m, and d = 8 m. The mass for the true SO is selected to be m = 1, 500 kg, which gives a
maximum area-to-mass ratio of 0.09 for this model.

The Ashikhmin-Shirley and the Cook-Torrance model mass estimation results are shown Figures 2 and
3. The mass estimates along with the surface parameter estimates are also shown in Figures 2 and 3. From
these figures it can be seen that the surface parameters are estimated well for both models but the parameter
ρ does not show good observability. This is due to the fact that truth surface parameters used are not very
specular and therefore the measurements do not provide good observability with respect to ρ. From these
figures it can also be seen that the Cook-Torrance model mass estimates take longer to coverage than that
of the Ashikhmin-Shirley model. This can be attributed to the fact that the SRP acceleration calculated
from the Cook-Torrance is not as large as the Ashikhmin-Shirley model.

6 CONCLUSIONS

In this paper, an unscented Kalman filter estimation scheme using light curve and angles data was presented
and was used to estimate mass and bidirectional reflectance distribution function (BRDF) parameters of a
space object (SO) along with its associated rotational and translational states. This work extend pervious
work by using physical consistent solar radiation pressure models based on BRDFs. These models allow for
fusion of light curve and angles data where the parameters used in both models are consistent and therefore
providing realistic estimates. This work uses an assumed shape model of six sides and estimated the area
and BRDF parameters. Both the Ashikhmin-Shirley and the Cook-Torrance BRDF models were used to
simulate and process the light curve and angle measurements. Each model was used to estimate mass along
with the other aforemention states, and good performance was shown. Using an unscented filter to employ
brightness magnitude and angles data, the estimator was able to determine the mass of a SO to within high
accuracy.
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